JPH01298037A - Production of na-conversion optical fiber - Google Patents
Production of na-conversion optical fiberInfo
- Publication number
- JPH01298037A JPH01298037A JP63126925A JP12692588A JPH01298037A JP H01298037 A JPH01298037 A JP H01298037A JP 63126925 A JP63126925 A JP 63126925A JP 12692588 A JP12692588 A JP 12692588A JP H01298037 A JPH01298037 A JP H01298037A
- Authority
- JP
- Japan
- Prior art keywords
- core
- glass
- optical fiber
- preform
- refractive index
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000013307 optical fiber Substances 0.000 title claims abstract description 12
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 6
- 238000004519 manufacturing process Methods 0.000 title claims description 4
- 239000011521 glass Substances 0.000 claims abstract description 22
- 238000005253 cladding Methods 0.000 claims description 11
- 238000000034 method Methods 0.000 claims description 6
- 239000011162 core material Substances 0.000 description 22
- 239000000835 fiber Substances 0.000 description 15
- 239000011347 resin Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 239000002019 doping agent Substances 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000005373 porous glass Substances 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 1
- 229910006113 GeCl4 Inorganic materials 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000005297 pyrex Substances 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- IEXRMSFAVATTJX-UHFFFAOYSA-N tetrachlorogermane Chemical compound Cl[Ge](Cl)(Cl)Cl IEXRMSFAVATTJX-UHFFFAOYSA-N 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/02—Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
- C03B37/025—Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
- C03B37/0253—Controlling or regulating
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2201/00—Type of glass produced
- C03B2201/06—Doped silica-based glasses
- C03B2201/30—Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
- C03B2201/31—Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with germanium
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2203/00—Fibre product details, e.g. structure, shape
- C03B2203/10—Internal structure or shape details
- C03B2203/18—Axial perturbations, e.g. in refractive index or composition
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2205/00—Fibre drawing or extruding details
- C03B2205/40—Monitoring or regulating the draw tension or draw rate
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2205/00—Fibre drawing or extruding details
- C03B2205/60—Optical fibre draw furnaces
- C03B2205/72—Controlling or measuring the draw furnace temperature
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Manufacture, Treatment Of Glass Fibers (AREA)
- Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
この発明は、コアの屈折率が長さ方向に変化してなるN
A変換型の光ファイバの製造方法に関するもので、異N
Aの光部品や光導波路およびファイバとの結合用として
好適な長さ数百cm程度のものを提供する。Detailed Description of the Invention (Industrial Field of Application) This invention is based on
Concerning the manufacturing method of A conversion type optical fiber, different N
A length of approximately several hundred cm is provided, which is suitable for coupling with the optical components of A, optical waveguides, and fibers.
(従来の技術)
この種の光ファイバの製法としては、主原料ガスとして
の5iC14とドーパントガスとしてのGeC1nとを
酸水素炎内に供給して火炎加水分解させてGeをドーパ
ントとして含むSiO□ガラス微粒子を生成させて、こ
れを棒状ロッドの先端に多孔質ガラスプリフォームとし
て堆積させる際に、所定時間毎にドーパントガスとして
のGeCl4の量を変えることにより長さ方向に屈折率
が変化する多孔質ガラスプリフォームとなし、このプリ
フォームを透明ガラス化した後線引きして長さ方向に屈
折率が変化するNA変換型ファイバとしていた。(Prior art) As a manufacturing method for this type of optical fiber, 5iC14 as a main raw material gas and GeC1n as a dopant gas are supplied into an oxyhydrogen flame and flame hydrolyzed to produce SiO□ glass containing Ge as a dopant. Porous glass whose refractive index changes in the length direction by changing the amount of GeCl4 as a dopant gas at predetermined intervals when fine particles are generated and deposited as a porous glass preform at the tip of a rod. A glass preform was made, and this preform was made into transparent glass and then drawn to obtain an NA conversion type fiber whose refractive index changes in the length direction.
(発明が解決しようとする課題)
しかしこのような方法では、NAの変化はプリフォーム
段階であって、その後線引きしてファイバ化してしまう
と屈折率差を長さ方向で0.3〜1%変化させるために
は10 km位の長さが必要であり、短いものを得るこ
とができなかった。(Problem to be solved by the invention) However, in such a method, the NA changes at the preform stage, and when the fiber is drawn after that, the refractive index difference in the length direction is 0.3 to 1%. In order to change the length, a length of about 10 km was required, and it was not possible to obtain a shorter length.
〔課題を解決するための手段)
この発明は、以上の観点からコア用ガラスの外側にそれ
よりも低い軟化温度のクラッド用ガラスが形成されてな
る光ファイバ用プリフォームを用意し、これを線引き張
力を所定周期で変えつつ線引きするようにしたものであ
る。線引き張力な変える手段としては、具体的には例え
ば線引き速度一定の下に線引き温度を変えることがあげ
られる。[Means for Solving the Problems] In view of the above, the present invention provides an optical fiber preform in which a cladding glass having a softening temperature lower than that of the core glass is formed on the outside of the core glass, and this is drawn. The wire is drawn while changing the tension at a predetermined period. Specifically, as a means for changing the drawing tension, for example, changing the drawing temperature while keeping the drawing speed constant is mentioned.
(作用)
一般に媒質の屈折率は応力によって変化するものであり
、コアの軟化温度に比べてクラッドのそれをかなり低く
なるような組成にし、かつ線引き温度をコアの軟化温度
と等しいかその前後の温度′ にして線引きすると、タ
ララドガラスは完全に軟化しているので張力は全てコア
にかかることになる。そしてコアに応力が加わったまま
でクラッドが冷却するとコアの応力が残留する。その結
果コアは引張られた状態のままであるのでその屈折率は
下がる。線引き温度がコアとクラッドの双方の軟化温度
よりも高い場合にはコアにも応力はかからないので屈折
率は変わらない、かくしてコアに応力がかかり、クラッ
ドに応力がかからない温度で線引きしてやればコアの屈
折率が長さ方法に変化するファイバが得られる。(Function) Generally, the refractive index of the medium changes depending on stress, so the composition of the cladding is made to be considerably lower than the softening temperature of the core, and the drawing temperature is set to be equal to or around the softening temperature of the core. When drawn at a temperature of '', Talarad glass is completely softened and all the tension is applied to the core. If the cladding cools while stress is still applied to the core, the stress in the core remains. As a result, the core remains in tension and its refractive index decreases. If the drawing temperature is higher than the softening temperature of both the core and cladding, no stress will be applied to the core, so the refractive index will not change.Thus, if the drawing is done at a temperature where no stress is applied to the core and no stress is applied to the cladding, the refraction of the core will change. A fiber is obtained whose modulus varies along the length.
因みにコア材が純粋シリカ、クラツド材がFドープシリ
カ(△=0,7%)からなるプリフォームを用意し、そ
の線引き温度とコア/クラッドの比屈折率差△の関係を
調べたところ第3図に示すグラフのごと(であった。こ
のグラフから明らかなように線引き温度が高まるにつれ
てコア/クラッドの比屈折率差は大きくなり、100℃
の変化に対し△が0.2%変化していることがわかる。By the way, we prepared a preform whose core material was pure silica and whose cladding material was F-doped silica (Δ=0.7%), and investigated the relationship between the drawing temperature and the relative refractive index difference Δ between the core and cladding, as shown in Figure 3. As shown in the graph shown in ().As is clear from this graph, as the drawing temperature increases, the relative refractive index difference between the core and cladding increases, and at 100℃
It can be seen that Δ changes by 0.2% with respect to the change in .
(実施例)
第1図は、この発明方法に用いられる装置の概略図であ
る。図においてlは回転かつ上下動自在に支承されたコ
ア、クラッド型の光ファイバ用プリフォームで、コアの
軟化温度の方がクラッドのそれよりも高くなされている
。2はこのプリフォーム1の下端を照射してプリフォー
ムをファイバ化するための熱源で、CO□レーザ3、C
02レーザ3の光パワーを制御するためのAO変換器4
、コリメータレンズ5.フォーカシングレンズ6からな
っている67はプリフォームlをファイバ10(こ線引
きするためのキャプスタン、8はファイバIOを被覆す
るための熱硬化型樹脂やへ紫外線硬化型樹脂が入れられ
たポット、9はファイバ10上に被覆された樹脂を硬化
させるための装置で抵抗加熱炉や紫外線ランプ等からな
る。なお11はファイバ10を巻きとるためのボビンで
ある。以上の構成において、プリフォームlとしてVA
D法で作成したGeO□ドープ石英ロッド(Δ=1.口
%)にパイレックスガラスをジャケットして、コア用ロ
ッド径1 ++on、クラッド用外径12.5 mmと
したプリフォームIの下端にCO2レーザ3を照射して
キャプスタン7により線引き速度 1m/分で引きとり
ボビン8に巻きとった。その際変換器4を動作させて線
引き温度をlO分周期で2200〜1900℃(線引き
張力に換算するとlO分周期で1g〜20g)まで変化
させた。なおボット8には紫外線硬化型樹脂を入れ、硬
化装置9には紫外線ランプを用いた。かくして得られた
ファイバは、コア径l口μm、クラツド径125 μ
m、被覆厚37.5μm、長さ方向の屈折率変化が第2
図に示すように10m周期で0.3〜1.0%変化した
ものであった。このファイバを10m毎に切断し、半導
体レーザ用のピッグテールとして用いたところ結合効率
が約55%であり優れたものであった。(Example) FIG. 1 is a schematic diagram of an apparatus used in the method of this invention. In the figure, l is a core-clad optical fiber preform supported rotatably and vertically, and the softening temperature of the core is higher than that of the clad. 2 is a heat source for irradiating the lower end of the preform 1 to make the preform into a fiber; CO□ laser 3;
02 AO converter 4 for controlling the optical power of the laser 3
, collimator lens5. 67, which consists of the focusing lens 6, is a capstan for drawing the preform l into the fiber 10; 8 is a thermosetting resin for coating the fiber IO; a pot containing an ultraviolet curable resin; 9 11 is a device for curing the resin coated on the fiber 10 and includes a resistance heating furnace, an ultraviolet lamp, etc. 11 is a bobbin for winding the fiber 10. In the above configuration, the preform 1 is VA
A GeO□ doped quartz rod (Δ=1.%) made by method D was jacketed with Pyrex glass, and CO2 was placed at the lower end of preform I with a core rod diameter of 1 ++on and a cladding outer diameter of 12.5 mm. The wire was irradiated with a laser 3, and drawn by a capstan 7 at a drawing speed of 1 m/min, and wound onto a bobbin 8. At that time, the converter 4 was operated to change the drawing temperature from 2200 to 1900° C. in 10 minutes (converted to drawing tension, 1 g to 20 g in 10 minutes). Note that the bot 8 contained an ultraviolet curing resin, and the curing device 9 used an ultraviolet lamp. The fiber thus obtained had a core diameter of 1 μm and a cladding diameter of 125 μm.
m, coating thickness 37.5 μm, refractive index change in length direction is second
As shown in the figure, it changed by 0.3 to 1.0% in a 10 m period. When this fiber was cut into sections of 10 m and used as a pigtail for a semiconductor laser, the coupling efficiency was approximately 55%, which was excellent.
(効果)
・ この発明は、以上のようにコア用ガラスロッドの上
にこのコアの軟化温度よりも低い軟化温度のクラツデイ
ング用ガラス層を設けたプリフォームを線引き張力を変
えつつファイバ化するものであるから、コアに応力が加
わった状態のままのものを得ることができ、以ってコア
の屈折率が長さ方向に周期的に変化するファイバを得る
ことができる。(Effects) - As described above, in this invention, a preform in which a glass layer for crazing having a softening temperature lower than that of the core is provided on a glass rod for a core is made into a fiber while changing the drawing tension. Because of this, it is possible to obtain a fiber in which the core remains under stress, and thus a fiber in which the refractive index of the core changes periodically in the length direction can be obtained.
第1図は、この発明方法に用いられる装置の概略図、第
2図は、この発明方法によって得られるファイバの長さ
方向における比屈折率差を示すグラフ、第3図は、線引
き温度に対する比屈折率差を示すグラフである。
図において、1:光ファイバプリフォーム、3:CO□
レーザ、4:AO変換器。
第1図
第2図
木
長さ
醜3図
線引き温度 (°C)Figure 1 is a schematic diagram of the apparatus used in the method of this invention, Figure 2 is a graph showing the relative refractive index difference in the longitudinal direction of the fiber obtained by the method of this invention, and Figure 3 is the ratio to drawing temperature. It is a graph showing a refractive index difference. In the figure, 1: optical fiber preform, 3: CO□
Laser, 4: AO converter. Fig. 1 Fig. 2 Tree length Ugly Fig. 3 Drawing line Temperature (°C)
Claims (1)
ド用ガラスが形成されてなる光ファイバ用プリフォーム
を、線引き張力を所定周期で変えつつ線引きすることを
特徴とするNA変換光ファイバの製造方法。A method for manufacturing a NA conversion optical fiber, comprising drawing an optical fiber preform in which a cladding glass having a softening temperature lower than that of the core glass is formed on the outside of the core glass, while changing the drawing tension at a predetermined period. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63126925A JP2556350B2 (en) | 1988-05-26 | 1988-05-26 | Method for manufacturing NA conversion optical fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63126925A JP2556350B2 (en) | 1988-05-26 | 1988-05-26 | Method for manufacturing NA conversion optical fiber |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01298037A true JPH01298037A (en) | 1989-12-01 |
JP2556350B2 JP2556350B2 (en) | 1996-11-20 |
Family
ID=14947295
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63126925A Expired - Lifetime JP2556350B2 (en) | 1988-05-26 | 1988-05-26 | Method for manufacturing NA conversion optical fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2556350B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1993002018A1 (en) * | 1991-07-15 | 1993-02-04 | The University Of Sydney | Light transmitting device having regions of differing refractive index |
WO1995030926A1 (en) * | 1994-05-06 | 1995-11-16 | The University Of Sydney | Variable property light transmitting device |
EP0839770A1 (en) * | 1996-10-30 | 1998-05-06 | Lucent Technologies Inc. | Method for making Ge-doped optical fibres having reduced brillouin scattering |
WO2001023924A1 (en) * | 1999-09-27 | 2001-04-05 | Sumitomo Electric Industries, Ltd. | Distribution management optical fiber, its manufacturing method, optical communication system employing the optical fiber and optical fiber base material |
JP2003337232A (en) * | 2002-05-17 | 2003-11-28 | Fuji Photo Film Co Ltd | Optical transmitter and method and device for manufacturing the same |
KR100438348B1 (en) * | 2001-12-28 | 2004-07-02 | 주식회사 머큐리 | Optical fiber having different refractive index directed to the length and to be fitted manufacturing method |
-
1988
- 1988-05-26 JP JP63126925A patent/JP2556350B2/en not_active Expired - Lifetime
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1993002018A1 (en) * | 1991-07-15 | 1993-02-04 | The University Of Sydney | Light transmitting device having regions of differing refractive index |
WO1995030926A1 (en) * | 1994-05-06 | 1995-11-16 | The University Of Sydney | Variable property light transmitting device |
EP0839770A1 (en) * | 1996-10-30 | 1998-05-06 | Lucent Technologies Inc. | Method for making Ge-doped optical fibres having reduced brillouin scattering |
WO2001023924A1 (en) * | 1999-09-27 | 2001-04-05 | Sumitomo Electric Industries, Ltd. | Distribution management optical fiber, its manufacturing method, optical communication system employing the optical fiber and optical fiber base material |
US6535677B1 (en) | 1999-09-27 | 2003-03-18 | Sumitomo Electric Industries, Ltd. | Dispersion-managed optical fiber, method of manufacturing the same, optical communication system including the same and optical fiber preform therefor |
KR100438348B1 (en) * | 2001-12-28 | 2004-07-02 | 주식회사 머큐리 | Optical fiber having different refractive index directed to the length and to be fitted manufacturing method |
JP2003337232A (en) * | 2002-05-17 | 2003-11-28 | Fuji Photo Film Co Ltd | Optical transmitter and method and device for manufacturing the same |
Also Published As
Publication number | Publication date |
---|---|
JP2556350B2 (en) | 1996-11-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6075625A (en) | Photoinduced grating in B2 O3 containing glass | |
US5647040A (en) | Tunable optical coupler using photosensitive glass | |
KR970028622A (en) | Single-Mode Optical Waveguide Fibers and Manufacturing Method Thereof | |
JPH03182704A (en) | Passive optical part and manufacture thereof | |
JPH0447285B2 (en) | ||
US4327965A (en) | Single mode fibre and method of manufacture | |
JPS5920613B2 (en) | Method of manufacturing single mode optical fiber preform | |
US6542690B1 (en) | Chalcogenide doping of oxide glasses | |
JP3393120B2 (en) | Optical fiber for ultraviolet light transmission and method of manufacturing the same | |
JPWO2005049516A1 (en) | Optical fiber bare wire drawing method, optical fiber strand manufacturing method, optical fiber strand | |
JP2556350B2 (en) | Method for manufacturing NA conversion optical fiber | |
CN101097273A (en) | Macrobending Insensitive Optical Fiber | |
WO2000068718A1 (en) | Chalcogenide doping of oxide glasses | |
JPH0310204A (en) | Nonlinear optical fiber and its manufacture | |
JP4389409B2 (en) | Optical fiber manufacturing method | |
JPH0656457A (en) | Production of fiber for transmitting ultraviolet light | |
JPH01222206A (en) | Production of functional optical fiber | |
JPH02275732A (en) | As-s glass fiber having core clad structure | |
JPH0316930A (en) | Production of optical fiber having complicate refractive index distribution | |
JPH04342427A (en) | Production of high-level oh group-containing silica glass | |
JPH0240003B2 (en) | TANITSUMOODO * HIKARIFUAIBAYOBOZAINOSEIZOHOHO | |
JPH0791087B2 (en) | Ge-As-S glass fiber having core-clad structure | |
JPH02145448A (en) | Production of preform of optical fiber | |
JPH01215738A (en) | Production of optical glass fiber having core-clad structure | |
JPH02192433A (en) | Chalcogenide glass fiber having core-clad structure |