[go: up one dir, main page]

JPH01307272A - Manufacture of semiconductor non-volatile memory - Google Patents

Manufacture of semiconductor non-volatile memory

Info

Publication number
JPH01307272A
JPH01307272A JP63138728A JP13872888A JPH01307272A JP H01307272 A JPH01307272 A JP H01307272A JP 63138728 A JP63138728 A JP 63138728A JP 13872888 A JP13872888 A JP 13872888A JP H01307272 A JPH01307272 A JP H01307272A
Authority
JP
Japan
Prior art keywords
film
gate electrode
tunnel insulating
insulating film
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63138728A
Other languages
Japanese (ja)
Other versions
JP2696103B2 (en
Inventor
Yoshikazu Kojima
芳和 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP63138728A priority Critical patent/JP2696103B2/en
Publication of JPH01307272A publication Critical patent/JPH01307272A/en
Application granted granted Critical
Publication of JP2696103B2 publication Critical patent/JP2696103B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Non-Volatile Memory (AREA)

Abstract

PURPOSE:To prevent the deterioration of quality due to the high-temperature process of the oxidation of a control gate in a post-process, and to increase the number of rewrite by using an oxide nitride film as a tunnel insulating film. CONSTITUTION:Since an oxide nitride film 6 as a tunnel insulating film is formed by oxidizing a thermal silicon nitride film 5 having extremely slow oxidizing velocity for a prolonged time at a high temperature, the quantity of the film 6 is improved, thus realizing the reduction of the breakdown of the tunnel insulating film due to rewrite. A control gate oxide film 8 is shaped by thermally oxidizing a floating gate electrode 7 at the high temperature. Since the floating gate electrode 7 is composed of polycrystalline silicon in the process, the gate electrode 7 must be manufactured by a high-temperature thermal oxidation process so as to maintain the quality of the film on the gate electrode 7, but the quality of the tunnel insulating film is not deteriorated even when there is such a high-temperature thermal treatment process because the tunnel insulating film consists of the oxide nitride film 6. Accordingly, high electric-field stress is increased, and accidental breakdown due to rewrite can be prevented.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、ICカードなどの記憶用デバイスとして用
いられている半導体不揮発性メモリの製造方法に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of manufacturing a semiconductor nonvolatile memory used as a storage device such as an IC card.

〔発明の概要〕[Summary of the invention]

この発明は、電気的消去可能な浮遊ゲート型半導体不揮
発性メモリにおいて、トンネル絶縁膜を酸化チッ化膜を
用いることにより、書換え回数の向上をはかったもので
ある。
The present invention aims to improve the number of rewrites by using a nitride oxide film as a tunnel insulating film in an electrically erasable floating gate type semiconductor nonvolatile memory.

〔従来の技術〕[Conventional technology]

従来、第2図に示すように、プログラム端子であるトン
ネルドレイン領域2の上に約100人のシリコン熱酸化
膜から成るトンネル酸化膜16を設けた電気的書換え可
能な浮遊ゲート型半導体不揮発性メモリが知られていた
0例えば、W、 S。
Conventionally, as shown in FIG. 2, an electrically rewritable floating gate type semiconductor nonvolatile memory has been provided with a tunnel oxide film 16 made of about 100 silicon thermal oxide films on a tunnel drain region 2 which is a program terminal. For example, W, S.

Johnson et al  ”16−にEEPII
OHrelies on tunnelin(l fo
r Mte−erasablf31]ro(Jral 
5tOra(le ’El13CtrOniC3/Fe
brt+arV 28(1980) +11)113に
開示されている。
Johnson et al.
OHrelies on tunnelin (l fo
r Mte-erasablf31]ro(Jral
5tOra(le 'El13CtrOniC3/Fe
brt+arV 28 (1980) +11) 113.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、従来の半導体不揮発性メモリは、トンネル絶縁
膜として約100人程度の熱酸化膜が用いられているた
めに、トンネルドレイン領域2と浮遊ゲート電[!7と
の間で、電荷のやりとり(即ち、プログラム動作)をす
ると、トンネル酸化膜16が強電界ストレスにより偶発
的に破壊しやすいという欠点を有していた。
However, in conventional semiconductor non-volatile memories, a thermal oxide film of about 100% is used as a tunnel insulating film, so the tunnel drain region 2 and the floating gate electrode [! 7, the tunnel oxide film 16 has the disadvantage that it is easily destroyed accidentally due to strong electric field stress.

そこで、この発明は、従来のこのような欠点を解決する
ために、プログラム動作により偶発破壊しない電気的書
換え可能な半導体不揮発性メモリを得ることを目的とし
ている。
SUMMARY OF THE INVENTION In order to solve these conventional drawbacks, it is an object of the present invention to provide an electrically rewritable semiconductor nonvolatile memory that is not accidentally destroyed by programming operations.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決するために、この発明は、トンネル絶縁
膜を、高温熱チッ化により形成したチツ化シリコン膜を
#、酸化した酸化チツ化膜を用いることにより、高電界
ストレスに強く、書換えによる偶発破壊を防止した。
In order to solve the above problems, the present invention uses a silicon oxide film formed by oxidizing a silicon nitride film formed by high-temperature thermal nitridation as a tunnel insulating film, thereby making it resistant to high electric field stress and capable of resisting rewriting. Prevented accidental destruction.

〔実施例〕 以下に、この発明の実施例を図面にもとづいて説明する
。N型のメモリの場合について説明する。
[Example] Below, an example of the present invention will be described based on the drawings. The case of N-type memory will be explained.

第1図(g)が最終断面図であるが、P型シリコン基板
1の表面にお互いに間隔をおいてN1型のソース領域1
0とドレイン領域11及びトンネル−ドレイン領域2が
形成されている。トンネルドレイン領域2の上には、部
分的にトンネル酸化チツ化膜6が設けられている。また
、ソース領域2とトンネルドレイン領域2との間の半導
体基板1の表面であるチャネル領域の上には、酸化膜3
が設けられ、さらに、その上にCVDVDシリコンチツ
4が設けれらている。浮遊ゲート′r&極7は、トンネ
ル酸化チッ化膜5とCVDVDシリコンチツ4の上に設
けられ、さらに、浮遊ゲート電極7の上には、制御ゲー
ト電極9が制御ゲート酸化膜8を介して設けられている
FIG. 1(g) is the final cross-sectional view, and N1 type source regions 1 are spaced apart from each other on the surface of the P type silicon substrate 1.
0, a drain region 11 and a tunnel-drain region 2 are formed. A tunnel oxide film 6 is partially provided on the tunnel drain region 2 . Further, an oxide film 3 is formed on the channel region, which is the surface of the semiconductor substrate 1 between the source region 2 and the tunnel drain region 2.
is provided, and furthermore, a CVDVD silicon chip 4 is provided thereon. The floating gate 'r & electrode 7 is provided on the tunnel oxide nitride film 5 and the CVDVD silicon chip 4, and furthermore, a control gate electrode 9 is provided on the floating gate electrode 7 with a control gate oxide film 8 interposed therebetween. ing.

本発明のメモリの読み出し動作は、ソース領域10とト
ンネルドレイン領域2との間のチャネル領域のコンダク
タンスが、浮遊ゲート電極7に含まれている電荷量によ
って変化することによって行なわれる。
A read operation of the memory of the present invention is performed by changing the conductance of the channel region between the source region 10 and the tunnel drain region 2 depending on the amount of charge contained in the floating gate electrode 7.

また、情報のプログラムは、制御ゲート電@9とドレイ
ン領域11との間に高電圧を印加することにより、トン
ネル酸化チツ化膜6に高電界を集中させトンネル電流を
トンネルドレイン領域2と浮遊ゲート電極7との間に流
すことにより行うことかできる。
In addition, the information is programmed by applying a high voltage between the control gate voltage @9 and the drain region 11, thereby concentrating a high electric field on the tunnel oxide film 6 and directing the tunnel current between the tunnel drain region 2 and the floating gate. This can be done by flowing the water between the electrode 7 and the electrode 7.

本発明のトンネル絶縁膜である酸化チツ化膜の製造方法
について説明する。
A method for manufacturing a titanium oxide film, which is a tunnel insulating film of the present invention, will be explained.

まず、第1図(a)に示すように、基板1の全面に酸化
WA3及びCVDシリコンチツ化W化種A4成し、トン
ネル領域になる領域を、フォトリソ工程により第1図(
b)のように、酸化膜3及びCVDVDシリコンチツを
エツチングして基板1まで穴あけする0次に100A以
下の熱シリコンチッ化膜5を形成して、第1図(c)の
ようにする。
First, as shown in FIG. 1(a), oxidation WA3 and CVD silicon nitride W oxide seed A4 are formed on the entire surface of the substrate 1, and a region that will become a tunnel region is formed by a photolithography process as shown in FIG.
As shown in FIG. 1(c), the oxide film 3 and the CVDVD silicon chip are etched to form a thermal silicon nitride film 5 with a zero-dimensional temperature of less than 100 A by etching holes up to the substrate 1, as shown in FIG. 1(c).

次に、この熱シリコンチッ化膜5を900℃以上の温度
で、V%酸化して、その上に、多結晶シリコン薄膜から
なる浮遊ゲート電極7を形成して、第1図(d)のよう
にする0次に、1000℃以上の高温で浮遊ゲート電極
7を酸化して制御ゲート酸化WA8を形成し第1図(e
)のようにする、その上に、制御ゲート電f!9を形成
し、第1図(fのように形成する。さらに、ソース領域
10及びドレイン領域11を浮遊ゲート電極7をマスク
にしてドーピングすることにより、第1図(g)のメモ
リが完成する。
Next, this thermal silicon nitride film 5 is oxidized by V% at a temperature of 900° C. or higher, and a floating gate electrode 7 made of a polycrystalline silicon thin film is formed thereon, as shown in FIG. 1(d). Next, the floating gate electrode 7 is oxidized at a high temperature of 1000° C. or higher to form the control gate oxide WA8.
), and on top of that, the control gate voltage f! 9 is formed as shown in FIG. 1(f).Furthermore, the source region 10 and drain region 11 are doped using the floating gate electrode 7 as a mask, thereby completing the memory shown in FIG. 1(g). .

本発明のトンネル絶縁膜である酸化チッ化膜6は、非常
に酸化速度の遅い、熱シリコンチッ化膜5を高温で長時
間で酸“化して形成するために、その品質は、従来のシ
リコン酸化膜に比べ優れている。その結果、書換えによ
るトンネル絶縁膜の破壊がきわめて少ないメモリが実現
できる。また、電気的書換え可能な半導体メモリの場合
、プログラム時に、ドレイン領域11、あるいは、制御
ゲ、−ト電′I#I8に約10V以上の高電圧を印加す
る。
The oxidized nitride film 6, which is the tunnel insulating film of the present invention, is formed by oxidizing the thermal silicon nitride film 5, which has a very slow oxidation rate, at high temperature for a long time, so its quality is comparable to that of conventional silicon. It is superior to oxide films.As a result, it is possible to realize a memory in which the tunnel insulating film is extremely less destroyed by rewriting.In addition, in the case of an electrically rewritable semiconductor memory, when programming, the drain region 11 or the control gate, - Apply a high voltage of about 10V or more to the electric current I#I8.

この電圧を制御する回路が、同一基板上に形成されてい
る0本発明のメモリにおいては、その高電圧制御用トラ
ンジスタのゲート絶縁膜として、チャネル領域上の酸化
膜3とCVDVDシリコンチツ4との複合膜を用いるこ
とにより、ゲート耐圧の高いトランジスタを形成できる
In the memory of the present invention in which a circuit for controlling this voltage is formed on the same substrate, a composite of an oxide film 3 on the channel region and a CVDVD silicon chip 4 is used as the gate insulating film of the high voltage control transistor. By using the film, a transistor with high gate breakdown voltage can be formed.

)   また、制御ゲート酸化膜8は、1000℃以上
の高温で、浮遊ゲート電極7の熱酸化により形成する、
この工程は、浮遊ゲート電極7か多結晶シリコンである
ため、その上の膜の品質を保つように高温熱酸化工程で
製造せざるをえない0本発明のメモリでは、トンネル絶
縁膜が酸化チッ化膜であるために、このような高温熱処
理工程があっても、トンネル絶縁膜の品質は劣化しない
、従来は、トンネル絶縁膜が、100A程度のシリコン
酸化膜で形成されていたために、この制御デー1ト酸化
工程により品質が低下するという問題があった。
) The control gate oxide film 8 is formed by thermal oxidation of the floating gate electrode 7 at a high temperature of 1000° C. or higher.
In this process, since the floating gate electrode 7 is made of polycrystalline silicon, it must be manufactured using a high-temperature thermal oxidation process to maintain the quality of the film on it. Because it is a silicon oxide film, the quality of the tunnel insulating film does not deteriorate even with such a high-temperature heat treatment process. Conventionally, the tunnel insulating film was formed of a silicon oxide film of about 100A, so this control There was a problem in that the quality deteriorated due to the date oxidation process.

本発明のメモリは、制御ゲート電極9を浮遊ゲート電極
7の上に形成した例で説明したが、制御ゲート電′jI
i!9は、基板1の表面に形成してもよい。
Although the memory of the present invention has been described with an example in which the control gate electrode 9 is formed on the floating gate electrode 7, the control gate electrode ′jI
i! 9 may be formed on the surface of the substrate 1.

しかし、第1図のような構造のメモリに、特に適してい
る。即ち、酸化チッ化膜が高温工程に強いからである。
However, it is particularly suitable for a memory having the structure shown in FIG. That is, this is because the nitride oxide film is resistant to high temperature processes.

〔発明の効果〕〔Effect of the invention〕

この発明は、以上説明したように、トンネル絶縁膜とし
て、酸化チッ化膜を用いているために、後工程の制御ゲ
ート酸化の高温プロセスによる品質低下を防ぎ、書換え
回数の向上をする効果がある。
As explained above, since this invention uses a nitride oxide film as a tunnel insulating film, it is effective in preventing quality deterioration due to the high-temperature process of control gate oxidation in the subsequent process and increasing the number of rewrites. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(g)は、この発明にかかる半導体不揮
発性メモリの製造方法の工程順断面図であり、第2図は
、従来の半導体不揮発性メモリの断面図である。 6・・・トンネル酸化チッ化膜 7・・・浮遊ゲート電極 16・・・トンネル酸化膜 以上 出願人 セイコー電子工業株式会社
FIGS. 1(a) to 1(g) are sectional views in the order of steps of a method for manufacturing a semiconductor nonvolatile memory according to the present invention, and FIG. 2 is a sectional view of a conventional semiconductor nonvolatile memory. 6...Tunnel oxide nitride film 7...Floating gate electrode 16...Tunnel oxide film and above Applicant: Seiko Electronics Industries, Ltd.

Claims (1)

【特許請求の範囲】[Claims]  第1導電型の半導体基板に酸化膜を形成する工程と、
前記酸化膜上にCVDシリコンチッ化膜を形成する工程
と、トンネル領域となる領域に前記酸化膜及び前記CV
Dシリコンチッ化膜をエッチングする工程と、900℃
以上の高温で熱チッ化する工程と、前記熱チッ化により
形成された熱チッ化膜を熱酸化する工程と、前記熱チッ
化膜を熱酸化した酸化チッ化膜上に浮遊ゲート電極を形
成する工程とから成り、前記トンネル領域上に形成され
た前記酸化チッ化膜をトンネル絶縁膜とする半導体不揮
発性メモリの製造方法。
forming an oxide film on a first conductivity type semiconductor substrate;
forming a CVD silicon nitride film on the oxide film; and forming a CVD silicon nitride film on the oxide film and the CVD
D Etching process of silicon nitride film and 900℃
A process of thermally nitriding at the above-mentioned high temperature, a process of thermally oxidizing the thermal nitride film formed by the thermal nitride, and forming a floating gate electrode on the nitride oxide film obtained by thermally oxidizing the thermal nitride film. A method for manufacturing a semiconductor nonvolatile memory, comprising the step of: using the nitride oxide film formed on the tunnel region as a tunnel insulating film.
JP63138728A 1988-06-06 1988-06-06 Manufacturing method of semiconductor nonvolatile memory Expired - Lifetime JP2696103B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63138728A JP2696103B2 (en) 1988-06-06 1988-06-06 Manufacturing method of semiconductor nonvolatile memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63138728A JP2696103B2 (en) 1988-06-06 1988-06-06 Manufacturing method of semiconductor nonvolatile memory

Publications (2)

Publication Number Publication Date
JPH01307272A true JPH01307272A (en) 1989-12-12
JP2696103B2 JP2696103B2 (en) 1998-01-14

Family

ID=15228770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63138728A Expired - Lifetime JP2696103B2 (en) 1988-06-06 1988-06-06 Manufacturing method of semiconductor nonvolatile memory

Country Status (1)

Country Link
JP (1) JP2696103B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7619274B2 (en) 2004-06-23 2009-11-17 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory device and method of manufacturing the same
US7883967B2 (en) 2005-07-25 2011-02-08 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory device, semiconductor device and manufacturing method of nonvolatile semiconductor memory device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7619274B2 (en) 2004-06-23 2009-11-17 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory device and method of manufacturing the same
US7985650B2 (en) 2004-06-23 2011-07-26 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory device and method of manufacturing the same
US7883967B2 (en) 2005-07-25 2011-02-08 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory device, semiconductor device and manufacturing method of nonvolatile semiconductor memory device
US8093126B2 (en) 2005-07-25 2012-01-10 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory device, semiconductor device and manufacturing method of nonvolatile semiconductor memory device

Also Published As

Publication number Publication date
JP2696103B2 (en) 1998-01-14

Similar Documents

Publication Publication Date Title
JPS5927111B2 (en) Manufacturing method for semiconductor devices
JPH0834292B2 (en) Writing method of semiconductor memory device
WO1996033511A3 (en) Method of manufacturing a progammable semiconductor device in the form of an anti-fuse
JPH02222174A (en) MOS type semiconductor device
JPH01307272A (en) Manufacture of semiconductor non-volatile memory
JPS60148168A (en) Semiconductor nonvolatile memory
JPS61225872A (en) Method for manufacturing semiconductor non-volatile memory device
JPH01308080A (en) Semiconductor nonvolatile memory
JPS5860493A (en) Nonvolatile analog memory
EP0347148A2 (en) Semi-conductor non-volatile memory
JPH023982A (en) Nonvolatile storage element and manufacture thereof
US5324677A (en) Method of making memory cell and a peripheral circuit
JPS60124965A (en) Manufacturing method of semiconductor device
JPH0157508B2 (en)
JPH04320378A (en) memory transistor
JPS6336576A (en) Semiconductor device and manufacture thereof
JPH02117176A (en) Non-volatile semiconductor memory device
JPH08306808A (en) Nonvolatile semiconductor storage device
JPS60158669A (en) Semiconductor device
JPS62188360A (en) Semiconductor integrated circuit device and manufacture thereof
JPH065875A (en) Nonvolatile memory
TW554491B (en) Flash memory and the method for manufacturing the same
JPH04297072A (en) Manufacture of semiconductor device
JPH0451573A (en) Manufacture of semiconductor device
JPH02114569A (en) Manufacture of nonvolatile semiconductor storage device

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070919

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 11