[go: up one dir, main page]

JP3639227B2 - Drilling tools for brittle materials - Google Patents

Drilling tools for brittle materials Download PDF

Info

Publication number
JP3639227B2
JP3639227B2 JP2001212339A JP2001212339A JP3639227B2 JP 3639227 B2 JP3639227 B2 JP 3639227B2 JP 2001212339 A JP2001212339 A JP 2001212339A JP 2001212339 A JP2001212339 A JP 2001212339A JP 3639227 B2 JP3639227 B2 JP 3639227B2
Authority
JP
Japan
Prior art keywords
axis
intersection
tip
brittle material
cutting edge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001212339A
Other languages
Japanese (ja)
Other versions
JP2003025128A (en
Inventor
敬 増田
太一 青木
寛 池内
誠司 亀岡
浩 早崎
哲光 冨永
Original Assignee
三菱マテリアル神戸ツールズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱マテリアル神戸ツールズ株式会社 filed Critical 三菱マテリアル神戸ツールズ株式会社
Priority to JP2001212339A priority Critical patent/JP3639227B2/en
Publication of JP2003025128A publication Critical patent/JP2003025128A/en
Application granted granted Critical
Publication of JP3639227B2 publication Critical patent/JP3639227B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Drilling Tools (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、シリコンや各種セラミックス、ガラス、あるいは炭化タングステン(WC)などの超硬合金材を含む高硬度な脆性材料に穴明け加工を行う脆性材料用穴明け工具に関するものである。
【0002】
【従来の技術】
例えば半導体装置の製造装置に用いられるシャワーヘッドを製造する場合などにおいて、単結晶シリコン等の脆性材料に穴明け加工を施す際には、従来より専らレーザー加工によることが多かったが、このようなレーザー加工は、加工に要するレーザー加工装置が高価であるとともにランニングコストも高く、不経済であるという問題がある。そこで、本発明の発明者らは、このような脆性材料に対しても、通常の金属材料の穴明け加工と同じように、軸線回りに回転される工具本体の先端部に切刃が所定の先端角を持って形成されたドリル状の穴明け工具を用いて穴明け加工を行うことができないか試みた。
【0003】
【発明が解決しようとする課題】
ところが、このような穴明け工具によって上記脆性材料に穴明け加工を施そうとした場合、かかる材料は脆性であるが故に、一般的な鋼材等の金属材料に穴明け加工を行う場合に比べてひびやクラック等がきわめて生じ易く、特にこのようなひびやクラックは、工具本体先端の上記軸線上に位置する切刃の先端角を持った突端が加工物に食い付く際に発生し易い。これは、この軸線上では工具本体の回転速度が0となるために、上記切刃の突端が1点で加工物に押し付けられるように接触することとなり、これによって該加工物に過大な負荷が作用して亀裂が生じることによるものと考えられる。そして、このような問題は、穴明け加工された脆性材料を上述の半導体装置の製造装置におけるシャワーヘッドに用いる場合のように、加工穴の径が極小さく、従って穴明け工具の切刃の外径も極小さくなって、切刃の突端が極々小さな点で加工物に接触することとなる場合において、特に顕著となる。
【0004】
そこで、さらに本発明の発明者らは、このような問題を解決するために、先に特願2000−331508号において、軸線回りに回転される円柱軸状の工具本体の先端部を、その先端面を上記軸線に直交する平坦面または外周部に対して内周部が後退した凹面としたりして、上記加工物に面接触または線接触して食い付き可能とするとともに、少なくともこの工具本体の先端面にはダイヤモンドコーティングを施した脆性材料用の穴明け工具を提案している。従って、このような穴明け工具では、工具本体の先端部が加工物に面接触または線接触して食い付き、このとき先端面に施されたダイヤモンドコーティングが微視的なす凹凸の凸部が切刃として作用するとともに凹部がチップポケットとして作用して、あたかも砥石による研削のごとく、しかしながら砥石の砥粒よりも極小さな多くの切刃による切削作用により穴明け加工を施すことが可能となるため、加工物に過大な負荷が作用することがなく、この加工物が脆性材料であってもひびやクラック等の亀裂が生じるのを防ぐことができる。
【0005】
しかしながら、このような先端面を平坦面あるいは凹面として加工物に面接触あるいは線接触させるようにした穴明け工具では、脆性材料よりなる加工物に対して食い付き時のひびやクラックの発生は確実に防止できるものの、このように食い付きが面接触あるいは線接触であるが故に、工具本体の求心性を確保することは容易ではない。すなわち、このような穴明け工具では、食い付き時に、平坦面とされた上記先端面が満遍なく全面的に加工物に接触したり、あるいは凹面とされた先端面の外周縁がやはり満遍なく全周に亙って一度に加工物に接触したりしなければ、工具本体に振れが生じるおそれがあって、これにより加工穴の直進度や真円度などの精度の向上を図ることが難しいという新たな問題が生じることが分かった。
【0006】
本発明は、このような背景の下になされたもので、上述のような脆性材料よりなる加工物に穴明け工具によって穴明け加工を行う場合において、特に加工穴の径が極小さな場合であっても、加工物にひびやクラックが生じるのを防ぐのは勿論、求心性を確保して高精度の加工穴を形成することが可能な脆性材料用穴明け工具を提供することを目的としている。
【0007】
【課題を解決するための手段】
上記課題を解決して、このような目的を達成するために、本発明は、脆性材料よりなる加工物に穴明け加工を行う脆性材料用穴明け工具であって、軸線回りに回転される円柱軸状の工具本体の先端に、上記軸線上に位置する1つの交点において互いに交差し、かつこの交点から外周側に向かうに従い後端側に向かう3つ以上の先端面を形成して、周方向に隣接する上記先端面同士の交差稜線のうち少なくとも2つを上記交点から延びる切刃とするとともに、少なくともこの切刃部分を硬質炭素皮膜によって被覆し、あるいは少なくともこの切刃部分を硬質炭素体によって形成したことを特徴とする。
【0008】
ここで、上記切刃部分を被覆する硬質炭素皮膜は、例えばダイヤモンド皮膜やDLC皮膜であり、上述した先の提案の穴明け工具と同様に、このような皮膜が微視的になす凹凸の凸部によって切削が行われるとともに凹部がチップポケットとして作用し、脆性材料に穴明けを行う。また、切刃部分を形成する硬質炭素体としてはダイヤモンド焼結体やダイヤモンド単結晶を用いることができ、やはり同様の効果を得ることができる。そして、この切刃部分は、工具本体先端に形成された3つ以上の先端面の交差稜線であって、これらの先端面が交差する軸線上の交点から延びるように形成されているので、この交点がまず加工物に食い付くことにより求心性が得られて工具本体の振れが防止される。なお、切刃が上記交差稜線のうちの1つであって、すなわち工具本体に1条の切刃しか形成されていないと、この切刃への負荷が大きく、また穴明け時の工具本体の安定性が損なわれることとなる。一方、この交点が食い付く際の負荷による脆性材料のひびやクラックは、切削が上述のように硬質炭素皮膜の微細な凹凸の凸部によるものであるために工具本体の送りが極小さくなることにより、防止することができる。また、例えばこのような微小な送りのステップフィード加工を行うことによっても、ひびやクラック等の亀裂の発生を回避することができる。
【0009】
そして、さらに本発明では、第1に、上記先端面を4つとしてこれらの先端面同士が交差して形成される上記交差稜線を周方向に不等間隔となるように配設するとともに、上記軸線方向先端視に上記交点を挟んで反対側に位置する一対の上記先端面同士がなす扇形の中心角は互いに等しくすることにより、切刃とされる交差稜線の工具回転方向側に位置する先端面を周方向に大きくすることができ、従ってこの先端面と加工穴の穴底との間に画成される空間を切刃の工具回転方向側に大きく確保することができるので、切刃によって生成された切粉をこの空間に収容して円滑に処理することができる。また、第2に、少なくとも一部の上記交差稜線が上記交点において上記軸線となす交差角を、他の上記交差稜線が上記交点において上記軸線となす交差角と異なる角度に設定することにより、交差角の大きい交差稜線だけが切刃として作用することとなって、周方向に隣接するこの切刃間の先端面と加工穴の穴底との間にやはり大きな空間を確保することができ、同様に円滑な切粉処理を図ることが可能となる。さらに、第3に、上記交差稜線を周方向に不等間隔に配設するとともに、少なくとも一部の上記交差稜線が上記交点において上記軸線となす交差角を、他の上記交差稜線が上記交点において上記軸線となす交差角と異なる角度に設定すれば、一層確実に円滑な切粉処理を図ることができる。さらにまた、このように交差稜線を不等間隔に配設したり、交差角を異なる角度としたりすることにより、上記切刃とされる交差稜線に交差して隣接する一対の上記先端面のうち、上記工具本体の回転方向側に位置する先端面が上記軸線と切刃とを含む平面に対してなす角度を、上記工具本体の回転方向後方側に位置する先端面がこの平面に対してなす角度よりも小さく設定することができ、従って切刃の軸方向すくい角を正角側に大きくして良好な切れ味を得ることができるとともに、逃げ角が小さくなることによって刃先角を大きくして切刃強度を確保することができる。
【0010】
なお、少なくとも上記切刃とされる交差稜線は、これを直線状とすることにより、上記交点における切刃の加工物への食い付きを鋭くしてより高い求心性を得ることができる一方、これを上記軸線方向の先端側に膨らむ凸曲線状をなすようにすれば、上記交点から切刃が徐々に加工物に食い付くこととなるので、加工物に亀裂が生じるのを一層確実に防止できるとともに、この食い付きの際の衝撃的な負荷によって切刃にチッピングが生じたりするのも防止することができる。ただし、このように切刃を直線状または凸曲線状とした場合でも、この切刃とされる交差稜線が上記交点において上記軸線となす交差角は45〜87.5°の範囲に設定されるのが望ましく、これよりも小さいと求心性は得られるものの食い付きが鋭くなりすぎて亀裂やチッピングの発生が回避できなくなるおそれがあり、逆にこれよりも大きいと十分な求心性が得られなくなるおそれが生じる。また、上記工具本体の先端部外周に、上記先端面に開口して後端側に延びる1条以上の切粉排出溝を形成すれば、上記切刃によって生成された切粉を円滑に排出することができて、切粉の噛み込みによる加工精度の劣化を防止したりすることができる。ただし、このように切粉排出溝を形成したりした場合においても工具本体の剛性を確保して折損等を防止するには、上記工具本体の先端部における芯厚を、上記切刃の外径Dに対して0.5D以上に設定するのが望ましく、さらにこのような切屑排出性と工具の剛性とを一層確実に両立させるために、上記芯厚を0.6D〜0.9Dの範囲に設定することがより望ましい。
【0011】
【発明の実施の形態】
図1ないし図5は、本発明の第1の実施形態を示すものである。本実施形態において工具本体1は、超硬合金等の硬質材料により一体に形成されて、加工物に挿入されて穴明け加工を施す先端部2が、工作機械の主軸に把持されてシャンク部とされる後端部3に対して一段縮径した軸線Oを中心とする多段円柱軸状をなしており、両端部2,3の間の部分は先端側に向けて漸次縮径するテーパ部4によって結ばれている。そして、本実施形態では上記先端部2の先端に、上記軸線O上の1の交点Pにおいて交差し、かつこの交点Pから外周側に向かうに従い後端側に向けて傾斜する平面状の4つの先端面5…が形成されており、従ってこの工具本体1においては上記交点Pの位置が最も先端側に突出させられるとともに、上記先端面5同士が互いに交差する4条の交差稜線6…が、この交点Pから外周側に向けて後端側に直線状に後退するように、かつ軸線O方向先端視に該交点Pから放射状に延びるように形成されることとなる。
【0012】
ここで、本実施形態では上記4つの先端面5…は、これらの先端面5…が軸線O方向先端視においてなす扇形の中心角が異なるものとされ、これにより周方向に隣接する先端面5…同士の4条の交差稜線6…が、周方向に異なる間隔で配設されている。ただし、本実施形態では、上記4つの先端面5…のうち軸線O方向先端視に交点Pを挟んで反対側に位置する一対の先端面5,5同士がなす扇形の中心角は互いに等しくされ、従って上記交差稜線6…も、交点Pを挟んで反対側に位置する一対の交差稜線6,6同士は、それぞれ軸線O方向先端視に図3に示すように1直線上に延びるように形成されることとなって、軸線Oに対し線対称に配置されている。
【0013】
また、本実施形態では、これらの4条の交差稜線6…が、軸線Oに対し交点Pにおいて互いに等しい交差角θで交差するようにされている。そして、本実施形態では、これら先端面5…およびその交差稜線6…や交点Pを含めた上記先端部2の表面全体が、図中に打点をつけて示したようにダイヤモンド被膜またはDLC被膜よりなる硬質炭素皮膜7によって被覆されている。従って、このように構成された穴明け工具では、工具本体1先端の上記4条の交差稜線6…が軸線O回りになす回転軌跡が互いに一致して、上記交点Pを頂点とする一つの円錐面を形成することとなり、従ってこれら4条の交差稜線6…すべてが交点Pから延びる切刃8として作用することとなり、かつこれらの切刃8…には交点Pも含めて上記硬質炭素皮膜7が被覆されることとなる。
【0014】
ここで、本実施形態の穴明け工具は、上述したように半導体装置の製造装置に用いられるシャワーヘッドを製造する場合などにおいて、単結晶シリコン等の脆性材料に極小径の加工穴を形成するためのものであり、従って該脆性材料に穴明け加工を施す上記円柱軸状の先端部2の外径Dも極小さく、0.2〜3mm程度とされるとともに、この先端部2の長さLも1〜10mm程度とされている。また、この先端部2の表面に施される硬質炭素皮膜7は、例えばこれがダイヤモンド皮膜である場合には、超硬合金よりなる工具本体1の先端部2に、マイクロ波プラズマCVD法や熱フィラメントCVD法などの手法によって形成されるものであって、このときの原料ガスとしては水素とメタンやCOなどの混合ガスが用いられ、また処理温度としては約800〜900℃が一般的であり、皮膜厚さは5〜25μm程度とされるとともに、形成されるダイヤモンド粒子等の硬質炭素粒子の粒径は0.1〜10μm程度とされる。
【0015】
このように構成された本実施形態の穴明け工具は、上述のように工具本体1の後端部3が工作機械の主軸に把持されて、軸線O回りに回転されつつ該軸線O方向先端側に送り出され、単結晶シリコン等の脆性材料よりなる加工物に穴明け加工を行う。ただし、このときの工具本体1の軸線O方向先端側への送り量は、例えば0.025〜0.15μm/revと極小さく設定され、より望ましくは工具本体1の送りと後退とを繰り返しながら徐々に加工物に切り込むステップフィード加工が行われる。また、この穴明け加工時には、加工物の穴明け部位に切削油を供給するのが望ましい。
【0016】
従って、上記構成の穴明け加工では、まず上述のように上記交点Pが工具本体1において最も先端側に突出させられているため、この交点Pが最初に加工物に食い付くこととなり、次いでこの交点Pから延びる切刃8…が内周側から加工物に切り込まれていって、上記交点Pからこれら切刃8…部分に被覆された硬質炭素皮膜7の微細な凹凸によって加工物が削り取られて切削され、加工穴が形成される。そして、このように加工物に最初に食い付く上記交点Pが工具本体1の回転中心となる軸線O上に位置していることから、この食い付き時や穴明け加工中に工具本体1に径方向の振れが生じるのを防いで高い求心性を得ることができ、このため形成された加工穴の直進度や真円度を向上させることができて、高精度の穴明け加工を図ることができる。その一方で、この交点Pが1点で加工物に食い付くことによって加工物に集中する負荷は、上述のように工具本体1の送りを極小さくしたり、ステップフィード加工を行ったりすることにより緩和され、従ってこのような負荷によって脆性材料よりなる加工物にひびやクラック等の亀裂が食い付き時に発生するのを防ぐことができる。
【0017】
そして、さらにこの第1の実施形態では、上述のように工具本体1先端の切刃8とされる交差稜線6…が工具本体1の周方向に不等間隔となるように配設されており、このため穴明け加工時に工具本体1をその周方向のいずれの側に回転させるにしても、周方向の間隔が小さくされた切刃8,8のうち工具回転方向T側に位置する切刃8の該工具回転方向T側には、中心角が大きくされた先端面5が配設されることとなる。従って、この中心角が大きくされた先端面5と、切刃8の軸線O回りの回転軌跡がなす上記交点Pを頂点とした円錐面、すなわち穴明け加工中に切刃8によって形成される加工穴の穴底との間には、上記切刃8の工具回転方向T側に大きな空間が確保されることとなるので、本実施形態によれば、切刃8に被覆された硬質炭素皮膜7の微細な凹凸によって加工物が削り取られて生成された切粉を、この大きな空間に収容して排出することができ、このような切粉が加工穴と工具本体1との間に噛み込まれたり穴底と先端面5…との間で詰まりを生じたりするのを防いで円滑な切粉処理を図るとともに、上述のように切削油を供給する場合には、この空間に切削油を保持して効率的に切刃8や加工穴の上記穴底に供給することが可能となる。
【0018】
一方、この第1の実施形態のように交差稜線6…の軸線Oに対する交差角θを互いに等しくしてすべての交差稜線部6…を切刃8として作用させるのに代えて、図6ないし図9に示す第2の実施形態のように、上記4つの交差稜線6…のうち交点Pを挟んで反対側に位置する一対の交差稜線6a,6aの軸線Oに対する交差角αを、他の交点Pを挟んで反対側に位置する一対の交差稜線6b,6bの軸線Oに対する交差角βよりも大きくして、一部の交差稜線6aの交差角αを他の交差稜線6bの交差角βと異なる角度としてもよい。なお、この第2の実施形態を初め、後述する以降の実施形態では、互いに共通する構成要素には同一の符号を配して説明を省略する。また、この第2の実施形態では、交差稜線6…の周方向の間隔は互いに等しくされている。
【0019】
このような第2の実施形態では、工具本体1の送りを上述のように極小さくした場合、大きな交差角αとされた交差稜線6a,6aが、軸線O回りの回転軌跡において図9に鎖線で示すように小さな交差角βの交差稜線6b,6bよりも先端側に位置することとなって、これらの交差稜線6a,6aだけが切刃8として作用することになり、これに対して交差稜線6b,6bの特に外周側の部分は、交差稜線6a,6aよりも後端側に位置して切削に関与せず、このため工具本体1の周方向において切刃8とされる上記交差稜線6a,6aの間には、やはりこの切刃8が軸線O回りになす回転軌跡すなわち穴明け中の加工穴の穴底に対して後退した空間が大きく確保されることとなる。従って、この第2の実施形態によっても、切刃8によって生成された切粉をこの空間に収容して排出することが可能となり、第1の実施形態と同様に円滑な切粉処理や切削油の供給を図ることが可能となる。
【0020】
さらに、図10ないし図14は、本発明の第3の実施形態を示すものであって、この第3の実施形態では、上記第1、第2の実施形態の構成を組み合わされており、すなわち第1の実施形態と同様に交差稜線6…は周方向に不等間隔に配設されているとともに、このうち交点Pを挟んで反対側に位置する一対の交差稜線6a,6aの軸線Oに対する交差角αは、他の交点Pを挟んで反対側に位置する一対の交差稜線6b,6bの軸線Oに対する交差角βよりも大きくされていて、一部の交差稜線6aの交差角αを他の交差稜線6bの交差角βと異なる角度としている。ただし、この第3の実施形態では、交差稜線6…が不等間隔に配設されることによって周方向の間隔が小さくされた交差稜線6,6のうち、工具回転方向T側に位置する交差稜線6aの交差角αが、この交差稜線6aの工具回転方向T後方に位置する交差稜線6bの交差角βよりも大きくなるようにされていて、この交差稜線6aが切刃8として作用するようになされている。従って、このような第3の実施形態の穴明け工具によれば、第1の実施形態と同様に上記切刃8の工具回転方向T側に中心角の大きな先端面5が配設されることと、第2の実施形態と同様に交差稜線6bが交差稜線6aよりも後端側に位置することとにより、該切刃8の工具回転方向T側に形成される上記空間をより大きく確保することができ、このためこれら第1、第2の実施形態に比べて一層円滑な切屑処理と切削油の供給とを図ることが可能となる。
【0021】
ところで、この第3の実施形態のように周方向に不等間隔に配設された交差稜線6…のうち一部の交差稜線6aの交差角αを他の交差稜線6bの交差角βと異なる角度とした場合には、切刃8とされる交差稜線6aに交差して周方向に隣接する一対の先端面5,5が軸線Oと該交差稜線6aとを含む平面Qに対してなす角度も互いに異なる角度とすることができ、すなわち図14に示すように、これら一対の先端面5,5のうち、切刃8の工具回転方向T側に位置する先端面5aが上記平面Qに対してなす角度γを、工具回転方向Tの後方側に位置する先端面5bが同平面Qに対してなす角度δよりも小さく設定することができる。従って、切刃8となる交差稜線6aの工具回転方向T側に連なる先端面5a、すなわち該切刃8のすくい面となる先端面5aについては、そのすくい角を、負角ではあるものの、より正角側に大きな角度として、該切刃8による切れ味の向上を図り、穴明け加工時の抵抗の低減を図ることができる一方、この切刃8となる交差稜線6aの工具回転方向T後方側に連なる先端面5b、すなわち該切刃8の逃げ面となる先端面5bの傾斜は上記平面Qに対して小さくなり、つまり逃げ角が小さくなるため、上述のように軸方向すくい角を大きくしたにも関わらず、切刃8の刃先角は大きく確保することができ、従って切刃8の刃先強度も確保することができ、抵抗が低減されることとも相俟って切刃8にチッピング等が発生するのを防止し、工具寿命の延長を図ることができる。
【0022】
さらに、上記各実施形態では、工具本体1の先端面5…から先端部2の外周にかけての先端部2の表面全体がダイヤモンド皮膜やDLC皮膜等の硬質炭素皮膜7が施されており、この工具本体1の先端部2全体の耐摩耗性等の向上を図ることができて工具本体1の損傷を一層確実に防止することができるとともに、こうして硬質炭素皮膜7が施された先端部2の外周が工具本体1の送りに伴い加工穴に挿入されてその内周に摺接させられるので、この先端部2外周の硬質炭素皮膜7の微細な凹凸によっても、上記加工穴の内周をより高い仕上げ面精度に加工することができるという利点も得られる。ただし、本実施形態ではこのように先端部2の表面全体を硬質炭素皮膜7に被覆するようにしているが、加工物に直接的に接して切刃8として切削に関与するのは、専ら上記交点Pと先端面5…の交差稜線部6(6a)部分であるので、例えば先端部2のうちでも先端側だけを被覆したり、これら交点Pや交差稜線6を含めた先端面5…のみを被覆したり、場合によっては先端面5…のうちでも交点Pや交差稜線6の切刃8部分のみを被覆したりするようにしてもよい。
【0023】
また、上記実施形態では、このように少なくとも切刃8部分にダイヤモンド皮膜やDLC皮膜等の硬質炭素皮膜7を被覆して、その表面の微細な凹凸により脆性材料表面を削り取るようにして切削を行うようにしているが、少なくともこの切刃8部分を、ダイヤモンド焼結体や、あるいはダイヤモンド単結晶のような硬質炭素体によって形成するようにしても、同じような効果を得ることができる。従って、上述のように硬質炭素皮膜7を被覆する代わりに、工具本体1の先端部2全体やその先端側の先端面5…を含んだ部分、あるいはこの先端面5…のうちでも交点Pや交差稜線6周辺の少なくとも切刃8を含んだ部分を、このような硬質炭素体を工具本体1にろう付け等によって接合することにより形成するようにしてもよい。
【0024】
一方、上記各実施形態では、上記先端面5…がいずれも平面状とされていて、これにより上記切刃8とされる交差稜線6(6a)を含めてすべての交差稜線6…が直線状とされており、従って上記交点Pにおける加工物への食い付きを鋭くして、より高い求心性を得ることができ、食い付き時等の工具本体1の振れを確実に防ぐことができるという利点を得ているが、このように切刃8を直線状とするのに代えて、図15ないし図17に示す第4の実施形態のように、先端面5…を交点Pから外周側に向かうに従い工具本体1の軸線O方向先端側(先端外周側)に凸となるように膨らんで湾曲する凸曲面に形成するなどして、少なくとも切刃8とされる上記交差稜線6…も軸線O方向先端側に膨らむ凸曲線状をなすようにしてもよい。なお、この第4の実施形態から以降の第6の実施形態までは、上記第3の実施形態と同様に先端面5…の交差稜線6…が周方向に不等間隔とされるとともに、周方向の間隔が小さくされた交差稜線部6,6のうち、工具回転方向T側に位置する交差稜線6aの軸線Oに対する交差角αが、工具回転方向T後方側に交差稜線6bの交差角αよりも大きくされて、該交差稜線6aが切刃8とされている。ただし、交差稜線6が凸曲線とされたこの第4の実施形態では、交差角α,βは、交点Pにおける交差稜線6の接線と軸線Oとの交差角とされている。
【0025】
従って、このように切刃8が凸曲線とされた第4の実施形態においても、上記交点Pが加工物に食い付いて穴明けが行われるため、この食い付き時や穴明け加工中の求心性を確保することができ、工具本体1の振れを抑えて加工精度の劣化を防止することができる。しかも、このように切刃8を凸曲線状とすることにより、切刃8は交点Pから外周側に向けて徐々に加工物に食い付いてゆくことになるので、この食い付きの際に負荷が加工物に急激に作用するのを抑えて亀裂の発生をより確実に防止することができる一方、穴明け工具側においても切刃8の強度を向上させることができるため、食い付き時の衝撃的負荷によって切刃8の特に交点P周辺にチッピングが生じたりするのを防ぐことができ、工具寿命の一層の延長を図ることができる。
【0026】
なお、このように切刃8を凸曲線状とした場合も含めて、少なくともこの切刃8として作用する上記交差稜線6(6a)が軸線Oに対してなす交差角θ,αは45〜87.5°の範囲に設定されるのが望ましく、すなわち上記各実施形態のように交点Pを間にして一対の切刃8,8が軸線O方向先端視に1直線状に形成される場合には、これらの切刃8,8がなす交差角が交差角θ,αの2倍の90〜175°の範囲となるように設定されるのが望ましい。これは、この切刃8が軸線Oに対してなす交差角θ,αが上記範囲を下回るほど小さいと、交点Pにおいて切刃8が加工物に食い付く際の食い付きが鋭くなりすぎ、求心性は高まるものの加工物の亀裂の発生や工具本体1の交点P付近におけるチッピングが防止できなくなるおそれがあり、逆にこの交差角θ,αが上記範囲よりも大きいと、このような亀裂やチッピングは効果的に防止できるが、十分な求心性が得られなくなって加工穴の精度の劣化を招くおそれがある。言い換えれば、本実施形態では、上記切刃8の交差角θ,αを上記範囲とすることにより、亀裂やチッピングを確実に防止しつつも、十分な求心性を工具本体1に与えて加工精度の向上を図ることができるのである。
【0027】
また、上記各実施形態では、工具本体1の先端部2が円柱状に形成されていて、その先端に上記先端面5…が形成されることによってその交差稜線部6(6a)…に上記交点Pから先端部2の外周に達する切刃8が形成されており、従ってこの先端部2における工具本体1の芯厚dは切刃8の外径Dと等しくされることとなり、これによって先端部2に高い剛性が確保されるようになされているが、例えば図18および図19に示す第5の実施形態のように、上記先端部2の外周面に、このうち切刃8が先端部2外周に達する部分を除いて、内周側に一段凹むように二番取り面9を形成したり、あるいは図20および図21に示す第6の実施形態のようにこの二番取り面9を形成するのに加えて、もしくは単独で、切屑排出溝10を例えば切刃8の外周端の工具回転方向T側に隣接して上記先端面5に開口するように形成したりするようにしてもよい。
【0028】
このように二番取り面9を形成した穴明け工具では、加工穴の内周と工具本体1の先端部2との接触面積が低減させられるので、特に穴明け加工時の抵抗の低減を図る場合に有効である。また、この二番取り面9に加えて、あるいは単独で切屑排出溝10を形成した穴明け工具では、切刃8によって生成されて上述のように加工中の穴底と上記先端面5との間の空間に収容された切粉を、先端部2が加工穴内に挿入されたままでも排出することができ、従ってこのような切粉の噛み込みや詰まりを一層確実に防いで円滑に処理することができるとともに、切削油の効率的な供給を図ることができる。なお、上記二番取り面9だけでもある程度の切屑排出効果や切削油供給効果は得られる。また、これら二番取り面9や切屑排出溝10は軸線Oに平行に真っ直ぐ形成されていてもよいが、これらを図示のように後端側に向かうに従い工具回転方向Tの後方側に向かって捩れるように形成すれば、工具本体1の回転に伴って切屑を後端側に押し出すことができる一方、これとは逆方向に捩れるように形成すれば、加工穴の開口部側から穴底側に切削油を送り込むことができる。
【0029】
ただし、このように二番取り面9や切屑排出溝10を工具本体1の上記先端部部2外周に形成した場合、この先端部2における工具本体1の芯厚dは、切刃8の外径Dよりも小さくなるが、こうして芯厚dが小さくなる場合でも、上記切刃8の外径Dに対して0.5×D以上の芯厚dが確保されるのが望ましい。すなわち、この芯厚dが0.5×Dを下回るほど小さくなると、工具本体1の先端部2における剛性を確保することが困難となって、この先端部2に折損が生じてしまったりするおそれがある。なお、このように工具の剛性を確保することと、二番取り面9や切屑排出溝10を形成することによって切屑排出性の向上を図ることとを、一層確実に両立させるためには、上記芯厚dを切刃8の外径Dに対して0.6×D〜0.9×Dの範囲に設定するのが、より望ましい。
【0030】
さらに、上記各実施形態では、工具本体1の先端部2に4つの先端面5…を形成して交差稜線6が4条形成されるようにしているが、上述のように交点Pが工具本体1の最先端に位置して穴明け加工時に求心性が得られるようにするには、この交点Pで交差する先端面5が少なくとも3つあればよく、例えば図22に示す第7の実施形態のように6つの先端面5…を形成して6条の交差稜線6…が形成されるようにしてもよい。この場合でも、各交差稜線6…の軸線Oに対する交差角が互いに等しければすべての交差稜線6…が切刃8として作用し、一部の交差稜線6の交差角が他と異なる角度とされていれば、図示のように交差角の最も大きな交差稜線部6aが切刃8として作用する。また、これらの先端面5…および交差稜線6…は3つ以上であれば奇数であってもよいが、その場合でも、穴明け加工時の工具本体1の振れを防ぐには、少なくとも2条の交差稜線5…が切刃8として作用させられる。
【0031】
【発明の効果】
以上説明したように、本発明によれば、工具本体がその先端の軸線上に位置する交点において加工物に食い付くため、この食い付き時や穴明け加工中の工具本体の求心性を確保して振れを抑えることができ、これにより加工穴の直進度や真円度といった加工精度の向上を図ることができるとともに、この交点から延びる切刃部分に被覆された硬質炭素皮膜や該切刃部分を形成する硬質炭素体により、脆性材料よりなる加工物に対してもひびやクラック等が生じるのを確実に防止することができる。そして、さらに上記交点に交差する先端面の交差稜線を、周方向に不等間隔に配設したり、または一部の交差稜線が軸線となす交差角を他と異なる角度としたり、もしくはこれらを組み合わせたりすることにより、穴明け加工中の切刃とされる交差稜線の工具回転方向側に大きな空間を確保することができ、この切刃の上記硬質炭素皮膜や硬質炭素体によって生成される切粉を円滑に処理することが可能となる。
【図面の簡単な説明】
【図1】 本発明の第1の実施形態を示す側面図である。
【図2】 第1の実施形態の先端部2の拡大斜視図である。
【図3】 第1の実施形態の先端部2を軸線O方向先端側から見た正面図である。
【図4】 図3におけるAA断面図である。
【図5】 図3におけるBB断面図である。
【図6】 本発明の第2の実施形態の先端部2の拡大斜視図である。
【図7】 第2の実施形態の先端部2を軸線O方向先端側から見た正面図である。
【図8】 図7におけるAA断面図である。
【図9】 図7におけるBB断面図である。
【図10】 本発明の第3の実施形態の先端部2の拡大斜視図である。
【図11】 第3の実施形態の先端部2を軸線O方向先端側から見た正面図である。
【図12】 図11におけるAA断面図である。
【図13】 図11におけるBB断面図である。
【図14】 第3の実施形態において切刃8に直交する断面図である。
【図15】 本発明の第4の実施形態の先端部2の拡大斜視図である。
【図16】 第4の実施形態の先端部2を軸線O方向先端側から見た正面図である。
【図17】 図16におけるAA断面図である。
【図18】 本発明の第5の実施形態の先端部2の拡大斜視図である。
【図19】 第5の実施形態の先端部2を軸線O方向先端側から見た正面図である。
【図20】 本発明の第6の実施形態の先端部2の拡大斜視図である。
【図21】 第6の実施形態の先端部2を軸線O方向先端側から見た正面図である。
【図22】 本発明の第7の実施形態の先端部2の拡大斜視図である。
【符号の説明】
1 工具本体
5(5a,5b) 先端面
6(6a,6b) 先端面5…の交差稜線
7 硬質炭素皮膜
8 切刃
9 二番取り面
10 切屑排出溝
O 工具本体1の軸線
P 先端面5…の交点
T 工具回転方向
Q 切刃8と軸線Oとを含む平面
D 切刃8の外径
d 工具本体1の先端部2における芯厚
θ,α,β 交差稜線6(6a,6b)が軸線Oに対してなす交差角
γ 切刃8の工具回転方向T側に位置する先端面5aが平面Qに対してなす角度
δ 切刃8の工具回転方向T後方側に位置する先端面5bが平面Qに対してなす角度
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a drilling tool for a brittle material, which drills a hard brittle material containing silicon, various ceramics, glass, or a cemented carbide material such as tungsten carbide (WC).
[0002]
[Prior art]
For example, in the case of manufacturing a shower head used in a semiconductor device manufacturing apparatus, when drilling a brittle material such as single crystal silicon, it has been mostly performed by laser processing conventionally. Laser processing has the problem that the laser processing apparatus required for processing is expensive and the running cost is high, which is uneconomical. Accordingly, the inventors of the present invention have a predetermined cutting edge at the tip of the tool body that is rotated around the axis, even in the case of such a brittle material, as in the case of drilling a normal metal material. An attempt was made to drill a hole using a drill-shaped drilling tool formed with a tip angle.
[0003]
[Problems to be solved by the invention]
However, when trying to drill the brittle material with such a drilling tool, such a material is brittle, so compared to the case of drilling a metal material such as a general steel material. Cracks, cracks, and the like are very likely to occur. In particular, such cracks and cracks are likely to occur when a tip having a tip angle of a cutting blade located on the axis at the tip of the tool body bites the workpiece. This is because the rotation speed of the tool body is 0 on this axis, so that the tip of the cutting blade comes into contact with the work piece at one point, thereby causing an excessive load on the work piece. This is thought to be due to the action of cracks. Such a problem is caused by the fact that the hole diameter is extremely small as in the case of using the drilled brittle material for the shower head in the above-mentioned semiconductor device manufacturing apparatus, and therefore, the outside diameter of the cutting tool's cutting blade is small. This is particularly noticeable when the diameter becomes extremely small and the tip of the cutting edge comes into contact with the workpiece at an extremely small point.
[0004]
Then, in order to solve such a problem, the inventors of the present invention previously described in Japanese Patent Application No. 2000-331508 the tip portion of a cylindrical shaft-shaped tool body rotated around the axis line. The surface may be a flat surface orthogonal to the axis or a concave surface whose inner peripheral portion is recessed with respect to the outer peripheral portion, and can be bitten by surface contact or line contact with the workpiece. A drilling tool for brittle materials with a diamond coating on the tip is proposed. Therefore, in such a drilling tool, the tip of the tool body bites into the workpiece by surface contact or line contact, and at this time, the uneven projections microscopically formed by the diamond coating applied to the tip surface are cut. Since it acts as a blade and the recess acts as a chip pocket, as if grinding with a grindstone, however, it becomes possible to perform drilling by cutting action with many cutting blades extremely smaller than the abrasive grains of the grindstone, An excessive load does not act on the workpiece, and even if the workpiece is a brittle material, cracks such as cracks and cracks can be prevented.
[0005]
However, with such a drilling tool in which the tip surface is made flat or concave to make surface contact or line contact with the workpiece, cracks and cracks are reliably generated when the workpiece is made of a brittle material. However, it is not easy to secure the centripetal property of the tool body because the biting is surface contact or line contact. That is, in such a drilling tool, when the bite is bitten, the above-mentioned tip surface made flat is evenly in contact with the work piece, or the outer peripheral edge of the tip surface made concave is evenly around the entire circumference. If you do not touch the workpiece at once, there is a risk that the tool body may sway, which makes it difficult to improve the accuracy of straightness and roundness of the machined hole. It turns out that a problem arises.
[0006]
The present invention has been made under such a background. In the case of drilling a workpiece made of a brittle material as described above with a drilling tool, the diameter of the drilled hole is particularly small. However, it is an object of the present invention to provide a drilling tool for a brittle material that can prevent cracks and cracks from occurring in the workpiece, as well as ensure high centripetality and form a highly accurate drilled hole. .
[0007]
[Means for Solving the Problems]
In order to solve the above-described problems and achieve such an object, the present invention is a drilling tool for a brittle material that drills a workpiece made of a brittle material, and is a cylinder rotated about an axis. At the tip of the shaft-shaped tool body, three or more tip surfaces that intersect with each other at one intersection located on the axis and toward the rear end side from the intersection toward the outer peripheral side are formed in the circumferential direction. And at least two of the intersecting ridge lines of the tip surfaces adjacent to each other are cutting edges extending from the intersection, and at least the cutting edge portion is covered with a hard carbon film, or at least the cutting edge portion is made of a hard carbon body. It is formed.
[0008]
Here, the hard carbon film that covers the cutting edge portion is, for example, a diamond film or a DLC film, and, as in the previously proposed drilling tool described above, the uneven projections microscopically formed by such a film. Cutting is performed by the part, and the concave part acts as a chip pocket to drill a brittle material. Further, as the hard carbon body forming the cutting edge portion, a diamond sintered body or a diamond single crystal can be used, and the same effect can be obtained. And this cutting edge part is an intersection ridgeline of three or more tip surfaces formed at the tool body tip, and is formed so as to extend from the intersection point on the axis line where these tip surfaces intersect. When the intersection first bites into the workpiece, centripetality is obtained and the tool body is prevented from being shaken. If the cutting edge is one of the above-mentioned cross ridge lines, that is, if only one cutting edge is formed on the tool body, the load on the cutting edge is large, and the tool body at the time of drilling Stability will be impaired. On the other hand, the cracks and cracks in the brittle material due to the load when this intersection bites, the cutting of the brittle material is due to the fine uneven projections of the hard carbon film as described above, and the feed of the tool body becomes extremely small This can be prevented. In addition, for example, the generation of cracks such as cracks and cracks can be avoided by performing step feed processing with such minute feed.
[0009]
In the present invention, first, the above-mentioned There are four tip surfaces. The intersecting ridge lines formed by intersecting the tip surfaces are arranged so as to be unequal in the circumferential direction. In addition, the fan-shaped central angles formed by the pair of tip surfaces located on opposite sides of the intersection point in the axial tip view are made equal to each other. As a result, the tip surface located on the tool rotation direction side of the intersecting ridge line, which is the cutting edge, can be increased in the circumferential direction, and therefore the space defined between the tip surface and the hole bottom of the machining hole is increased. Since the cutting edge can be largely secured on the side of the tool rotation direction, the chips generated by the cutting edge can be accommodated in this space and processed smoothly. Second, the intersection angle formed by at least some of the intersecting ridge lines with the axis at the intersection is set to an angle different from the intersection angle formed by the other intersecting ridge lines with the axis at the intersection. Only the intersecting ridge line with a large corner acts as a cutting edge, and a large space can be secured between the tip surface between the cutting edges adjacent in the circumferential direction and the hole bottom of the machining hole. It is possible to achieve a smooth chip treatment. Thirdly, the intersecting ridge lines are arranged at irregular intervals in the circumferential direction, and at least some of the intersecting ridge lines are intersected with the axis at the intersecting points, and the other intersecting ridge lines are at the intersecting points. If the angle is different from the crossing angle formed with the axis, smooth chip treatment can be achieved more reliably. Furthermore, by arranging the intersecting ridge lines at unequal intervals as described above, or by setting the intersecting angles to different angles, among the pair of tip surfaces adjacent to intersecting the intersecting ridge line that is the cutting edge. The tip surface located on the rotational direction side of the tool body forms an angle with respect to the plane including the axis and the cutting edge, and the tip surface located on the rear side in the rotational direction of the tool body forms the plane. The cutting edge can be set smaller than the angle, so that the cutting angle can be increased by increasing the rake angle in the axial direction of the cutting edge toward the positive side, and the cutting edge angle can be increased by decreasing the clearance angle. Blade strength can be ensured.
[0010]
In addition, at least the intersecting ridge line that is the cutting edge can be sharpened by biting the work piece of the cutting edge at the intersection to obtain higher centripetalness, By forming a convex curve that bulges toward the tip end in the axial direction, the cutting edge gradually bites into the work piece from the intersection point, so that the work piece can be more reliably prevented from cracking. At the same time, it is possible to prevent chipping from occurring on the cutting edge due to the impact load at the time of biting. However, even when the cutting edge is linear or convex, the intersection angle between the intersecting ridgeline of the cutting edge and the axis at the intersection is set in the range of 45 to 87.5 °. If it is smaller than this, centripetality can be obtained, but the biting may be too sharp and cracking and chipping may not be avoided, and if it is larger than this, sufficient centripetality cannot be obtained. There is a fear. In addition, if one or more chip discharge grooves that open to the front end surface and extend to the rear end side are formed on the outer periphery of the tip of the tool body, the chips generated by the cutting blade are smoothly discharged. Therefore, it is possible to prevent deterioration of processing accuracy due to biting of chips. However, even when the chip discharge groove is formed in this way, in order to ensure the rigidity of the tool body and prevent breakage or the like, the core thickness at the tip of the tool body is set to the outer diameter of the cutting blade. It is desirable to set it to 0.5D or more with respect to D, and in order to further ensure both the chip dischargeability and the rigidity of the tool, the core thickness is in the range of 0.6D to 0.9D. It is more desirable to set.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
1 to 5 show a first embodiment of the present invention. In the present embodiment, the tool body 1 is integrally formed of a hard material such as a cemented carbide, and a tip portion 2 that is inserted into a workpiece to perform drilling is gripped by a spindle of a machine tool and a shank portion. The tapered portion 4 has a multi-stage cylindrical shaft shape with the axis O reduced by one step with respect to the rear end portion 3 being formed, and the portion between both end portions 2 and 3 is gradually reduced in diameter toward the front end side. Is tied by In the present embodiment, the four flat ends that intersect the tip of the tip 2 at one intersection P on the axis O and incline toward the rear end from the intersection P toward the outer peripheral side. Tip surfaces 5 are formed, and therefore, in the tool body 1, the position of the intersection point P is projected to the most tip side, and the four intersecting ridge lines 6 where the tip surfaces 5 intersect each other are From the intersection point P, it is formed so as to recede linearly toward the rear end side toward the outer peripheral side and to extend radially from the intersection point P when viewed from the front in the axis O direction.
[0012]
In the present embodiment, the four tip surfaces 5 are different from each other in the sector-shaped central angle formed by the tip surfaces 5 in the front view in the direction of the axis O, and thereby the tip surfaces 5 adjacent in the circumferential direction. ... 4 intersecting ridgelines 6 of each other are arranged at different intervals in the circumferential direction. However, in the present embodiment, among the four tip surfaces 5..., The sector-shaped central angles formed by the pair of tip surfaces 5 and 5 located on opposite sides of the intersection point P with respect to the tip view in the direction of the axis O are made equal to each other. Therefore, the cross ridge lines 6... Are also formed so that the pair of cross ridge lines 6 and 6 located on the opposite side across the intersection P extend on one straight line as shown in FIG. As a result, they are arranged symmetrically with respect to the axis O.
[0013]
In the present embodiment, these four intersecting ridgelines 6... Intersect with the axis O at the intersection P at the same intersection angle θ. And in this embodiment, the whole surface of the said front-end | tip part 2 including these front-end | tip surfaces 5 ... and its intersection ridgeline 6 ..., and the intersection P is made from a diamond film or a DLC film as shown with a dot in the figure. The hard carbon film 7 is covered. Therefore, in the drilling tool configured in this way, the rotation trajectories formed by the four intersecting ridge lines 6 at the tip of the tool body 1 around the axis O coincide with each other, and one cone having the intersection P as the apex. Therefore, all of these four intersecting ridgelines 6... Act as cutting edges 8 extending from the intersection point P, and these cutting edges 8. Will be coated.
[0014]
Here, the drilling tool of the present embodiment forms an extremely small diameter processing hole in a brittle material such as single crystal silicon in the case of manufacturing a shower head used in a semiconductor device manufacturing apparatus as described above. Therefore, the outer diameter D of the cylindrical shaft-shaped tip portion 2 for drilling the brittle material is also extremely small, about 0.2 to 3 mm, and the length L of the tip portion 2 is Is about 1 to 10 mm. Further, when the hard carbon film 7 applied to the surface of the tip 2 is, for example, a diamond film, a microwave plasma CVD method or a hot filament is applied to the tip 2 of the tool body 1 made of cemented carbide. It is formed by a method such as a CVD method, and as a raw material gas at this time, a mixed gas such as hydrogen and methane or CO is used, and a processing temperature is generally about 800 to 900 ° C. The film thickness is about 5 to 25 μm, and the formed hard carbon particles such as diamond particles have a particle size of about 0.1 to 10 μm.
[0015]
In the drilling tool of the present embodiment configured as described above, the rear end portion 3 of the tool body 1 is gripped by the main spindle of the machine tool and rotated about the axis O as described above, and the front end side in the axis O direction. Is drilled into a workpiece made of a brittle material such as single crystal silicon. However, the feed amount of the tool body 1 to the tip end side in the axis O direction at this time is set to be extremely small, for example, 0.025 to 0.15 μm / rev, and more preferably while the feed and retraction of the tool body 1 are repeated. Step feed processing is performed to gradually cut into the workpiece. Further, at the time of drilling, it is desirable to supply cutting oil to the drilled part of the workpiece.
[0016]
Accordingly, in the drilling process having the above-described configuration, since the intersection point P is projected to the most distal end side in the tool body 1 as described above, the intersection point P first bites the work piece, Cutting edges 8 extending from the intersection point P are cut into the workpiece from the inner peripheral side, and the workpiece is scraped from the intersection point P by the fine irregularities of the hard carbon film 7 covered on the cutting blade 8. Are cut to form a processed hole. Since the intersection point P that first bites into the workpiece is located on the axis O that is the center of rotation of the tool body 1, the diameter of the tool body 1 is reduced during the biting or drilling process. High centripetality can be obtained by preventing the occurrence of directional deflection, and therefore the straightness and roundness of the formed hole can be improved, and high-precision drilling can be achieved. it can. On the other hand, the load concentrated on the work piece when the intersection point P bites the work piece at one point is caused by minimizing the feed of the tool body 1 or performing step feed work as described above. Therefore, it is possible to prevent cracks such as cracks and cracks from occurring when a workpiece made of a brittle material is bitten by such a load.
[0017]
Further, in the first embodiment, as described above, the intersecting ridge lines 6 that are the cutting edges 8 at the tip of the tool body 1 are arranged so as to be unequally spaced in the circumferential direction of the tool body 1. Therefore, even if the tool body 1 is rotated to any side in the circumferential direction during drilling, the cutting edge located on the tool rotation direction T side among the cutting edges 8 and 8 whose circumferential distance is reduced. On the side of the tool rotation direction T of 8, a tip surface 5 having a large central angle is disposed. Accordingly, the tip surface 5 with the increased central angle and the conical surface having the intersection P formed by the rotation locus around the axis O of the cutting edge 8, that is, the machining formed by the cutting edge 8 during drilling. Since a large space is secured on the tool rotation direction T side of the cutting blade 8 between the hole bottom and the hole, according to the present embodiment, the hard carbon film 7 coated on the cutting blade 8 is used. The chips generated by scraping the workpiece by the fine irregularities of the metal can be accommodated and discharged in this large space, and such chips are caught between the machining hole and the tool body 1. When the cutting oil is supplied as described above, the cutting oil is retained in this space while preventing clogging between the bottom of the hole and the tip surface 5. As a result, it is possible to efficiently supply the cutting blade 8 or the hole bottom of the processed hole.
[0018]
On the other hand, instead of making the intersection angles θ of the intersecting ridge lines 6 with respect to the axis O equal to each other and causing all the intersecting ridge line portions 6 to act as the cutting edges 8 as in the first embodiment, FIG. As in the second embodiment shown in FIG. 9, the intersection angle α with respect to the axis O of the pair of intersection ridge lines 6a, 6a located on the opposite side of the intersection P among the four intersection ridge lines 6. The crossing angle β of a part of the crossing ridge lines 6a is made larger than the crossing angle β of the pair of crossing ridgelines 6b, 6b located on the opposite side across P with respect to the axis O, and the crossing angle β of the other crossing ridgelines 6b. Different angles may be used. In the second embodiment and the subsequent embodiments to be described later, the same reference numerals are assigned to components common to each other, and the description thereof is omitted. Moreover, in this 2nd Embodiment, the space | interval of the circumferential direction of intersection ridgeline 6 ... is mutually made equal.
[0019]
In such a second embodiment, when the feed of the tool body 1 is minimized as described above, the intersecting ridge lines 6a and 6a having a large intersecting angle α are shown by chain lines in FIG. As shown in Fig. 5, the intersection ridge lines 6b and 6b having a small intersection angle β are positioned on the tip side, and only these intersection ridge lines 6a and 6a act as the cutting edge 8, and intersect with each other. The portions on the outer peripheral side of the ridge lines 6b, 6b are located on the rear end side of the cross ridge lines 6a, 6a and do not participate in the cutting, and thus the cross ridge lines that are the cutting edges 8 in the circumferential direction of the tool body 1. Between 6a and 6a, a large reciprocal space with respect to the rotation trajectory formed by the cutting edge 8 around the axis O, that is, the bottom of the drilled hole is secured. Therefore, according to the second embodiment as well, it becomes possible to store and discharge the chips generated by the cutting blade 8 in this space, and smooth chip processing and cutting oil as in the first embodiment. It becomes possible to plan supply.
[0020]
10 to 14 show a third embodiment of the present invention. In the third embodiment, the configurations of the first and second embodiments are combined, that is, As in the first embodiment, the intersecting ridge lines 6 are arranged at unequal intervals in the circumferential direction, and among these, a pair of intersecting ridge lines 6a, 6a located on opposite sides with respect to the axis O with respect to the axis O The crossing angle α is made larger than the crossing angle β with respect to the axis O of the pair of crossing ridge lines 6b, 6b located on the opposite side across the other crossing point P. The crossing ridge line 6b is different from the crossing angle β. However, in this third embodiment, among the intersecting ridgelines 6 and 6 whose circumferential intervals are reduced by arranging the intersecting ridgelines 6 at unequal intervals, the intersection located on the tool rotation direction T side. The crossing angle α of the ridge line 6a is made larger than the crossing angle β of the crossing ridgeline 6b located behind the tool rotation direction T of the crossing ridgeline 6a, and the crossing ridgeline 6a acts as the cutting edge 8. Has been made. Therefore, according to the drilling tool of the third embodiment as described above, the tip surface 5 having a large central angle is arranged on the tool rotation direction T side of the cutting blade 8 as in the first embodiment. As in the second embodiment, the intersection ridge line 6b is positioned on the rear end side of the intersection ridge line 6a, so that the space formed on the tool rotation direction T side of the cutting edge 8 is further secured. Therefore, as compared with the first and second embodiments, it is possible to achieve more smooth chip disposal and cutting oil supply.
[0021]
By the way, as in the third embodiment, among the crossed ridgelines 6... Arranged at unequal intervals in the circumferential direction, the crossing angles α of some crossing ridgelines 6a are different from the crossing angles β of other crossing ridgelines 6b. In the case of an angle, an angle formed by a pair of front end surfaces 5 and 5 that intersect the intersecting ridge line 6a serving as the cutting edge 8 and that are adjacent in the circumferential direction with respect to the plane Q including the axis O and the intersecting ridge line 6a. 14, that is, as shown in FIG. 14, of the pair of tip surfaces 5, 5, the tip surface 5 a located on the tool rotation direction T side of the cutting edge 8 is relative to the plane Q. Can be set smaller than the angle δ formed by the tip surface 5b positioned on the rear side in the tool rotation direction T with respect to the plane Q. Therefore, for the tip surface 5a connected to the tool rotation direction T side of the intersecting ridge line 6a that becomes the cutting edge 8, that is, the tip face 5a that becomes the rake face of the cutting edge 8, the rake angle is a negative angle, but more A large angle on the regular angle side can improve the sharpness by the cutting edge 8 and can reduce the resistance at the time of drilling. On the other hand, the cross ridge line 6a to be the cutting edge 8 is in the tool rotation direction T rear side. The inclination of the leading end surface 5b, that is, the leading end surface 5b serving as the flank of the cutting edge 8, is small with respect to the plane Q, that is, the flank angle is small, so that the axial rake angle is increased as described above. Nevertheless, it is possible to ensure a large edge angle of the cutting edge 8, and therefore it is possible to ensure the edge strength of the cutting edge 8, and to reduce the resistance, chipping the cutting edge 8 and the like. Prevent the occurrence of tools Extension of life can be achieved.
[0022]
Furthermore, in each of the above-described embodiments, the entire surface of the tip 2 from the tip surface 5 of the tool body 1 to the outer periphery of the tip 2 is provided with a hard carbon coating 7 such as a diamond coating or a DLC coating. The wear resistance of the entire tip 2 of the main body 1 can be improved and damage to the tool main body 1 can be prevented more reliably, and the outer periphery of the tip 2 thus provided with the hard carbon film 7 can be prevented. Is inserted into the machining hole along with the feed of the tool body 1 and is brought into sliding contact with the inner circumference thereof, so that the inner circumference of the machining hole is made higher by the fine irregularities of the hard carbon film 7 on the outer circumference of the tip portion 2. There is also an advantage that the finished surface can be processed with accuracy. However, in the present embodiment, the entire surface of the tip portion 2 is covered with the hard carbon film 7 in this way. However, the cutting blade 8 is in direct contact with the workpiece and is involved in cutting exclusively. Since this is the intersection ridge line portion 6 (6a) portion of the intersection point P and the distal end surface 5 ..., for example, only the distal end side of the distal end portion 2 is covered or only the distal end surface 5 including the intersection point P and the intersection ridge line 6 ... Or, in some cases, only the cutting edge 8 portion of the intersection point P or the intersection ridge line 6 may be covered on the front end surface 5.
[0023]
In the above embodiment, at least the cutting edge 8 is coated with the hard carbon film 7 such as a diamond film or a DLC film, and the brittle material surface is cut off by fine irregularities on the surface. However, the same effect can be obtained even if at least the cutting blade 8 portion is formed of a hard carbon body such as a diamond sintered body or a diamond single crystal. Therefore, instead of coating the hard carbon film 7 as described above, the intersection P or the tip portion 2 of the tool body 1 or the portion including the tip surface 5. A portion including at least the cutting edge 8 around the intersecting ridge line 6 may be formed by joining such a hard carbon body to the tool body 1 by brazing or the like.
[0024]
On the other hand, in each of the above-described embodiments, the tip end faces 5 are all flat, and all of the intersecting ridge lines 6 including the intersecting ridge line 6 (6a) serving as the cutting edge 8 are linear. Therefore, it is possible to sharpen the biting of the work piece at the intersection point P, to obtain higher centripetality, and to reliably prevent the tool body 1 from swinging when biting. However, instead of making the cutting edge 8 linear in this way, as shown in the fourth embodiment shown in FIG. 15 to FIG. Accordingly, at least the intersecting ridge line 6 that is the cutting edge 8 is formed in a convex curved surface that bulges and curves so as to be convex toward the tip end side (tip outer periphery side) of the tool body 1 in the axis O direction. You may make it make the convex curve shape which swells to the front end side. From the fourth embodiment to the subsequent sixth embodiment, the intersection ridgelines 6 of the tip surfaces 5 are made unequal in the circumferential direction as in the third embodiment. Of the intersecting ridge lines 6 and 6 whose direction intervals are reduced, the intersecting angle α with respect to the axis O of the intersecting ridge line 6a located on the tool rotation direction T side is equal to the intersecting angle α of the intersecting ridge line 6b on the rear side in the tool rotation direction T. The intersecting ridge line 6 a is a cutting edge 8. However, in the fourth embodiment in which the intersection ridge line 6 is a convex curve, the intersection angles α and β are intersection angles between the tangent line of the intersection ridge line 6 and the axis O at the intersection point P.
[0025]
Accordingly, also in the fourth embodiment in which the cutting edge 8 has a convex curve in this way, the intersection point P bites into the work piece and drilling is performed. The mentality can be ensured, and the deflection of the tool body 1 can be suppressed to prevent the processing accuracy from deteriorating. In addition, by making the cutting edge 8 convex in this way, the cutting edge 8 gradually bites into the work piece from the intersection P toward the outer peripheral side. Can prevent the occurrence of cracks more reliably by suppressing the abrupt action on the workpiece, while also improving the strength of the cutting edge 8 on the drilling tool side. It is possible to prevent chipping from occurring especially in the vicinity of the intersection point P of the cutting edge 8 due to the mechanical load, and it is possible to further extend the tool life.
[0026]
In addition, including the case where the cutting edge 8 has a convex curve shape as described above, the intersecting ridge lines 6 (6a) acting as the cutting edge 8 at least intersecting angles θ and α with respect to the axis O are 45 to 87. It is desirable to set the angle within a range of 5 °, that is, when the pair of cutting blades 8 and 8 are formed in a straight line when viewed from the front in the direction of the axis O with the intersection point P therebetween as in the above embodiments. Is preferably set so that the crossing angle formed by these cutting edges 8 and 8 is in the range of 90 to 175 ° which is twice the crossing angle θ and α. This is because if the crossing angles θ and α formed by the cutting edge 8 with respect to the axis O are smaller than the above range, the biting when the cutting edge 8 bites the work piece at the intersection P becomes too sharp. Although the mentality is increased, there is a risk that cracks in the workpiece and chipping in the vicinity of the intersection P of the tool body 1 may not be prevented. Conversely, if the crossing angles θ and α are larger than the above ranges, such cracks and chipping may occur. Can be effectively prevented, but sufficient centripetality may not be obtained, which may lead to deterioration of the accuracy of the machined hole. In other words, in the present embodiment, by setting the crossing angles θ and α of the cutting edge 8 in the above range, it is possible to provide sufficient centripetalness to the tool body 1 while reliably preventing cracks and chipping, and machining accuracy. This can be improved.
[0027]
Moreover, in each said embodiment, the front-end | tip part 2 of the tool main body 1 is formed in the column shape, and when the said front-end | tip surface 5 ... is formed in the front-end | tip, the said intersection is made to the intersection ridgeline part 6 (6a). A cutting edge 8 is formed from P to the outer periphery of the tip 2, and therefore the core thickness d of the tool body 1 at the tip 2 is made equal to the outer diameter D of the cutting edge 8. 2 has a high rigidity, but for example, as in the fifth embodiment shown in FIGS. 18 and 19, the cutting edge 8 is provided on the outer peripheral surface of the tip portion 2. Except for the part that reaches the outer periphery, the second picking surface 9 is formed so as to be recessed one step on the inner peripheral side, or the second picking surface 9 is formed as in the sixth embodiment shown in FIGS. In addition to or alone, the chip discharge groove 10 is for example cut. Adjacent to the tool rotation direction T side of the outer peripheral end of the 8 may be may be formed so as to open to the front end face 5.
[0028]
Thus, in the drilling tool in which the second surface 9 is formed, the contact area between the inner periphery of the machining hole and the tip 2 of the tool body 1 can be reduced, so that the resistance especially during drilling is reduced. It is effective in the case. Further, in addition to the second picking surface 9, or in a drilling tool in which the chip discharge groove 10 is formed alone, the hole bottom generated by the cutting blade 8 and the tip surface 5 is processed as described above. The chips accommodated in the space between them can be discharged even when the tip 2 is inserted into the machining hole, and therefore, the chips are more reliably prevented from being caught and clogged. In addition, the cutting oil can be supplied efficiently. In addition, a certain amount of chip discharging effect and cutting oil supply effect can be obtained only by the second picking surface 9. Further, the second picking surface 9 and the chip discharge groove 10 may be formed straight in parallel with the axis O, but as these are directed toward the rear end side as illustrated, toward the rear side in the tool rotation direction T. If formed so as to be twisted, the chips can be pushed out to the rear end side as the tool body 1 rotates, whereas if formed so as to be twisted in the opposite direction, the hole is formed from the opening side of the machining hole. Cutting oil can be fed to the bottom side.
[0029]
However, when the second catching surface 9 and the chip discharge groove 10 are formed on the outer periphery of the tip portion 2 of the tool body 1 in this way, the core thickness d of the tool body 1 at the tip portion 2 is outside the cutting edge 8. Although it is smaller than the diameter D, it is desirable to secure a core thickness d of 0.5 × D or more with respect to the outer diameter D of the cutting blade 8 even when the core thickness d is thus reduced. That is, if the core thickness d is smaller than 0.5 × D, it is difficult to ensure rigidity at the tip 2 of the tool body 1 and the tip 2 may be broken. There is. In addition, in order to achieve both of ensuring the rigidity of the tool and improving the chip discharge performance by forming the second catching surface 9 and the chip discharge groove 10 as described above, It is more desirable to set the core thickness d in the range of 0.6 × D to 0.9 × D with respect to the outer diameter D of the cutting blade 8.
[0030]
Further, in each of the above embodiments, four tip surfaces 5 are formed on the tip 2 of the tool body 1 so that four intersecting ridge lines 6 are formed. However, as described above, the intersection P is the tool body. In order to obtain centripetality at the time of drilling by being located at the forefront of 1, it is sufficient that there are at least three front end surfaces 5 intersecting at this intersection point P. For example, the seventh embodiment shown in FIG. As described above, six tip end faces 5 may be formed to form six intersecting ridge lines 6. Even in this case, if the intersecting angles of the intersecting ridge lines 6 with respect to the axis O are equal to each other, all the intersecting ridge lines 6 act as the cutting edges 8, and the intersecting angles of some of the intersecting ridge lines 6 are different from the others. Then, as shown in the figure, the intersection ridge portion 6a having the largest intersection angle acts as the cutting edge 8. Further, the number of the tip surfaces 5 and the intersecting ridge lines 6 may be an odd number as long as there are three or more. However, even in such a case, at least two items are required to prevent the tool body 1 from swinging during drilling. Are made to act as cutting edges 8.
[0031]
【The invention's effect】
As described above, according to the present invention, the tool body bites into the work piece at the intersection located on the axis of the tip, so that the centripetality of the tool body during the biting or drilling process is secured. As a result, the machining accuracy such as straightness and roundness of the machined hole can be improved, and the hard carbon film coated on the cutting edge extending from this intersection and the cutting edge The hard carbon body that forms can reliably prevent cracks, cracks and the like from occurring on a workpiece made of a brittle material. Further, the intersection ridgelines of the front end surface intersecting the intersection point are arranged at unequal intervals in the circumferential direction, or the intersection angle formed by some of the intersection ridgelines with the axis line is different from the others, or these are By combining them, it is possible to secure a large space on the side of the tool rotation direction of the intersecting ridge line, which is the cutting edge during drilling, and the cutting edge generated by the hard carbon film or hard carbon body of the cutting edge. It becomes possible to process the powder smoothly.
[Brief description of the drawings]
FIG. 1 is a side view showing a first embodiment of the present invention.
FIG. 2 is an enlarged perspective view of a distal end portion 2 of the first embodiment.
FIG. 3 is a front view of the distal end portion 2 of the first embodiment as viewed from the distal end side in the axis O direction.
4 is a cross-sectional view taken along the line AA in FIG.
5 is a cross-sectional view taken along the line BB in FIG.
FIG. 6 is an enlarged perspective view of a distal end portion 2 according to a second embodiment of the present invention.
FIG. 7 is a front view of the distal end portion 2 of the second embodiment as viewed from the distal end side in the axis O direction.
8 is a cross-sectional view taken along AA in FIG.
9 is a cross-sectional view taken along the line BB in FIG.
FIG. 10 is an enlarged perspective view of a distal end portion 2 according to a third embodiment of the present invention.
FIG. 11 is a front view of the distal end portion 2 of the third embodiment as viewed from the distal end side in the axis O direction.
12 is a cross-sectional view taken along AA in FIG.
13 is a cross-sectional view taken along the line BB in FIG.
14 is a cross-sectional view orthogonal to the cutting edge 8 in the third embodiment. FIG.
FIG. 15 is an enlarged perspective view of a distal end portion 2 according to a fourth embodiment of the present invention.
FIG. 16 is a front view of the distal end portion 2 of the fourth embodiment as viewed from the distal end side in the axis O direction.
FIG. 17 is a cross-sectional view taken along AA in FIG.
FIG. 18 is an enlarged perspective view of a distal end portion 2 according to a fifth embodiment of the present invention.
FIG. 19 is a front view of the distal end portion 2 of the fifth embodiment viewed from the distal end side in the axis O direction.
FIG. 20 is an enlarged perspective view of a distal end portion 2 according to a sixth embodiment of the present invention.
FIG. 21 is a front view of the distal end portion 2 of the sixth embodiment when viewed from the distal end side in the axis O direction.
FIG. 22 is an enlarged perspective view of a distal end portion 2 according to a seventh embodiment of the present invention.
[Explanation of symbols]
1 Tool body
5 (5a, 5b) Tip surface
6 (6a, 6b) Intersecting ridgeline of the end face 5 ...
7 Hard carbon film
8 Cutting blade
9 Second face
10 Chip discharge groove
O Axis of tool body 1
P Intersection of tip surface 5 ...
T Tool rotation direction
Q plane including cutting edge 8 and axis O
D Outer diameter of cutting edge 8
d Core thickness at the tip 2 of the tool body 1
θ, α, β Intersection angle formed by the intersecting ridge line 6 (6a, 6b) with respect to the axis O
Angle formed by the tip surface 5a of the γ cutting edge 8 on the tool rotation direction T side with respect to the plane Q
δ Angle formed by the tip surface 5b of the cutting edge 8 on the rear side in the tool rotation direction T with respect to the plane Q

Claims (14)

脆性材料よりなる加工物に穴明け加工を行う脆性材料用穴明け工具であって、軸線回りに回転される円柱軸状の工具本体の先端に、上記軸線上に位置する1つの交点において互いに交差し、かつこの交点から外周側に向かうに従い後端側に向かう4つの先端面が形成されていて、周方向に隣接する上記先端面同士の交差稜線のうち少なくとも2つが上記交点から延びる切刃とされるとともに、少なくともこの切刃部分が硬質炭素皮膜によって被覆され、さらに上記交差稜線が周方向に不等間隔に配設されるとともに、上記軸線方向先端視に上記交点を挟んで反対側に位置する一対の上記先端面同士がなす扇形の中心角は互いに等しくされていることを特徴とする脆性材料用穴明け工具。A drilling tool for a brittle material that drills a workpiece made of a brittle material, and intersects each other at one intersection point located on the axis at the tip of a cylindrical shaft-shaped tool body that rotates about the axis. In addition, four leading end surfaces are formed toward the rear end side from the intersection point toward the outer peripheral side, and at least two of the intersecting ridge lines of the tip end surfaces adjacent in the circumferential direction extend from the intersection point. while being, at least the cutting edge portion is covered by the hard carbon film, is further disposed at unequal intervals the intersecting edge line in the circumferential direction Rutotomoni, located on the opposite side of the intersection to the axial forward end viewed A fan-shaped drilling tool for a brittle material, characterized in that the sector-shaped central angles formed by the pair of tip surfaces are equal to each other . 脆性材料よりなる加工物に穴明け加工を行う脆性材料用穴明け工具であって、軸線回りに回転される円柱軸状の工具本体の先端に、上記軸線上に位置する1つの交点において互いに交差し、かつこの交点から外周側に向かうに従い後端側に向かう3つ以上の先端面が形成されていて、周方向に隣接する上記先端面同士の交差稜線のうち少なくとも2つが上記交点から延びる切刃とされるとともに、少なくともこの切刃部分が硬質炭素皮膜によって被覆され、さらに少なくとも一部の上記交差稜線が上記交点において上記軸線となす交差角が、他の上記交差稜線が上記交点において上記軸線となす交差角と異なる角度に設定されていることを特徴とする脆性材料用穴明け工具。A drilling tool for a brittle material that drills a workpiece made of a brittle material, and intersects each other at one intersection point located on the axis at the tip of a cylindrical shaft-shaped tool body that rotates about the axis. In addition, three or more front end faces toward the rear end side from the intersection point toward the outer peripheral side are formed, and at least two of the intersecting ridge lines between the front end faces adjacent in the circumferential direction extend from the intersection point. And at least a part of the cutting edge is covered with a hard carbon film, and at least a part of the intersecting ridge line has an intersection angle with the axis at the intersection, and the other intersecting ridge line has the axis at the intersection. A drilling tool for brittle materials, characterized in that it is set at an angle different from the crossing angle. 脆性材料よりなる加工物に穴明け加工を行う脆性材料用穴明け工具であって、軸線回りに回転される円柱軸状の工具本体の先端に、上記軸線上に位置する1つの交点において互いに交差し、かつこの交点から外周側に向かうに従い後端側に向かう3つ以上の先端面が形成されていて、周方向に隣接する上記先端面同士の交差稜線のうち少なくとも2つが上記交点から延びる切刃とされるとともに、少なくともこの切刃部分が硬質炭素皮膜によって被覆され、さらに上記交差稜線が周方向に不等間隔に配設されるとともに、少なくとも一部の上記交差稜線が上記交点において上記軸線となす交差角が、他の上記交差稜線が上記交点において上記軸線となす交差角と異なる角度に設定されていることを特徴とする脆性材料用穴明け工具。A drilling tool for a brittle material that drills a workpiece made of a brittle material, and intersects each other at one intersection point located on the axis at the tip of a cylindrical shaft-shaped tool body that rotates about the axis. In addition, three or more front end faces toward the rear end side from the intersection point toward the outer peripheral side are formed, and at least two of the intersecting ridge lines between the front end faces adjacent in the circumferential direction extend from the intersection point. And at least a portion of the cutting edge is covered with a hard carbon film, and the intersecting ridge lines are arranged at irregular intervals in the circumferential direction, and at least a part of the intersecting ridge lines are the axis line at the intersection point. The brittle material drilling tool is characterized in that the crossing angle formed is set to an angle different from the crossing angle formed by the other crossing ridge line with the axis at the crossing point. 上記硬質炭素皮膜が、ダイヤモンド皮膜またはDLC皮膜であることを特徴とする請求項1ないし請求項3のいずれかに記載の脆性材料用穴明け工具。The brittle material drilling tool according to any one of claims 1 to 3, wherein the hard carbon film is a diamond film or a DLC film. 脆性材料よりなる加工物に穴明け加工を行う脆性材料用穴明け工具であって、軸線回りに回転される円柱軸状の工具本体の先端に、上記軸線上に位置する1つの交点において互いに交差し、かつこの交点から外周側に向かうに従い後端側に向かう4つの先端面が形成されていて、周方向に隣接する上記先端面同士の交差稜線のうち少なくとも2つが上記交点から延びる切刃とされるとともに、少なくともこの切刃部分が硬質炭素体により形成されており、さらに上記交差稜線が周方向に不等間隔に配設されるとともに、上記軸線方向先端視に上記交点を挟んで反対側に位置する一対の上記先端面同士がなす扇形の中心角は互いに等しくされていることを特徴とする脆性材料用穴明け工具。A drilling tool for a brittle material that drills a workpiece made of a brittle material, and intersects each other at one intersection point located on the axis at the tip of a cylindrical shaft-shaped tool body that rotates about the axis. In addition, four leading end surfaces are formed toward the rear end side from the intersection point toward the outer peripheral side, and at least two of the intersecting ridge lines between the tip end surfaces adjacent in the circumferential direction extend from the intersection point. together are opposite at least the cutting edge is formed by the hard carbon material, is further disposed at unequal intervals the intersecting edge line in the circumferential direction Rutotomoni, across the intersection to the axial direction front end viewed A brittle material drilling tool, characterized in that the center angles of the sector formed by the pair of tip surfaces located on the side are equal to each other . 脆性材料よりなる加工物に穴明け加工を行う脆性材料用穴明け工具であって、軸線回りに回転される円柱軸状の工具本体の先端に、上記軸線上に位置する1つの交点において互いに交差し、かつこの交点から外周側に向かうに従い後端側に向かう3つ以上の先端面が形成されていて、周方向に隣接する上記先端面同士の交差稜線のうち少なくとも2つが上記交点から延びる切刃とされるとともに、少なくともこの切刃部分が硬質炭素体により形成されており、さらに少なくとも一部の上記交差稜線が上記交点において上記軸線となす交差角が、他の上記交差稜線が上記交点において上記軸線となす交差角と異なる角度に設定されていることを特徴とする脆性材料用穴明け工具。A drilling tool for a brittle material that drills a workpiece made of a brittle material, and intersects each other at one intersection point located on the axis at the tip of a cylindrical shaft-shaped tool body that rotates about the axis. In addition, three or more front end faces toward the rear end side are formed from the intersection toward the outer peripheral side, and at least two of the intersecting ridge lines between the front end faces adjacent in the circumferential direction extend from the intersection. A cutting edge, at least the cutting edge portion is formed of a hard carbon body, and at least a part of the intersecting ridge line has an intersecting angle with the axis at the intersecting point, and the other intersecting ridge line is the intersecting point. A drilling tool for a brittle material, characterized in that it is set at an angle different from the crossing angle formed with the axis. 脆性材料よりなる加工物に穴明け加工を行う脆性材料用穴明け工具であって、軸線回りに回転される円柱軸状の工具本体の先端に、上記軸線上に位置する1つの交点において互いに交差し、かつこの交点から外周側に向かうに従い後端側に向かう3つ以上の先端面が形成されていて、周方向に隣接する上記先端面同士の交差稜線のうち少なくとも2つが上記交点から延びる切刃とされるとともに、少なくともこの切刃部分が硬質炭素体により形成されており、さらに上記交差稜線が周方向に不等間隔に配設されているとともに、少なくとも一部の上記交差稜線が上記交点において上記軸線となす交差角が、他の上記交差稜線が上記交点において上記軸線となす交差角と異なる角度に設定されていることを特徴とする脆性材料用穴明け工具。A drilling tool for a brittle material that drills a workpiece made of a brittle material, and intersects each other at one intersection point located on the axis at the tip of a cylindrical shaft-shaped tool body that rotates about the axis. In addition, three or more front end faces toward the rear end side are formed from the intersection toward the outer peripheral side, and at least two of the intersecting ridge lines between the front end faces adjacent in the circumferential direction extend from the intersection. It is a cutting edge, at least the cutting edge portion is formed of a hard carbon body, and the intersecting ridge lines are arranged at unequal intervals in the circumferential direction, and at least some of the intersecting ridge lines are A brittle material drilling tool, characterized in that an intersection angle formed with the axis at an intersection is set to an angle different from an intersection angle formed with the other axis at the intersection. 上記硬質炭素体が、ダイヤモンド焼結体またはダイヤモンド単結晶によって形成されていることを特徴とする請求項5ないし請求項7のいずれかに記載の脆性材料用穴明け工具。The brittle material drilling tool according to any one of claims 5 to 7, wherein the hard carbon body is formed of a diamond sintered body or a diamond single crystal. 上記切刃とされる交差稜線に交差して隣接する一対の上記先端面のうち、上記工具本体の回転方向側に位置する先端面が上記軸線と切刃とを含む平面に対してなす角度が、上記工具本体の回転方向後方側に位置する先端面がこの平面に対してなす角度よりも小さく設定されていることを特徴とする請求項1ないし請求項8のいずれかに記載の脆性材料用穴明け工具。Of the pair of tip surfaces that intersect and intersect the intersecting ridge line that is the cutting edge, the angle formed by the tip surface that is located on the rotational direction side of the tool body with respect to the plane that includes the axis and the cutting blade is The brittle material according to any one of claims 1 to 8, wherein a tip surface located on the rear side in the rotation direction of the tool body is set to be smaller than an angle formed with respect to the plane. Drilling tool. 少なくとも上記切刃とされる交差稜線が直線状とされていることを特徴とする請求項1ないし請求項9のいずれかに記載の脆性材料用穴明け工具。The brittle material drilling tool according to any one of claims 1 to 9, wherein at least the intersecting ridge line used as the cutting edge is linear. 少なくとも上記切刃とされる交差稜線が、上記軸線方向の先端側に膨らむ凸曲線状をなしていることを特徴とする請求項1ないし請求項9のいずれかに記載の脆性材料用穴明け工具。The brittle material drilling tool according to any one of claims 1 to 9, wherein at least the intersecting ridge line that is the cutting edge has a convex curved shape that swells toward the tip end in the axial direction. . 上記切刃とされる交差稜線が上記交点において上記軸線となす交差角が45〜87.5°の範囲に設定されていることを特徴とする請求項1ないし請求項11のいずれかに記載の脆性材料用穴明け工具。The crossing angle which the intersecting ridgeline made into the said cutting edge makes with the said axis line in the said intersection is set to the range of 45-87.5 degrees, The one of Claim 1 thru | or 11 characterized by the above-mentioned. Drilling tool for brittle materials. 上記工具本体の先端部外周には、上記先端面に開口して後端側に延びる1条以上の切粉排出溝が形成されていることを特徴とする請求項1ないし請求項12のいずれかに記載の脆性材料用穴明け工具。13. One or more chip discharge grooves that open to the front end surface and extend to the rear end side are formed on the outer periphery of the front end of the tool body. Drilling tool for brittle materials as described in 1. 上記工具本体の先端部における芯厚が、上記切刃の外径Dに対して0.5D以上に設定されていることを特徴とする請求項1ないし請求項13のいずれかに記載の脆性材料用穴明け工具。The brittle material according to any one of claims 1 to 13, wherein a core thickness at a tip portion of the tool body is set to 0.5D or more with respect to an outer diameter D of the cutting blade. Drilling tool.
JP2001212339A 2001-07-12 2001-07-12 Drilling tools for brittle materials Expired - Lifetime JP3639227B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001212339A JP3639227B2 (en) 2001-07-12 2001-07-12 Drilling tools for brittle materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001212339A JP3639227B2 (en) 2001-07-12 2001-07-12 Drilling tools for brittle materials

Publications (2)

Publication Number Publication Date
JP2003025128A JP2003025128A (en) 2003-01-29
JP3639227B2 true JP3639227B2 (en) 2005-04-20

Family

ID=19047517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001212339A Expired - Lifetime JP3639227B2 (en) 2001-07-12 2001-07-12 Drilling tools for brittle materials

Country Status (1)

Country Link
JP (1) JP3639227B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009136980A (en) * 2007-12-07 2009-06-25 Osg Corp Cutting tool
JP2012254486A (en) * 2011-06-07 2012-12-27 Tomei Diamond Co Ltd Extra-high pressure sintered rotary cutting tool
JP5519723B2 (en) 2012-04-11 2014-06-11 住友電工ハードメタル株式会社 Replaceable tip drill
JP5975340B2 (en) * 2012-10-25 2016-08-23 住友電工ハードメタル株式会社 drill
JP5750149B2 (en) * 2013-11-29 2015-07-15 住友電工ハードメタル株式会社 Replaceable tip drill

Also Published As

Publication number Publication date
JP2003025128A (en) 2003-01-29

Similar Documents

Publication Publication Date Title
CN109070239B (en) Small-diameter drill bit
JP2984446B2 (en) Drill
US7909545B2 (en) Ballnose end mill
CN109641293B (en) Cutting insert and indexable insert type rotary cutting tool
JPWO2005102572A1 (en) Ball end mill
CN110064788B (en) A cutter head structure and cutting tool
JP5814611B2 (en) End mill
JP2017080864A (en) Cutting edge exchange-type reamer and reamer insert
JPWO2018074542A1 (en) Cutting insert and cutting edge exchangeable rotary cutting tool
JP4239414B2 (en) Drill
JP3639227B2 (en) Drilling tools for brittle materials
JP2007075944A (en) Ball end mill
JP4370966B2 (en) Grooved tool
JP2003275913A (en) Drill
JP3686022B2 (en) Drilling tool with coolant hole
JP7020620B1 (en) Rotary cutting tool
US11491559B2 (en) End mill
JP2019147217A (en) Drill and manufacturing method thereof
JP3657546B2 (en) drill
JP4206778B2 (en) Center drill
JPH0957515A (en) Drill
CN114951768B (en) Rotary cutting tools
TWM631853U (en) Micro knife structure
JPH07195224A (en) End mill
JP3066996U (en) Drilling tool

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050113

R150 Certificate of patent or registration of utility model

Ref document number: 3639227

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080121

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100121

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100121

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100121

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120121

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130121

Year of fee payment: 8

EXPY Cancellation because of completion of term