[go: up one dir, main page]

JPH01303314A - Bearing device - Google Patents

Bearing device

Info

Publication number
JPH01303314A
JPH01303314A JP63328295A JP32829588A JPH01303314A JP H01303314 A JPH01303314 A JP H01303314A JP 63328295 A JP63328295 A JP 63328295A JP 32829588 A JP32829588 A JP 32829588A JP H01303314 A JPH01303314 A JP H01303314A
Authority
JP
Japan
Prior art keywords
bearing
back metal
layer
elastic modulus
thermal expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63328295A
Other languages
Japanese (ja)
Inventor
Sanae Mori
森 早苗
Masaaki Sakamoto
雅昭 坂本
Takuo Wada
和田 卓夫
Yoshikazu Mizuno
吉一 水野
Masakazu Sato
正和 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Daido Metal Co Ltd
Original Assignee
Honda Motor Co Ltd
Daido Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Daido Metal Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP63328295A priority Critical patent/JPH01303314A/en
Publication of JPH01303314A publication Critical patent/JPH01303314A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/02Light metals
    • F05C2201/021Aluminium

Landscapes

  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)

Abstract

PURPOSE:To improve the fatigue property in the subject bearing device having a sliding bearing by joining a bearing layer to a back metal made of a material with an elastic modulus lowered under cold working, through cold rolling. CONSTITUTION:The large end part 4 of a connecting body in an internal combustion engine, with a sliding bearing 8 arranged between the half part 5 of the large end part and a bearing cap 6, is fastened with a bolt 7. The sliding bearing 8 is formed by joining a bearing alloy layer 10 made of aluminum alloy or the like and a material with an elastic modulus lowered under cold working, for example, a back metal made of austenite stainless through cold rolling to each other. In this case, the elastic modulus of the back metal 9 is smaller on the inner side than the outer side. Accordingly, the back metal preferably followes the heat expansion deformation of bearing housings 5, 6, each having a large heat expansion factor and the absolute value of stress variation quantity and the stress caused on the outer layer of the back metal 9 is smaller than that of conventional one. Thus, it is possible to improve the fatigue property.

Description

【発明の詳細な説明】 り又上辺■皿金1 本発明は、軸受層とこれを支持する裏金との積層体から
成る平軸受を有する軸受装置に関し、特に、ボルトを用
いて二つの半体を結合する形式の軸受ハウジングと、被
支持体である回転+11hどll’l 1♀軸受ハウジ
ングとの間に所定の締め代をしって介挿される半割り型
よ/jは咎さブッシコ)すの平・IiI受であって軸受
層とこれを支持する裏金との積層体から成るものとで構
成された軸受装置に関する。
Detailed Description of the Invention The present invention relates to a bearing device having a flat bearing consisting of a laminated body of a bearing layer and a backing metal supporting the bearing layer, and in particular, to a bearing device having a flat bearing made of a laminated body of a bearing layer and a backing metal supporting the bearing layer. It is a half-split type that is inserted with a predetermined interference between the bearing housing of the type that connects the bearing housing and the rotating bearing housing that is the supported body. The present invention relates to a bearing device that is a suno flat III bearing and is composed of a laminate of a bearing layer and a backing metal that supports the bearing layer.

mIJL語 内燃機関において、ピストンとクランク軸とをi’l!
結する連1妄捧の両端部(小端部1>よび大端部)はそ
れぞれピストンピンおよびクランク軸(クランクピン)
を支持する軸受装置の軸受ハウジングを形成している。
mIJL In an internal combustion engine, the piston and crankshaft are i'l!
Both ends (small end 1 and large end) of the connecting link 1 are connected to a piston pin and a crankshaft (crank pin), respectively.
It forms the bearing housing of the bearing device that supports the.

小端部は貫通孔を有りる一体型の軸受ハウジングを形成
し、該貫通孔に、ピスト・ンピンを支える平軸受が圧入
される。大端部はポル1〜を用いて二つの半体を結合す
る形式の軸受ハウジングを形成し、この軸受ハウジング
内に?1′刈り型の平軸受が所定の締め代(タラッシュ
ハイト串)をしつて嵌め込まれる。
The small end forms an integral bearing housing with a through hole into which a flat bearing supporting the piston pin is press fit. The big end forms a bearing housing of the type that joins the two halves using Pol 1 ~, and within this bearing housing ? 1' A cropped plain bearing is fitted with a predetermined interference (talllash height skewer).

ところで、機関の高出力化、高速化、軽量化をδするた
めに連接棒をアルミニウム合金で形成づる例が増えつつ
ある。しかるにアルミニウム合金製軸受ハウジング(ア
ルミニウム合金製連接棒の小幅部、大端部)にあつ−C
は、その熱膨張率(約23x+o−e)が普通鋼製の軸
受の熱膨張率(約12×10−6 )のほぼ二倍である
!こめ、温度上背に伴う軸受ハウジングと軸受の熱膨張
差を補う必要があり、種々の対策が講じられている。
By the way, connecting rods are increasingly being made of aluminum alloy in order to increase the output, speed, and weight of engines. However, if the aluminum alloy bearing housing (narrow width part and large end of the aluminum alloy connecting rod)
Its coefficient of thermal expansion (approximately 23x+oe) is almost twice that of a bearing made of ordinary steel (approximately 12x10-6)! Therefore, it is necessary to compensate for the difference in thermal expansion between the bearing housing and the bearing due to the rise in temperature, and various measures have been taken.

実開昭56−4021号公報に示されたらのはその一例
であり、アルミニウム合金fFJ連接棒の小端部にアル
ミニウム合金と同一もしくは近い熱膨張率の鉄系金R製
ブツシュ(例えばオーステナイト系ステンレス鋼製ブツ
シュ)が圧入されている。この例では、A−ステナイト
系ステンレス鋼製ブツシュの熱膨張率(約18X 10
’ )が普通鋼に比して相当大きく、アルミニウム合金
の熱膨張率に近い値であるので、軸受ハウジングである
小端部によるブツシュの締め代を普通鋼製ブツシュに対
する締め代より小さくしても(すなわち、軸受ハウジン
グの締付は応力を小さくしても)、小端部の熱膨張変形
に対するブツシュの追従性を確保できる。
An example of this is shown in Japanese Utility Model Publication No. 56-4021, in which a bushing made of iron-based gold (for example, austenitic stainless steel) with a coefficient of thermal expansion that is the same or similar to that of the aluminum alloy is attached to the small end of an aluminum alloy fFJ connecting rod. Steel bushings) are press-fitted. In this example, the coefficient of thermal expansion of the A-stenitic stainless steel bushing (approximately 18X 10
) is considerably larger than that of ordinary steel, and is close to the coefficient of thermal expansion of aluminum alloy, so even if the tightness of the bushing at the small end of the bearing housing is smaller than that of a bushing made of ordinary steel. (In other words, even if the stress is reduced when tightening the bearing housing), the ability of the bushing to follow the thermal expansion deformation of the small end portion can be ensured.

しかしながら、アルミニウム合金製小端部JiよびA−
ステノーイト系スデンレスfA製ブツシュが膨張変形し
た時、ブシュと門通鋼軸との間のクリアランスが増大す
る可能性があり、またオーステノfト系ステンレス鋼は
普通鋼に比して熱伝導11が悪いため、軸と小端部間の
熱伝達が円滑に行われ矧いという欠点がある。
However, the aluminum alloy small end Ji and A-
When a bushing made of stenoitic stainless steel fA expands and deforms, the clearance between the bushing and the gate-through steel shaft may increase, and austenitic stainless steel has poor thermal conductivity (11) compared to ordinary steel. Therefore, the heat transfer between the shaft and the small end is smooth, but there is a drawback that it is rough.

上記実開昭56−4021号公報に開示された考え方を
、連接棒の大端部のように普通鋼製ボルトを用いて二つ
のアルミニウム合金製半体を結合して成る軸受ハウジン
グに適用し、言通鋼製軸と軸受ハウジングの間にオース
テナイト系ステンレス鋼製円筒形ブツシュを介挿した場
合を想定する。温度が上昇したON、軸受ハウジングの
各半体の熱膨張は、ボルトの軸線方向には該ボルトによ
って押えられ、ボルトの軸線に対しC直角り向にはnさ
れるので、結果として軸受ハウジングは横長に変形する
。このとき、ブツシュは円筒形であるが故に、横長状に
変形する軸受ハウジングに対する追従性が悪く、ボルト
に近い位置において軸受ハウジングとブツシュとの間に
増大したクリアランスが生じる可能性がある。
The idea disclosed in the above-mentioned Japanese Utility Model Publication No. 56-4021 is applied to a bearing housing formed by connecting two aluminum alloy halves using a common steel bolt like the large end of a connecting rod, Assume that a cylindrical bushing made of austenitic stainless steel is inserted between a shaft made of steel and a bearing housing. When the temperature rises, the thermal expansion of each half of the bearing housing is suppressed by the bolt in the axial direction of the bolt, and is suppressed in the direction perpendicular to the bolt axis, so that as a result, the bearing housing Transforms into a horizontally long image. At this time, since the bushing is cylindrical, it has poor ability to follow the bearing housing that deforms into a horizontally elongated shape, and an increased clearance may occur between the bearing housing and the bushing at a position near the bolt.

このようにボルトを用いて二つの半体を6’i合して成
る軸受ハウジングの場合には、面述のように、軸受ハウ
ジング内に半割りJXllの平軸受を所定の締め代を6
って嵌め込めば、この車軸受が軸受ハウジングの横長状
の変形に良く追従変形する。しかし該平軸受は温度変化
によって直円形状と横長形状との間で変形を繰り返すの
で、該平軸受には良好な疲労特性が要求される。
In the case of a bearing housing made by joining two halves 6'i together using bolts, as described above, insert a half-split JXll flat bearing into the bearing housing with a predetermined tightening interference of 6'i.
When the bearing housing is fitted, the bearing housing deforms to follow the horizontally elongated deformation of the bearing housing. However, since the flat bearing repeatedly deforms between a right circular shape and an oblong shape due to temperature changes, the flat bearing is required to have good fatigue characteristics.

例えば特開昭5G−13407号公報に示されているよ
うに、m製裏金にホワイトメタル、ケルメツトメタル、
アルミニウム合金等の軸受合金層を設りて成る積層金属
製のものが知られているが、このような平軸受であって
も、特にその鋼製裏金について、上記のような諸問題が
ある。
For example, as shown in Japanese Patent Application Laid-Open No. 5G-13407, white metal, kelmet metal,
Bearings made of laminated metal with a layer of bearing alloy such as aluminum alloy are known, but even such flat bearings have the above-mentioned problems, especially with respect to the steel back metal.

し −とする9 従って本発明は、軸受層とこれを支持する裏金との積層
体から成る車軸受を右する軸受層rにおいて、軸受ハウ
ジングの熱膨張変形に対する車軸受の追従変形性を向上
させるとともに、疲労特性を向上させることを主たる目
的とする。
Accordingly, the present invention improves the deformability of the vehicle bearing to follow thermal expansion deformation of the bearing housing in the bearing layer r on the right side of the vehicle bearing, which is composed of a laminated body of a bearing layer and a back metal supporting the bearing layer. In addition, the main purpose is to improve fatigue characteristics.

また本発明tよ、上記軸受装置において、熱膨張変形時
における回転軸と平惰受間のクリアランス増大を防ぐこ
とを目的とする。
Another object of the present invention is to prevent an increase in the clearance between the rotating shaft and the plain bearing during thermal expansion and deformation in the bearing device.

さらに本発明は上記軸受装置において、回転軸と軸受ハ
ウジング間の熱伝達性を向−]ニさUることを目的とす
る。
A further object of the present invention is to improve heat transfer between the rotating shaft and the bearing housing in the bearing device.

9 を ′1するための−1および を上記目的を達成
するため、本発明の軸受′1A清におい−(は、平軸受
の裏金が冷間加工ににり弾性率が低下する材料から成り
、かつ軸受層に冷間圧延によって接合されている。
In order to achieve the above objects, the bearing '1A' of the present invention is made of a material whose elastic modulus decreases when the back metal of the plain bearing is cold-worked, And it is joined to the bearing layer by cold rolling.

裏金と軸受層とを重ね合わけて冷間圧延する峙の裏金の
加1率は、軸受層に接する内側で小さく、外側C人込゛
いので、前記材料から成る裏金の弾性率は内側と外側と
で相’>fi L/ 、外側における弾性率が内側にお
ける弾性率より小さくなっている。従って本発明による
平軸受は、熱膨張率の大きな軸受ハウジングの熱膨張変
形によく追従変形し、その上、熱膨張変形によって裏金
の外側層に生じる応力変動ハ1および応力の絶対値が従
来のらのに比して小さいが故に、疲労性f1の向上を企
図し得る。
When the backing metal and the bearing layer are overlapped and cold-rolled, the elastic modulus of the backing metal is small on the inside where it contacts the bearing layer, and the elasticity on the outside is small, so the elastic modulus of the backing metal made of the above material is With phase'>fi L/, the elastic modulus on the outside is smaller than the elastic modulus on the inside. Therefore, the flat bearing according to the present invention deforms well following the thermal expansion deformation of the bearing housing, which has a large coefficient of thermal expansion, and furthermore, the stress fluctuation (1) and the absolute value of the stress generated in the outer layer of the backing metal due to thermal expansion deformation are lower than those of the conventional bearing. Since it is smaller than the above, it is possible to aim at improving the fatigue property f1.

以」二のような特性を有する水元]!l」の平軸受を1
!?るには、裏金としてオーステナイ1−系スデンレス
鋼を用いるのが最)のである。すなわら、A−ステブイ
1−系ステンレス鋼以外の鋼種では、冷間加[率が大き
くなると硬度、弾性率共に増大するが、イーステプイト
系ステンレス鋼では、冷間加工率が大きくなると該加工
率に応じて硬度が増大するものの弾性率が低下づる傾向
がある。従ってオース1ナイト系スデンレス鋼Wfi金
においては、外側層の硬度は大きくなり、軸受ハウジン
グとの間の耐フレッティング〈焼イ」き摩耗)特性方向
[づる。
Mizumoto who has the following characteristics]! 1" plain bearing
! ? Therefore, it is best to use austenite 1-stainless steel as the backing metal. In other words, in steel types other than A-Stevui 1-series stainless steel, as the cold working rate increases, both hardness and elastic modulus increase; however, in the case of E-Steepy stainless steel, as the cold working rate increases, the working rate increases. Although the hardness increases depending on the amount, the elastic modulus tends to decrease. Therefore, in the case of ausonitic stainless steel Wfi gold, the hardness of the outer layer is large, and the resistance to fretting between the bearing housing and the bearing housing is improved.

裏金としてオースブナイト系ステンレスwlを用いる平
軸受において(よ、軸受層をA−スデノイt−系ステン
レス鋼に比して熱膨張率の大きい合金相れで形成するの
がよい。かかる平軸受によれば熱膨張変形時にお(]る
回転軸と平軸受間のクリアランス増大を防ぐことができ
る。
In a plain bearing that uses ausbunite stainless steel as the backing metal, it is preferable to form the bearing layer with an alloy phase having a larger coefficient of thermal expansion than A-sudenoi t-stainless steel. It is possible to prevent the clearance between the rotating shaft and the plain bearing from increasing during thermal expansion and deformation.

また裏金を冷間圧延によって実v1的に薄肉化覆ること
により、回転軸と軸受ハウジング間の熱伝達性を向トさ
せることができる。なお裏金を゛実質的にλヤ肉化する
″という表現は、通゛常のものJ:す30−50%薄肉
化されることを意味し、餠気m2000ccクラスの乗
用車用エンジンにおけるクランクメインジャーノル用語
通用製裏金のVさが1.6mm程度であるのに対し、例
えば板厚1.1〜1.2mm程度になされている。
Furthermore, by cold rolling the back metal to make it substantially thinner, it is possible to improve heat transfer between the rotating shaft and the bearing housing. Note that the expression ``substantially thickening the back metal'' means that the thickness of the back metal is reduced by 30-50%, and the thickness of the crank main cylinder in a 2000cc class passenger car engine is 30% to 50% thinner. While the V of the backing plate made by Nord terminology is about 1.6 mm, the plate thickness is, for example, about 1.1 to 1.2 mm.

友−l−■ 第1図は内燃機lで使用される連接棒を分解図として示
している。連接棒1はビス[−ンとクランク軸を連結す
る部材であって、ピストンピン2が嵌装される部分を小
端部3、クランク軸(クランクピン)に結合される部分
を大端部4と称している。この大端部4はクランクピン
中心軸を含む而に治って上、下に分割された軸受ハウジ
ングであって、大端半部5と軸受キャップ6とを鋼製ポ
ル1−7.7で結合することによって該軸受ハウジング
が形成される。軸受ハウジング内には半割り型の平軸受
8が所定の締め代(クラッシュハイドfil )をもっ
て嵌め込まれる。
Figure 1 shows an exploded view of a connecting rod used in an internal combustion engine. The connecting rod 1 is a member that connects a screw and a crankshaft, and the part into which the piston pin 2 is fitted is a small end 3, and the part connected to the crankshaft (crank pin) is a large end 4. It is called. The large end portion 4 is a bearing housing that includes the crankpin center shaft and is divided into an upper and a lower portion, and the large end half portion 5 and the bearing cap 6 are connected by a steel pole 1-7.7. The bearing housing is formed by doing this. A half-split flat bearing 8 is fitted into the bearing housing with a predetermined interference (crush hide fill).

上記連接棒1は、改関の高出力化、高速化、軟量化を5
16ためにアルミニウム合金て゛作られている。平軸受
8は、第2図に示すJ、うに、A−−ステ少イト系ステ
ンレス鋼製の裏金9と、アルミニウム合金等から成る軸
受台金F110との積層体によって形成されている。大
端部4は温度が1品すると第3図図示のように横段に変
形する(図は変形を強調して描いている)。このように
変形するのは、熱膨張率の大きなアルミニウム合金製大
端部4の熱膨張が、X方向において、熱膨張率の小さな
鋼製ポルドア、7で押えられ、主としてX方向に/lじ
るからである、大端部4が第3図図示のJ:うに変形す
ると、所定の締め代をもって鋼製クランク@11と大端
部4との間に介挿されている平軸受8b追従変形J−る
がその際平軸受8には良りrイ(追従変形性が要求され
る。
The above connecting rod 1 has the following five features: high output, high speed, and softness.
16 is made of aluminum alloy. The plain bearing 8 is formed of a laminate of a backing metal 9 made of J, uni, and A-state low-item stainless steel shown in FIG. 2, and a bearing base metal F110 made of an aluminum alloy or the like. When the temperature reaches 1, the large end portion 4 deforms horizontally as shown in FIG. 3 (the deformation is emphasized in the drawing). The reason for this deformation is that the thermal expansion of the aluminum alloy large end 4, which has a large coefficient of thermal expansion, is suppressed in the X direction by the steel mold door 7, which has a small coefficient of thermal expansion. This is because when the big end 4 deforms into the shape J shown in FIG. However, in this case, the plain bearing 8 is required to have good follow-up deformability.

平軸受8が適当な締め代をもって軸受ハウジング4に組
込まれたとき、裏金9には円周方向の圧縮応力が生じる
。この圧縮応力は外周側に比して内周側で大きく、内周
にお【)る成人応力は次式で示される。
When the flat bearing 8 is assembled into the bearing housing 4 with an appropriate interference, compressive stress is generated in the back metal 9 in the circumferential direction. This compressive stress is larger on the inner circumference side than on the outer circumference side, and the adult stress on the inner circumference is expressed by the following equation.

δmaX ==−δ・K (1/E+k>  =11)
(ただし、kは軸受ハウジングにより定まる係数、には
定数、Fは!7!金の弾性係数、δは締め代である) 今、平軸受の裏金が西通鋼製であると仮定し、この平軸
受を所定の締め代をもってフルミニラム合金製の軸受ハ
ウジングに組込んだ詩の該Iil!金の内周113J:
び外周におGJる初期応力(σ)、歪(ε)を、それぞ
れσ1 (内)、ε1 (内)およびσ1(外)、ε1
 (外)とし、温度が上背して軸受ハウジングおよび平
軸受が第3図図示のように熱膨張変形した時の内周およ
び外周にJ3 GJる応力、歪を、それぞれσ2 (内
)、ε2 (内)およびσ2(外)、ε2 (外)とす
る。これ等を裏金形成材料(普通鋼)の応力−歪線図(
弾性域)で示すと、第6図のようになる(図では、内、
外周の応力、歪の差を強調して大きく示している)。初
期状態におりる応力σI (内)、σ1 (外)および
歪ε1、(内)およびε1 (外)【、1大きいが、湿
度上背してアルミニウム合金:累軸受ハウジングが大ぎ
く熱Vl、張変形すると、裏金に対する締めイ;HJ力
が低■して歪の一部釈放が行われ、応力および歪が初期
状態よりし小さくなって、それぞれσ2(内)、σ2 
(外) J3よびε2 (内)、ε2 (外)になる。
δmaX ==-δ・K (1/E+k> =11)
(However, k is a coefficient determined by the bearing housing, is a constant, F is the elastic modulus of !7! gold, and δ is the interference margin.) Now, assuming that the back metal of the plain bearing is made by Nishitoshi Steel, this This is a poem that incorporates a plain bearing into a bearing housing made of full miniram alloy with a predetermined interference! Gold inner circumference 113J:
The initial stress (σ) and strain (ε) on the GJ and the outer circumference are respectively σ1 (inner), ε1 (inner), σ1 (outer), ε1
(outside), and when the temperature rises and the bearing housing and plain bearing undergo thermal expansion and deformation as shown in Figure 3, the stress and strain of J3 GJ on the inner and outer circumferences are σ2 (inner) and ε2, respectively. (inside), σ2 (outside), and ε2 (outside). These are the stress-strain diagram of the back metal forming material (common steel) (
Figure 6 shows the elastic range (elastic range).
(Differences in stress and strain at the outer periphery are emphasized and shown in a large size). Stresses σI (inside), σ1 (outside) and strains ε1, (inside) and ε1 (outside) [, 1 are large, but humidity and aluminum alloy: the cumulative bearing housing is very heated Vl, When the tension deforms, the tightening against the backing metal is reduced; the HJ force is reduced and a portion of the strain is released, and the stress and strain become smaller than the initial state, resulting in σ2 (inner) and σ2, respectively.
(outside) J3 and ε2 (inside), ε2 (outside).

このとき内、外周にJハノる歪の変化量には次の関係が
ある。
At this time, the following relationship exists between the amount of change in strain J on the inner and outer peripheries.

ε1 (内)−ε2(内)くε1 (外)−ε2 (外
)・・・(2) すなわち、内周に比して外周の歪の釈放吊が人ぎい。こ
れは次のような理由による。第4図は、初期状態におけ
るアルミニウム合金製ハウジングに組込まれた半割り型
平軸受8の突き合I!端部Aを示しているa軸受ハウジ
ングが前述のように横長状に熱膨張変形すると、平軸受
8.8が追従変形する。その際突き合せ端部Aにおいて
裏金9の内側層Bが押し潰されるかのように変形(弾f
L変形)して、第6図図示の如く平軸受8.8の突ぎ合
ぜ端部Aが外方へ突出した形状になる。従って、上記第
2式で表わされるように、裏金9の外側層にJ3ける歪
釈放Rが内側層における歪釈放1、すb大きくなる3、
ぞして外側層に43ける歪釈放帛が大きいことは軸受ハ
ウジングに対する裏金9の追従性がよいことを意味する
。歪と応力とは一定の関係を有しているので、上記第2
式は、湿度1背によって裏金の内、外側の応力差が下記
第3式のようにIム人することを意味しUJ3す、換8
ケれば、弾性域内において湿度上背によって応力差が拡
大4−ることは軸受ハウジングに対するカ倉9の追従性
がよいことを意味している。
ε1 (inside) - ε2 (inside) ε1 (outside) - ε2 (outside)... (2) In other words, the release of strain on the outer circumference is stronger than on the inner circumference. This is due to the following reasons. FIG. 4 shows the butt I! of the half-split flat bearing 8 assembled in the aluminum alloy housing in the initial state. When the a-bearing housing showing the end A is thermally expanded and deformed into a horizontally elongated shape as described above, the flat bearing 8.8 is followed by deformation. At this time, the inner layer B of the back metal 9 is deformed (elastic f
L deformation), and as shown in FIG. 6, the butt end A of the flat bearing 8.8 becomes shaped to protrude outward. Therefore, as expressed by the second equation above, the strain release R in the outer layer of the back metal 9 becomes larger than the strain release R in the inner layer by 1,
A large strain release layer 43 in the outer layer means that the back metal 9 follows the bearing housing well. Since strain and stress have a certain relationship, the second
The formula means that depending on the humidity, the stress difference between the inner and outer parts of the back metal will change as shown in the third formula below.
In other words, the fact that the stress difference increases due to humidity in the elastic region means that the cover 9 follows the bearing housing well.

σ、(内)−σ1 (外)〈σ2 (内)−σ2 (外
)・・・(3) 以上は普通鋼製の裏金についての話である、しかるに、
本発明の平軸受8にあっては、裏金9はA−ステナイト
系ステンレス鋼である。第10図から分るように、fg
通鋼では、冷開加工率が大きくなると(ゆ度、弾性lf
1敢バに増大するが、オースデプイト系ステンレス鋼で
は冷間加工率が大きくなると該加工率に応じて硬度が増
入り゛るものの弾性係数が低下する傾向がある。従って
、A−ステノイド系ステンレス鋼鋼板と、該鋼板に比し
て硬匹の小さな軸受合金板とを川ね合u′CIT延する
と、オーステノ゛イ1〜系スデンレス鋼板の接合面側で
加工率が小さく、非接合面側で加工率が大きくなること
から、接合面側で弾性係数人、硬度小どなり、非接合面
側で弾性係数小、硬度大(大小関係はいずれし相対的で
ある)となる。第7図はこのような裏金の応力−歪特性
(弾性域)を示す。直線■は裏金内側層の特性を丞し、
直線■は裏金外側層の特性を示す。ここで、裏金の内、
外周にお1ノる応力、J〉を、前記σ、εに記号*を付
してぞれぞれ*σI (内)、*ε1 (内)、*σ1
 (外)、フ1:ε1 (外)、*σ2(内)、*ε2
(内)、:にσ2 (外)、*ε2 (外)で表わすと
、初期状態(添字1)および温度上背時(添字2)にお
いて各σ、εは図示のようになる。
σ, (inside) - σ1 (outside) <σ2 (inside) - σ2 (outside)... (3) The above is a story about the back metal made of ordinary steel, however,
In the plain bearing 8 of the present invention, the back metal 9 is made of A-stenite stainless steel. As can be seen from Figure 10, fg
In passing steel, when the cold opening rate increases (yield, elasticity lf
However, as the cold working rate increases in ausdepit stainless steel, although the hardness increases and decreases in accordance with the working rate, the elastic modulus tends to decrease. Therefore, when an A-stenoid stainless steel plate and a bearing alloy plate with a smaller hardness than the steel plate are rolled together by u'CIT, the processing rate will be reduced on the joint surface side of the austenoid stainless steel plate. is small and the machining rate is large on the non-bonded surface side, so the elastic modulus is small and the hardness is small on the bonded surface side, and the elastic modulus is small and hardness is large on the non-bonded surface side (the relationship between the sizes is relative) becomes. FIG. 7 shows the stress-strain characteristics (elastic range) of such a backing metal. The straight line ■ represents the characteristics of the inner layer of the backing metal,
The straight line ■ indicates the characteristics of the outer layer of the backing metal. Here, among the hidden funds,
The stress J〉 on the outer periphery is denoted by the symbol * for σ and ε, respectively *σI (inside), *ε1 (inside), *σ1
(outside), F1:ε1 (outside), *σ2 (inside), *ε2
(inner), : are represented by σ2 (outer) and *ε2 (outer), and in the initial state (subscript 1) and at the upper temperature (subscript 2), each σ and ε are as shown in the figure.

今、このオーステティ1〜系ステンレス鋼% 実&の内
周部の弾性係数が、第6図に示した普通m製裏金の弾性
係数に等しく、かつアルミニウム合金製軸受ハウジング
および平軸受の寸法関係、おJ:び初期状態の温度、温
度上界後の温度が第4図について説明した普通鋼製裏金
の場合と一致していると仮定すると、 式  *ε1 (内)−ε1 (内) *ε2 (内)−ε2 (内) *ε1 (外)−εI (外) *ε2 (外)−ε2 (外) ニドσ1 (内)−σ1 (内) *σ2 (内)−σ2 (内) が成立する。従って前記第2式と同様41式が成立し、
良好な追従性が得られる。
Now, the elastic modulus of the inner periphery of this Austety 1~ series stainless steel is equal to the elastic modulus of the ordinary m back metal shown in Fig. 6, and the dimensional relationship between the aluminum alloy bearing housing and the plain bearing. Assuming that the temperature in the initial state and the temperature after the upper temperature limit are the same as in the case of the ordinary steel back metal explained with reference to Fig. 4, the formula *ε1 (inside) - ε1 (inside) *ε2 (Inside) - ε2 (Inside) *ε1 (Outside) - εI (Outside) *ε2 (Outside) - ε2 (Outside) Nido σ1 (Inside) - σ1 (Inside) *σ2 (Inside) - σ2 (Inside) is established. do. Therefore, like the second equation above, equation 41 is established,
Good followability can be obtained.

一方、外側層の応力につ゛いでは、 *σ1 (外)<a、(外) *σ2 (外)くσ2 (外) ニドσ1 (外)−:?σ2 (外) 〈σI (外)−σ2 (外) どなり、オーステプイト系ステンレス鋼111J裏金に
J3いては外側層の絶対応力値おJ:び応力変動量が酋
通鋼製臭金の場合に比して小さく、温度変化にJ、る疲
労特性の向上を企図し1qることが理解される。
On the other hand, regarding the stress in the outer layer, *σ1 (outside) < a, (outside) *σ2 (outside) σ2 (outside) Nido σ1 (outside) -:? σ2 (outside) 〈σI (outside) - σ2 (outside) In the case of austepite stainless steel 111J backing metal J3, the absolute stress value and stress fluctuation amount of the outer layer are compared to the case of Nitsu Steel brocade metal. It is understood that the objective is to improve the fatigue properties due to small changes in temperature and to improve the fatigue properties.

このように内層側と外層側とで弾性係数の異なる平軸受
を得るには下記の製造方法によるのが適当である。
In order to obtain a plain bearing in which the elastic modulus differs between the inner layer side and the outer layer side as described above, it is appropriate to use the following manufacturing method.

製造T稈を第8図に示寸。[l−延された二種類の素材
帯板、1なわ’3 ’fdl受合金(例、アルミニウム
合金)製帯板21どA−スデナイト系ステンレス鋼帯板
22とに清浄化処理、粗面化処理(帯板22の表面の粗
面化)を施し、相互に重ね合せた状態でロール23によ
って両者を冷間圧延し、帯板22の入面に帯板21を一
体に几着せしめる。この冷間圧延加工によって帯板22
が加工硬化するが、鋼に比して軟かい軸受台金製帯板2
1と接Jる側て・はロール23ど直接接触する側に比し
て加工程度が低く、所望の硬度差および弾性係数差を(
9ることができる。
The dimensions of the manufactured T culm are shown in Figure 8. [l- Two types of rolled material strips, 1 rope '3' FDL receiving alloy (e.g., aluminum alloy) strip 21 and A- Sudenite stainless steel strip 22 are cleaned and roughened. After treatment (roughening of the surface of the strip plate 22), both are cold-rolled by rolls 23 in a mutually overlapping state, and the strip plate 21 is integrally attached to the entrance surface of the strip plate 22. By this cold rolling process, the strip plate 22
Although it is work hardened, the bearing base metal strip 2 is softer than steel.
The side in contact with the roll 23 is processed to a lower degree than the side in direct contact with the roll 23, and the desired hardness difference and elastic modulus difference (
9 can be done.

両帯板21.22の圧るによって得られた積層帯板24
は、切断によって小片25になされた後、曲げ加工、+
i+仕上げ而取り加工、袖穴加工、爪出し曲111−加
工、油溜加工、高さ仕上げ加工、肉jワfL 、1− 
ty加■、メツキ処理等の工程を経で半割り型平l1I
h受・E〕になされる。
Laminated strip 24 obtained by pressing both strips 21 and 22
is made into a small piece 25 by cutting, then bending, +
i + finishing and removing processing, sleeve hole processing, claw extension 111- processing, oil sump processing, height finishing processing, meat jwa fL, 1-
After going through processes such as tying, plating, etc., it becomes a half-split flat l1I
h-receiver/E].

また、第9図図示の如く切l17i後の小片25を円筒
状に曲げ加工し、巾仕[げ面取り加工、整形加]−、メ
ツキ処理、肉厚仕上げ加19の工程を経て巻きブツシュ
型平軸受26を得ることもできる。271よこの巻ぎブ
ツシュ型平軸受26の付き合せ位置を示(。
Further, as shown in FIG. 9, the small piece 25 after cutting 17i is bent into a cylindrical shape, and then subjected to the steps of width finishing (chamfering, shaping), plating, and thickness finishing 19, and then flattened into a rolled bush shape. A bearing 26 can also be obtained. 271 shows the mating position of the horizontal wound bush type flat bearing 26 (.

第10図はこの巻きブツシュ型平軸受を有する連接棒大
端部を示す第2図と同様な概略図で、第2図と同様な部
分には同じ参照符号を付しである。
FIG. 10 is a schematic view similar to FIG. 2 showing the large end of the connecting rod having this wound bush type flat bearing, and the same parts as in FIG. 2 are given the same reference numerals.

得られた平軸受8.26におけるオーステティ1−系ス
テンレス鋼製裏金の外層側は硬度人、弾v1係数小であ
るのに対し、内層側(軸受合金層と接する側)は硬度小
、弾性係数人である。ぞの即山は、凹通鋼の弾性係数(
E)は圧延加工率ととしに人さくなるのに対し、オース
jfイト系ステンレス鋼のそれは圧延加工率ととしに小
さくなることによる(第11図参照、硬は、引張り強度
Ii菖通鋼、ステンレス鋼共に圧延加[率とともに人き
く <Tる)それ故、鋼製ボルトで組立−(られるアル
ミニウム合金¥J@受ハウジングに所定の締め代をもっ
て平軸受8またはψ軸受26を組込んで鋼製軸を支持し
た状態で温度上界によって軸受ハウジングが熱膨張変形
すると、前述のようにψ軸受8,264軸受ハウジング
に容易に追従変形し、また熱膨張変形によって裏金外層
側に生じる応力変動量おJ、び絶対応力値が従来のもの
に比して小ざいが故に、疲労特性の向上を企図し得る。
In the obtained plain bearing 8.26, the outer layer side of the Austety 1 stainless steel backing metal has a low hardness and a low elastic V1 coefficient, whereas the inner layer side (the side in contact with the bearing alloy layer) has a low hardness and a low elastic modulus. It's a person. The point is that the elastic modulus of concave steel (
E) decreases as the rolling reduction rate increases, whereas that of austite stainless steel decreases as the rolling reduction rate increases (see Figure 11. Both stainless steel and stainless steel are rolled (the rate increases with the rate).Therefore, the aluminum alloy is assembled with steel bolts. When the bearing housing is thermally expanded and deformed due to the upper temperature limit while supporting the manufactured shaft, it will easily follow the deformation of the ψ bearing 8, 264 bearing housing as described above, and the amount of stress fluctuation generated on the outer layer side of the backing metal due to thermal expansion deformation. Since the absolute stress value is smaller than that of the conventional one, it is possible to improve the fatigue properties.

平軸受8.26における裏金の材質としてオースミナイ
ト系ステンレス鋼を用いることによる他の利点は、オー
ス−1ナイト系ステンレス鋼の熱膨張係数(約18X 
10’ )が鰹通鋼の熱膨張係数(約12xlO’)に
比して可成り人きく、アルミニウム合金の如き熱膨張係
数の大きな材料で形成された軸受ハウジングに、平軸受
8.26を組込むに当り、軸受ハウジングの大きな熱膨
張を児込んで平軸受8.26の締め代をさほど大きくせ
ずどもよいことである(酋通鋼製車軸受では締め代を大
さくL/jければならない)。締め代を人さくするには
、それに応じて軸受ハウジングの肉厚を増して剛f1を
人きくしなければならないので、前記のJ、うにA−ス
テナイト系ステンレス鋼共採用覆ることに」;す、軸受
ハウジングの軽量化と11節減を削ることができる。
Another advantage of using ausminitic stainless steel as the material for the back metal in plain bearings 8.26 is that the coefficient of thermal expansion of ausminitic stainless steel (approximately 18
The flat bearing 8.26 is incorporated into a bearing housing made of a material with a large coefficient of thermal expansion such as aluminum alloy, whose coefficient of thermal expansion (10') is considerably higher than that of Katsuotsu steel (approximately 12xlO'). In this case, it is better not to make the interference of the plain bearing 8.26 so large due to the large thermal expansion of the bearing housing. ). In order to make the tightening allowance more compact, the wall thickness of the bearing housing must be increased accordingly to make the stiffness f1 more compact, so we decided to use both the above-mentioned J and A-stenitic stainless steels. It is possible to reduce the weight of the bearing housing and save 11 times.

また、A−ステナイlへ系ステンレス鋼製裏金の熱膨張
係数がアルミニウム合金製軸受ハウジングの熱膨張旧教
(約23X 10−8 )に近いことは、軸受ハウジン
グと平軸受との熱膨張の差を小さくし、従って温度上背
時にお()る軸受ハウジングの熱膨張に対ケる平軸受の
追従性かn好である。
In addition, the fact that the coefficient of thermal expansion of the A-stencil stainless steel back metal is close to that of the aluminum alloy bearing housing (approximately 23 x 10-8) means that the difference in thermal expansion between the bearing housing and the plain bearing is Therefore, it is preferable that the plain bearing has the ability to cope with thermal expansion of the bearing housing due to temperature rise.

裏金9が熱膨張係数の人きなA−ス)゛ノイド系ステン
レス鋼(゛形成された平軸受8.26は、温度l−57
にCI’ってアルミニウム合金製軸受ハウジングの熱膨
張変形に良く追従して変形し、通常ならば熱膨張係数の
小さなと通用製回転軸11と平軸受8゜26どの間のク
リアランスが増入りる傾向があるところ、軸受台金h″
?i10がオーステナイト系ステンレス鋼J、りさらに
熱膨張係数の人ぎな材料(アルミニウム合金)で形成さ
れているので、該クリアランスの増大が抑制され、回転
1袖11の回転に伴う打畠の発生を防止ぐさる。
The backing plate 9 is made of a noidal stainless steel with a low coefficient of thermal expansion.
CI' deforms to closely follow the thermal expansion deformation of the aluminum alloy bearing housing, and normally if the coefficient of thermal expansion is small, the clearance between the standard rotating shaft 11 and the plain bearing 8°26 will increase. Where there is a tendency, the bearing base metal h''
? Since i10 is made of austenitic stainless steel J or a material with a low coefficient of thermal expansion (aluminum alloy), the increase in the clearance is suppressed and the occurrence of bumps due to the rotation of the rotary sleeve 11 is prevented. Gusaru.

A−ステープイト系ステンレス鋼製裏金9は冷間圧延加
Tによって十分薄肉化されているので、熱伝)(7竹の
悪いA−スデjイト系ステンレス鋼の欠点が補償され、
回転軸11ど軸受ハウジング5.6との間の熱伝達は旧
われ/7い。
Since the backing plate 9 made of A-staite stainless steel is made sufficiently thin by cold rolling T, the disadvantage of A-staite stainless steel, which has poor heat conductivity (7), is compensated for.
Heat transfer between the rotating shaft 11 and the bearing housing 5.6 is conventional.

オースブナイト系ステンレス鋼WA裏金9は冷間圧延加
工に」;ってその外層側硬度が大きくなるので(第11
図参照)、軸受ハウジングとの店接関係における耐フレ
ツテイング特性が良好である。外層側の(ii!度増加
による靭性の低下は、硬度が比較的低い内層側によって
補償される。
When the ausbunite stainless steel WA back metal 9 is subjected to cold rolling processing, the hardness of its outer layer increases (No. 11).
(see figure), and has good fretting resistance in the contact relationship with the bearing housing. The decrease in toughness due to the increase in (ii! degree) on the outer layer side is compensated by the inner layer side, which has a relatively low hardness.

1班豊1浬     ・ 以上の説明から明らかなように、軸受層とこれを支持り
る裏金との積層体からなる平軸受を右づる軸受装置であ
って、前記裏金が冷間加工により弾性率が低下する材料
から成り、前記軸受層と前記裏金とが冷間圧延によつC
Uいに接合されていることを特徴とづ−る軸受装置が提
案された。
1. As is clear from the above explanation, this is a bearing device that uses a flat bearing made of a laminate of a bearing layer and a backing metal that supports it, and the backing metal has a modulus of elasticity due to cold working. The bearing layer and the backing metal are made of a material whose C
A bearing device has been proposed which is characterized by being joined in a U-shape.

裏金と軸受層とを重ね合わ廿て冷間圧延する1;)の裏
金の加工率は、軸受層に接する内側で小さく、外側で大
きいので、前記材料から成る裏金のcIF付率は内側と
外側とで相違し、外側にJ3ける弾性率が内側における
弾性率より小さへなっている。従って本発明による平軸
受は、熱膨張率の大きな軸受ハウジングの熱膨張変形に
よく追従変形し、イの土、熱膨張変形によって裏金の外
側層に生じる応力変動:n iljよび応力の絶対値が
従来のらのに比して小さいが故に、疲労特性の向上を企
図し1r7る。
The processing rate of the backing metal in 1;), in which the backing metal and the bearing layer are overlapped and cold-rolled, is small on the inside in contact with the bearing layer and large on the outside, so the cIF coating rate of the backing metal made of the above material is The difference is that the elastic modulus on the outside is smaller than the elastic modulus on the inside. Therefore, the plain bearing according to the present invention deforms well following the thermal expansion deformation of the bearing housing, which has a large coefficient of thermal expansion, and the stress fluctuations generated in the outer layer of the backing metal due to the thermal expansion deformation: n ilj and the absolute value of the stress are Since it is smaller than the conventional latch, it is designed to improve fatigue characteristics.

以上のような特性を0する平軸受をjilるには、裏金
としてオーステナイト系ステンレス鋼を用いるのが最適
であり、オーステナイト系ステンレス鋼では、冷開加工
率が大きくなると、弾性率が低トするどどしに硬度が増
大りるので、オーステティ1〜系ステンレス11!’N
裏企に43いては、外側層の1ゆ麿【1人きくなり、軸
受ハウジングとの間の耐フレツテイング(焼付き摩耗)
特性も向上する。
In order to build a plain bearing with the above characteristics of 0, it is optimal to use austenitic stainless steel as the back metal, and with austenitic stainless steel, the elastic modulus decreases as the cold opening rate increases. The hardness increases dramatically, so Austety 1 to 11 stainless steel! 'N
In the 43rd attempt, the outer layer must be removed to prevent fretting (seizure wear) between the outer layer and the bearing housing.
Characteristics also improve.

裏金としてオーステナイト系ステンレス鋼を用いる平軸
受」こJノいて、軸受層をオーステナイト系ステンレス
鋼に比して熱膨張の大きい合金材料で形成すれば、熱膨
張変形時におTJる回転惰と平軸受間のクリアランス増
大を防ぐことがeさ・る。
Plain bearings that use austenitic stainless steel as the backing metal. If the bearing layer is made of an alloy material that has a higher thermal expansion than austenitic stainless steel, it is possible to prevent rotational inertia and flat bearings that undergo TJ during thermal expansion and deformation. It is important to prevent an increase in the clearance between the parts.

また尖企を冷間[を延にJニー、)て実質的に薄肉化す
ることに4より、Ii+1・11λ1抽と軸受ハウジン
グG11の熱伝達性を向上させることができる。
Furthermore, by cold-rolling the shaft to make it substantially thinner, it is possible to improve the heat transfer properties of Ii+1·11λ1 and the bearing housing G11.

4、図面(7) I!vi!I CE 説明第1図は本
発明を適用した内燃磯関用連接棒を示1分解斜視図、第
2図は該連接棒の大端部(+fill受装置)を示ず概
略図、第3図は、温度上品に伴う該大端部の変形状態を
示す図面、第4図は第2図の部分的拡大図、第5図は第
3図の部分的拡大図、第6図は本発明による平軸受の変
形特性と対比するために普通鋼製平軸受の変形特性を示
すグラフ、第7図は本発明平軸受の変形特性を示すグラ
フ、第8図は本発明にJ、る半割り型平軸受の製造工程
を示す図面、第9図は本発明による巻きブツシュ型平軸
受のyJ33−[稈を示J図面、第10図は巻きブツシ
ュ型平軸受を右する連接棒大端部を示す第2図と同様な
概略図、第11図はに通用おJ:びオーステナイト系ス
テンレス鋼の圧延加工率と物性との関係を示すグラフで
ある。
4. Drawing (7) I! vi! ICE Explanation Fig. 1 shows a connecting rod for an internal combustion engine to which the present invention is applied; 1 is an exploded perspective view; Fig. 2 is a schematic view without showing the large end (+fill receiving device) of the connecting rod; Fig. 3; FIG. 4 is a partially enlarged view of FIG. 2, FIG. 5 is a partially enlarged view of FIG. 3, and FIG. A graph showing the deformation characteristics of a common steel plain bearing in comparison with the deformation characteristics of a plain bearing. FIG. 7 is a graph showing the deformation characteristics of the plain bearing of the present invention. FIG. Drawings showing the manufacturing process of a plain bearing; FIG. 9 shows the yJ33-[culm of the rolled bush type plain bearing according to the present invention; FIG. 10 shows the large end of the connecting rod on the right side of the rolled bush type plain bearing. FIG. 11 is a schematic diagram similar to FIG. 2, and is a graph showing the relationship between rolling reduction and physical properties of austenitic stainless steel.

1・・・連接棒、2・・・ピストンピン、3・・・小端
部、4・・・大端部、5・・・大端半部、6・・・軸受
キt・ツブ、7・・・ポル1へ、8・・・平軸受、9・
・・′A合、10・・・軸受層、21、22・・・帯板
、23・・・【コール、24・・・積層帯板、25・・
・小片、26・・・巻きブツシュ型平帖受、27・・・
イ」ぎ合せ位置。
DESCRIPTION OF SYMBOLS 1... Connecting rod, 2... Piston pin, 3... Small end, 4... Large end, 5... Large end half, 6... Bearing kit/tube, 7 ...To pole 1, 8...Flat bearing, 9.
...'A combination, 10... bearing layer, 21, 22... band plate, 23... [coal, 24... laminated band plate, 25...
・Small piece, 26... Rolled bush type flat book receiver, 27...
A" joint position.

Claims (7)

【特許請求の範囲】[Claims] (1)軸受層とこれを支持する裏金との積層体からなる
平軸受を有する軸受装置であつて、前記裏金が冷間加工
により弾性率が低下する材料から成り、前記軸受層と前
記裏金とが冷間圧延によって互いに接合されていること
を特徴とする軸受装置。
(1) A bearing device having a flat bearing consisting of a laminated body of a bearing layer and a back metal supporting the bearing layer, wherein the back metal is made of a material whose elastic modulus decreases by cold working, and the bearing layer and the back metal A bearing device characterized in that these are joined to each other by cold rolling.
(2)前記裏金の、前記軸受層に接する内側における弾
性率が外側における弾性率よりも高い請求項1記載の軸
受装置。
(2) The bearing device according to claim 1, wherein the elastic modulus of the inner side of the back metal in contact with the bearing layer is higher than the elastic modulus of the outer side.
(3)前記裏金の、前記外側における硬度が前記内側に
おける硬度よりも高い請求項2記載の軸受装置。
(3) The bearing device according to claim 2, wherein the outer side of the back metal has a higher hardness than the inner side.
(4)ボルトを用いて二つの半体を係合する形式の軸受
ハウジングと、被支持体である回転軸と前記軸受ハウジ
ングとの間に所定の締め代をもって介挿される半割り型
または巻きブッシュ型の平軸受であつて軸受層とこれを
支持する裏金との積層体から成るものとで構成され、前
記軸受ハウジングの熱膨張率が前記裏金、ボルトおよび
回転軸の各熱膨張率よりも大きい請求項3記載の軸受装
置。
(4) A bearing housing that engages two halves using bolts, and a half-split type or rolled bush that is inserted with a predetermined tightness between the rotating shaft, which is a supported body, and the bearing housing. type plain bearing, which is composed of a laminate of a bearing layer and a backing metal supporting the bearing layer, and the coefficient of thermal expansion of the bearing housing is larger than each of the coefficients of thermal expansion of the backing metal, the bolt, and the rotating shaft. The bearing device according to claim 3.
(5)前記裏金がオーステナイト系ステンレス鋼から成
る請求項1ないし4のいずれかに記載された軸受装置。
(5) The bearing device according to any one of claims 1 to 4, wherein the back metal is made of austenitic stainless steel.
(6)前記軸受層がオーステナイト系ステンレス鋼に比
して熱膨張率の大きな合金材料から成る請求項5記載の
軸受装置。
(6) The bearing device according to claim 5, wherein the bearing layer is made of an alloy material having a larger coefficient of thermal expansion than austenitic stainless steel.
(7)前記裏金を冷間圧延によって実質的に薄肉化した
請求項5記載の軸受装置。
(7) The bearing device according to claim 5, wherein the back metal is substantially thinned by cold rolling.
JP63328295A 1987-12-26 1988-12-26 Bearing device Pending JPH01303314A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63328295A JPH01303314A (en) 1987-12-26 1988-12-26 Bearing device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP62-330897 1987-12-26
JP33089787 1987-12-26
JP63-6665 1988-01-25
JP63328295A JPH01303314A (en) 1987-12-26 1988-12-26 Bearing device

Publications (1)

Publication Number Publication Date
JPH01303314A true JPH01303314A (en) 1989-12-07

Family

ID=26572816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63328295A Pending JPH01303314A (en) 1987-12-26 1988-12-26 Bearing device

Country Status (1)

Country Link
JP (1) JPH01303314A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0633932A (en) * 1992-07-14 1994-02-08 Mitsubishi Motors Corp Crankshaft thrust bearing metal structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0633932A (en) * 1992-07-14 1994-02-08 Mitsubishi Motors Corp Crankshaft thrust bearing metal structure

Similar Documents

Publication Publication Date Title
KR960014639B1 (en) Bearing device
JPH03177598A (en) Plain bearing
US4231623A (en) Steel connecting rod bearing liner for internal combustion engines
JPH01303314A (en) Bearing device
JP2003074704A (en) Combination oil ring
JPH06155287A (en) Manufacture of high fatigue strength aluminum alloy connecting rod
JPH01268843A (en) Engine crankshaft bearing
JPS6086213A (en) Manufacture of crank shaft for internal-combustion engine
JPH0468486B2 (en)
JPH05256320A (en) Sliding bearing
JP5169301B2 (en) Crankshaft and manufacturing method thereof
JPS61284550A (en) High strength cast steel for crankshaft
JPH06145912A (en) Piston ring material
JPH11333520A (en) Method for straightening bend of crankshaft
JPH02180308A (en) Cast crank shaft for internal combustion engine
JPH04191327A (en) Manufacture of cast crank shaft
JP2003278756A (en) Sliding bearing
JPH0130913B2 (en)
JPS61282663A (en) Hollow cam shaft
JPH0648176Y2 (en) Crankshaft bearing device for internal combustion engine
JPH0235047Y2 (en)
JPH10204678A (en) Sliding member and its production
JPS59124570A (en) Processing method for connecting rod bearings
JP2004243373A (en) Manufacturing method of crankshaft
EP0927839A2 (en) Combined oil ring and manufacturing method thereof