JP3393120B2 - Optical fiber for ultraviolet light transmission and method of manufacturing the same - Google Patents
Optical fiber for ultraviolet light transmission and method of manufacturing the sameInfo
- Publication number
- JP3393120B2 JP3393120B2 JP2001007111A JP2001007111A JP3393120B2 JP 3393120 B2 JP3393120 B2 JP 3393120B2 JP 2001007111 A JP2001007111 A JP 2001007111A JP 2001007111 A JP2001007111 A JP 2001007111A JP 3393120 B2 JP3393120 B2 JP 3393120B2
- Authority
- JP
- Japan
- Prior art keywords
- ultraviolet light
- optical fiber
- light transmission
- clad
- silica glass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000013307 optical fiber Substances 0.000 description 68
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 38
- 230000005540 biological transmission Effects 0.000 description 36
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 25
- 229910052731 fluorine Inorganic materials 0.000 description 25
- 239000011737 fluorine Substances 0.000 description 25
- 238000002834 transmittance Methods 0.000 description 25
- 238000000034 method Methods 0.000 description 22
- 229910052739 hydrogen Inorganic materials 0.000 description 21
- 239000001257 hydrogen Substances 0.000 description 21
- 238000004519 manufacturing process Methods 0.000 description 21
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 20
- 239000011347 resin Substances 0.000 description 19
- 229920005989 resin Polymers 0.000 description 19
- 239000011241 protective layer Substances 0.000 description 15
- 238000011282 treatment Methods 0.000 description 15
- 239000010410 layer Substances 0.000 description 12
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 11
- 229910052796 boron Inorganic materials 0.000 description 11
- 230000006866 deterioration Effects 0.000 description 11
- 239000011253 protective coating Substances 0.000 description 10
- 239000010453 quartz Substances 0.000 description 7
- 238000004132 cross linking Methods 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 6
- 238000005253 cladding Methods 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 5
- 238000009987 spinning Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 238000004140 cleaning Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000007062 hydrolysis Effects 0.000 description 3
- 238000006460 hydrolysis reaction Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 238000004804 winding Methods 0.000 description 3
- 239000004925 Acrylic resin Substances 0.000 description 2
- 239000004677 Nylon Substances 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 2
- 229920002313 fluoropolymer Polymers 0.000 description 2
- 239000004811 fluoropolymer Substances 0.000 description 2
- 238000005470 impregnation Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 229920001778 nylon Polymers 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 239000009719 polyimide resin Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 229920002050 silicone resin Polymers 0.000 description 2
- 239000004071 soot Substances 0.000 description 2
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 2
- 238000004017 vitrification Methods 0.000 description 2
- YZCKVEUIGOORGS-OUBTZVSYSA-N Deuterium Chemical compound [2H] YZCKVEUIGOORGS-OUBTZVSYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 125000002723 alicyclic group Chemical group 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052805 deuterium Inorganic materials 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000007496 glass forming Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- -1 perfluoro Chemical group 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 238000009281 ultraviolet germicidal irradiation Methods 0.000 description 1
Landscapes
- Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
- Manufacture, Treatment Of Glass Fibers (AREA)
- Glass Compositions (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は、紫外光、特に、3
00nm以下の波長の紫外光を伝送させる紫外光伝送用
光ファイバー及びその製造方法に関する。TECHNICAL FIELD The present invention relates to ultraviolet light, especially 3
The present invention relates to an optical fiber for ultraviolet light transmission that transmits ultraviolet light having a wavelength of 00 nm or less, and a method for manufacturing the same.
【0002】[0002]
【従来の技術】従来から、光ファイバーは情報通信等に
使用される他、医療機器の分野、半導体製造装置等に使
用されており、半導体製造工程のリソグラフィーにおい
て使用されるエキシマレーザーにも採用されている。2. Description of the Related Art Conventionally, optical fibers have been used in information communication and the like, as well as in the field of medical equipment, semiconductor manufacturing equipment, etc., and also used in excimer lasers used in lithography in the semiconductor manufacturing process. There is.
【0003】光ファイバーは、シリカガラス等で形成さ
れ、屈折率の高いコアの外周に屈折率の低いクラッドを
設けたものであり、コアには屈折率を高めるため、ゲル
マニウム、リン等がドープされ、クラッドには屈折率を
低くするため、ホウ素や、フッ素等がドープされてい
る。An optical fiber is made of silica glass or the like and has a clad having a low refractive index provided on the outer periphery of a core having a high refractive index. The core is doped with germanium, phosphorus or the like to increase the refractive index. The clad is doped with boron, fluorine or the like in order to lower the refractive index.
【0004】一方、エキシマレーザー、例えば、ArF
レーザー、KrFレーザーは193nm、248nmの
高エネルギーの紫外光を発光する。これらの高エネルギ
ーの紫外光、200〜300nmの所謂、深紫外光、あ
るいは200nm以下の所謂、真空紫外光は、空気中を
伝播させると、H2OやO2の存在により吸収されるた
め、損失が大きく伝送が不可能であった。このため、真
空中または、不活性ガスを充填した光路を確保する必要
から、エキシマレーザーを用いた露光装置は大掛かりな
装置となっていた。このようなエキシマレーザーを用い
た露光装置の小型化を図るため、取り扱いが容易となる
光ファイバーの適用の要請があった。On the other hand, an excimer laser such as ArF is used.
Lasers and KrF lasers emit high-energy ultraviolet light of 193 nm and 248 nm. These high-energy ultraviolet light, so-called deep ultraviolet light of 200 to 300 nm, or so-called vacuum ultraviolet light of 200 nm or less is absorbed by the presence of H 2 O and O 2 when propagating in air, The loss was so great that transmission was impossible. For this reason, since it is necessary to secure an optical path in vacuum or filled with an inert gas, an exposure apparatus using an excimer laser has become a large-scale apparatus. In order to downsize an exposure apparatus using such an excimer laser, there has been a demand for application of an optical fiber that is easy to handle.
【0005】また、深紫外光、真空紫外光を利用したも
のとしてエキシマランプがあった。エキシマランプ、例
えば、Xe2ランプ、KrClランプ、XeClランプ
はそれぞれ172nm、222nm、308nmの深紫
外光、真空紫外光を発光する。このようなエキシマラン
プは半導体ウェハや液晶用ディスプレイガラスの表面に
付着した汚れを紫外光照射により光学的に分解、除去す
る表面洗浄装置に使用されているが、エキシマランプを
用いた表面洗浄装置においても、露光装置におけると同
様の理由により小型化を図り、取り扱いを容易とする光
ファイバーの適用の要請があった。Further, there is an excimer lamp that utilizes deep ultraviolet light and vacuum ultraviolet light. Excimer lamps such as Xe 2 lamps, KrCl lamps, and XeCl lamps emit deep ultraviolet light and vacuum ultraviolet light of 172 nm, 222 nm, and 308 nm, respectively. Such an excimer lamp is used in a surface cleaning device that optically decomposes and removes dirt adhering to the surface of a semiconductor wafer or liquid crystal display glass by irradiating with ultraviolet light. However, for the same reason as in the exposure apparatus, there has been a demand for application of an optical fiber that is downsized and is easy to handle.
【0006】[0006]
【発明が解決しようとする課題】しかしながら、光ファ
イバーは、図7に示すように、伝送する深紫外光、真空
紫外光の波長により透過率が変化するものであるが、従
来の光ファイバーにおいては、紫外光の照射により劣化
が生じていた。紫外光の伝送による光ファイバーの劣化
は、図8に示すように、口径200μmのコアを有する
長さ1mのシリカガラスを重水素ランプ(波長214n
m)で照射したときの経時に伴う透過率T6の低減とい
う現象となって現れていた。このため、水素処理を施
し、透過特性の劣化を防止したものもあったが、透過率
T5に示すように低減は回避できなかった。従って、紫
外光の伝送に光ファイバーを適用した場合、透過による
劣化が著しく、使用に耐えるものではなかった。However, as shown in FIG. 7, the optical fiber has a transmittance that changes depending on the wavelength of deep ultraviolet light or vacuum ultraviolet light to be transmitted. Deterioration occurred due to light irradiation. As shown in FIG. 8, deterioration of an optical fiber due to transmission of ultraviolet light is caused by using a 1 m long silica glass having a core of 200 μm in diameter and a deuterium lamp (wavelength: 214 n).
The phenomenon that the transmittance T6 decreases with the lapse of time when irradiated with m) appears. For this reason, some hydrogen treatments have been performed to prevent deterioration of the transmission characteristics, but the reduction cannot be avoided as shown by the transmittance T5. Therefore, when the optical fiber is applied to the transmission of the ultraviolet light, the deterioration due to the transmission is remarkable and the optical fiber cannot be used.
【0007】本発明は上記欠点を解消するためになされ
たものであって、本発明の目的は、深紫外光、真空紫外
光等の紫外光に対して高い透過率を有し、また、紫外光
の照射による劣化が少ない紫外光伝送用光ファイバー及
びその製造方法を提供するものである。The present invention has been made to solve the above-mentioned drawbacks, and an object of the present invention is to have a high transmittance for ultraviolet light such as deep ultraviolet light, vacuum ultraviolet light, and the like. Provided is an optical fiber for ultraviolet light transmission, which is less deteriorated by irradiation with light, and a method for manufacturing the same.
【0008】[0008]
【発明を解決するための手段】上記目的を達成するた
め、本発明の紫外光伝送用光ファイバーは、フッ素の含
有量が100から1000ppm、OH基の含有量が4
から7ppmでかつ水素を含浸したシリカガラスからな
るコアを有するものである。To achieve the above object, the optical fiber for ultraviolet light transmission of the present invention has a fluorine content of 100 to 1000 ppm and an OH group content of 4.
To 7 ppm and having a core made of silica glass impregnated with hydrogen .
【0009】本発明の紫外光伝送用光ファイバーは、フ
ッ素の含有量が1000から7000ppmであるシリ
カガラス、またはホウ素の含有量が2000ppmから
10000ppmであるシリカガラスからなるクラッド
を有するものである。The optical fiber for ultraviolet light transmission of the present invention has a clad made of silica glass having a fluorine content of 1000 to 7000 ppm or silica glass having a boron content of 2000 ppm to 10000 ppm.
【0010】また、本発明の紫外光伝送用光ファイバー
は、紫外線透過樹脂からなるクラッドを有するものであ
る。Further, the optical fiber for ultraviolet light transmission of the present invention has a clad made of an ultraviolet light transmitting resin.
【0011】また、本発明の紫外光伝送用光ファイバー
は、光軸に平行な複数の中空孔を備えたクラッドを有す
るものである。Further, the optical fiber for ultraviolet light transmission of the present invention has a clad having a plurality of hollow holes parallel to the optical axis.
【0012】更に、本発明の紫外光伝送用光ファイバー
は、クラッドの外周に保護被覆層を設けたものである。Further, the optical fiber for ultraviolet light transmission of the present invention has a protective coating layer provided on the outer periphery of the clad.
【0013】本発明の紫外光伝送用光ファイバーの製造
方法は、フッ素の含有量が100から1000ppm、
OH基の含有量が4から7ppmであるシリカガラスか
らなるコアを有する光ファイバーを紡糸後、水素の含浸
処理を行うものである。The method for producing an optical fiber for transmitting ultraviolet light according to the present invention has a fluorine content of 100 to 1000 ppm ,
An optical fiber having a core made of silica glass having an OH group content of 4 to 7 ppm is spun and then impregnated with hydrogen.
【0014】また、本発明の紫外光伝送用光ファイバー
の製造方法は、中心に1の中空孔を有する細管をコアの
周囲に配列させた後外周を被覆して一体化し、紡糸した
後、水素の含浸処理を行うものである。Further, in the method for producing an optical fiber for ultraviolet light transmission of the present invention, thin tubes having one hollow hole in the center are arranged around the core, and then the outer circumference is covered and integrated, and spinning is carried out, followed by hydrogenation. Impregnation treatment is performed.
【0015】また、本発明の紫外光伝送用光ファイバー
の製造方法は、紡糸時にクラッドの外周に保護層を被覆
するものである。In the method for producing an optical fiber for ultraviolet light transmission of the present invention, the outer circumference of the clad is coated with a protective layer during spinning.
【0016】更に、本発明の紫外光伝送用光ファイバー
の製造方法は、水素の含浸処理をした後保護被覆層を形
成するものである。Furthermore, the method for producing an optical fiber for ultraviolet light transmission of the present invention comprises forming a protective coating layer after impregnating with hydrogen.
【0017】本願発明の紫外光伝送用光ファイバー及び
その製造方法によれば、コアに所定量のフッ素及びOH
基を含有させたシリカガラスを用い、クラッドに所定量
のフッ素またはホウ素を含有させたシリカガラス、また
は、紫外線透過樹脂を用い、あるいは中空孔を有するも
のとしたため、紫外光に対し高い透過率を有し、また、
紫外光の照射による劣化を防止することができる。ま
た、紡糸後水素の含浸処理をすることにより、特に、紫
外光の照射による劣化に対する防止効果を高めることが
でき、深紫外光、真空紫外光の伝送に適用することがで
きる。このため、紫外光を使用するエキシマレーザー、
エキシマランプ等に好適に使用することができ、エキシ
マレーザー露光装置、エキシマランプ表面洗浄装置等の
小型化を図ることができる。According to the optical fiber for ultraviolet light transmission and the method of manufacturing the same of the present invention, a predetermined amount of fluorine and OH are added to the core.
Using silica glass containing a group , silica glass containing a predetermined amount of fluorine or boron in the clad, or using an ultraviolet-transparent resin, or because it has a hollow hole, a high transmittance for ultraviolet light Have and also
It is possible to prevent deterioration due to irradiation with ultraviolet light. Further, by impregnating with hydrogen after spinning, the effect of preventing deterioration due to irradiation with ultraviolet light can be particularly enhanced, and it can be applied to transmission of deep ultraviolet light and vacuum ultraviolet light. For this reason, excimer lasers that use ultraviolet light,
It can be suitably used for excimer lamps and the like, and the excimer laser exposure device, the excimer lamp surface cleaning device, and the like can be downsized.
【0018】[0018]
【発明の実施の形態】本発明の紫外光伝送用光ファイバ
ー及びその製造方法を適用した好ましい実施の形態につ
いて図面を参照して説明する。BEST MODE FOR CARRYING OUT THE INVENTION Preferred embodiments to which the optical fiber for ultraviolet light transmission of the present invention and the manufacturing method thereof are applied will be described with reference to the drawings.
【0019】本発明の紫外光伝送用光ファイバーは、図
1(a)、(b)、(c)に示すように、コア1a、1
b、1cとしてフッ素含有量が100から1000pp
mであるシリカガラスから構成される。The optical fiber for ultraviolet light transmission of the present invention has cores 1a, 1 as shown in FIGS. 1 (a), 1 (b) and 1 (c).
b and 1c have a fluorine content of 100 to 1000 pp
m is silica glass.
【0020】フッ素は屈折率を低減させるものとして従
来はクラッドにドープされていたものであるが、フッ素
をコアを形成するシリカガラスに100から1000p
pm含有させることにより、光ファイバー中を伝送させ
る紫外光の透過率を高くすることができる。フッ素のシ
リガガラスに対する含有量が100ppm未満である
と、光ファイバー中を伝送される紫外光の透過率が低減
され、また、クラッドに含有されるフッ素の含有量との
関係により、フッ素のシリガガラスに対する含有量が1
000ppm以下であることが好ましい。Fluorine was conventionally doped in the clad to reduce the refractive index, but 100 to 1000 p of fluorine is added to the silica glass forming the core.
By containing pm, the transmittance of ultraviolet light transmitted through the optical fiber can be increased. When the content of fluorine with respect to the silica glass is less than 100 ppm, the transmittance of the ultraviolet light transmitted through the optical fiber is reduced, and the content of fluorine with respect to the silica glass is reduced due to the relationship with the content of fluorine contained in the clad. Is 1
It is preferably 000 ppm or less.
【0021】また、本発明の紫外光伝送用光ファイバー
に用いられるファイバーコアとしてフッ素含有量が、1
00から1000ppmであるシリカガラスは、OH基
を4から7ppmの範囲で含有することが、紫外光照射
に起因する光ファイバーの劣化を防止することができる
ので好ましい。OH基のシリガガラスに対する含有量が
4ppm未満であると、光ファイバー中を伝送される紫
外光の透過率の低減を防止することができず、また、7
ppmを超えると同様に透過率の低減が生じることとな
る。The fiber core used in the optical fiber for ultraviolet light transmission of the present invention has a fluorine content of 1
Silica glass having a concentration of 00 to 1000 ppm preferably contains an OH group in a range of 4 to 7 ppm because deterioration of the optical fiber due to irradiation with ultraviolet light can be prevented. If the content of OH groups with respect to the silica glass is less than 4 ppm, it is not possible to prevent the reduction of the transmittance of the ultraviolet light transmitted through the optical fiber, and 7
When it exceeds ppm, the transmittance is similarly reduced.
【0022】また、紫外光伝送用光ファイバーは、図1
(a)に示すように、クラッド2aとしてフッ素含有量
が1000から7000ppmであるシリカガラスまた
は、ホウ素含有量が2000から10000ppmであ
るシリカガラスから構成される。The optical fiber for ultraviolet light transmission is shown in FIG.
As shown in (a), the cladding 2a is made of silica glass having a fluorine content of 1000 to 7000 ppm or silica glass having a boron content of 2000 to 10000 ppm.
【0023】フッ素、またはホウ素の所定量をシリカガ
ラスに含有させることにより、光ファイバー中を伝送さ
れる光の透過率の低下を防止することができる。フッ素
のシリガガラスに対する含有量を1000以上とするの
は、コアに含有されるフッ素の含有量との関係によるも
のであり、また、7000ppm以下とするのは、フッ
素のシリカガラスに対する飽和量に該当するためであ
る。By incorporating a predetermined amount of fluorine or boron into silica glass, it is possible to prevent a decrease in the transmittance of light transmitted through the optical fiber. The content of fluorine with respect to the silica glass is 1000 or more because of the relationship with the content of fluorine contained in the core, and the content of 7,000 ppm or less corresponds to the saturation amount of fluorine with respect to the silica glass. This is because.
【0024】また、ホウ素のシリカガラスに対する含有
量が2000ppm未満であると、コアの屈折率との関
係から、光ファイバー中を伝送される光の透過率の低下
を防止することが困難となり、10000ppm以下と
するのは、ホウ素のシリカガラスに対する飽和量に該当
するためである。When the content of boron in the silica glass is less than 2000 ppm, it is difficult to prevent the decrease in the transmittance of light transmitted through the optical fiber due to the relationship with the refractive index of the core, and the content is less than 10,000 ppm. This is because it corresponds to the saturated amount of boron with respect to the silica glass.
【0025】また、紫外光伝送用光ファイバーは、図1
(b)に示すように、コア1bの外周に設けられるクラ
ッド2bは紫外線透過樹脂から構成される。紫外線透過
樹脂としては、フッ素系樹脂が好ましく、更に、光透過
性の観点から、非結晶性フッ素樹脂が好ましい。結晶性
を有するフッ素樹脂は光散乱により透過率が低下するた
め、クラッドとして用いる場合には、フッ素系樹脂の結
晶化度は30%以下であることが好ましく、更に好まし
くは20%以下の非結晶性である。このようなフッ素樹
脂として、特に主鎖に脂肪族環構造を有するフッ素ポリ
マーが好適に使用される。このようなフッ素ポリマーと
して、具体的にはアモルファスパーフロロ樹脂(商品
名:サイトップ(旭硝子(株)社製))が挙げられる。The optical fiber for transmitting ultraviolet light is shown in FIG.
As shown in (b), the clad 2b provided on the outer periphery of the core 1b is made of an ultraviolet transparent resin. As the ultraviolet ray transmissive resin, a fluorocarbon resin is preferable, and further, an amorphous fluorocarbon resin is preferable from the viewpoint of light transmittance. Since the transparency of a fluororesin having crystallinity decreases due to light scattering, when used as a clad, the crystallinity of the fluororesin is preferably 30% or less, more preferably 20% or less non-crystalline. It is sex. As such a fluororesin, a fluoropolymer having an alicyclic structure in its main chain is particularly preferably used. Specific examples of such a fluoropolymer include amorphous perfluoro resin (trade name: Cytop (manufactured by Asahi Glass Co., Ltd.)).
【0026】更に、紫外光伝送用光ファイバーは、図1
(c)に示すように、コア1cの外周に設けられるクラ
ッド2cとして、光ファイバーの光軸に平行な複数の中
空孔3cを備えたものであってもよい。中空孔3cは、
その全断面積が紫外光伝送用光ファイバーの断面積に対
して10から60%程度となるように設けられ、光ファ
イバーの断面に均一に配置される。光ファイバーの断面
積に対して全中空孔3cの断面積をこの範囲となるよう
に設けることにより、中空孔3c内の空気の存在によ
り、コア1cの屈折率に対して、光の伝送を最適となる
ように屈折率を低くすることができる。Further, the optical fiber for ultraviolet light transmission is shown in FIG.
As shown in (c), the clad 2c provided on the outer periphery of the core 1c may be provided with a plurality of hollow holes 3c parallel to the optical axis of the optical fiber. The hollow hole 3c is
It is provided so that its total cross-sectional area is about 10 to 60% of the cross-sectional area of the optical fiber for transmitting ultraviolet light, and is evenly arranged in the cross-section of the optical fiber. By providing the cross-sectional area of all the hollow holes 3c within this range with respect to the cross-sectional area of the optical fiber, the presence of air in the hollow holes 3c optimizes the transmission of light with respect to the refractive index of the core 1c. The refractive index can be lowered so that
【0027】また、上述の紫外光伝送用光ファイバーの
外周には保護層を設けることが好ましい。保護層は光フ
ァイバーを機械的に保護すると共に、環境から保護する
ために設けられる。保護層としては、シリコーン樹脂、
ポリイミド樹脂、ウレタン系樹脂、アクリレート系樹脂
等が使用される。A protective layer is preferably provided on the outer periphery of the above-mentioned optical fiber for transmitting ultraviolet light. The protective layer is provided to protect the optical fiber mechanically and from the environment. As the protective layer, a silicone resin,
Polyimide resin, urethane resin, acrylate resin, etc. are used.
【0028】尚、コア、クラッド及び保護層に対して、
水素処理が施されることが好ましい。水素処理について
は後述する。Incidentally, for the core, the clad and the protective layer,
It is preferably subjected to hydrogen treatment. The hydrogen treatment will be described later.
【0029】更に、紫外光伝送用光ファイバーの保護層
の外周に保護被覆層を設けたものが好ましい。保護被覆
層は強度を高めるために設けられる。保護被覆層の材質
はナイロン樹脂が好適に使用される。Further, it is preferable that a protective coating layer is provided on the outer periphery of the protective layer of the optical fiber for transmitting ultraviolet light. The protective coating layer is provided to increase strength. Nylon resin is preferably used as the material of the protective coating layer.
【0030】このような紫外光伝送用光ファイバーの口
径は、150μmのコアに対して200μmのクラッド
を有するものから、800μmのコアに対して1000
μmのクラッドを有するものである。保護層は100か
ら250μmの厚さに設けられ、保護被覆層は400か
ら600μmの厚さに設けられる。保護層の厚さが10
0μm未満となると、コア、クラッドの十分な保護の効
果が得られず、保護被覆層の厚さが400μm未満とな
ると、十分な強度が得られない。The diameter of such an optical fiber for transmitting ultraviolet light is from that having a 200 μm clad to a 150 μm core to 1000 for a 800 μm core.
It has a cladding of μm. The protective layer has a thickness of 100 to 250 μm, and the protective coating layer has a thickness of 400 to 600 μm. The thickness of the protective layer is 10
When the thickness is less than 0 μm, the effect of sufficiently protecting the core and the cladding cannot be obtained, and when the thickness of the protective coating layer is less than 400 μm, sufficient strength cannot be obtained.
【0031】これらの紫外光伝送用光ファイバーの製造
方法について、以下に説明する。A method of manufacturing these optical fibers for transmitting ultraviolet light will be described below.
【0032】コアの作成
コアとなる部分を作成するには、石英ガラス上に所定量
のSiO2の粒子を堆積させて火炎加水分解によってガ
ラス化させて作成する直接ガラス化法や、別の焼結工程
により作成する所謂スート法等で、口径20mm程度の
コアロッドを作成することができる。Preparation of Core To prepare a core portion, a direct vitrification method, in which a predetermined amount of SiO 2 particles are deposited on quartz glass and vitrified by flame hydrolysis, or another firing method is used. A core rod having a diameter of about 20 mm can be produced by a so-called soot method or the like which is produced by a binding step.
【0033】フッ素またはホウ素の所定量を含有した
シリカガラスのクラッドを有する紫外光伝送用光ファイ
バーの製造
フッ素またはホウ素の所定量を含有したシリカガラスの
クラッドを有する紫外光伝送用光ファイバーを製造する
には、VAD法(気相軸付け法)、OVD法(外付け
法)、MCVD法(内付け法)等によることができる
が、所定量のフッ素あるいはホウ素を含有させたシリカ
ガラスから、外径30mm程度の中空のドープ管を形成
し、先に形成されたコアロッドを挿入して、プレフォー
ムを作成することによることができる。Manufacture of an optical fiber for transmitting ultraviolet light having a silica glass cladding containing a predetermined amount of fluorine or boron To manufacture an optical fiber for transmitting ultraviolet light having a silica glass cladding containing a predetermined amount of fluorine or boron. , VAD method (gas phase axis method), OVD method (external method), MCVD method (internal method), etc., but the outside diameter is 30 mm from silica glass containing a predetermined amount of fluorine or boron. This can be done by forming a hollow dope tube to the extent and inserting the previously formed core rod to make a preform.
【0034】このプレフォームを紡糸して紫外光伝送用
光ファイバーを製造する。紡糸は、図2に示すように、
プレフォームを炉4で加熱溶融し、巻取機5により、所
定の口径となるように、巻取り速度を調整することによ
り行うことができる。更に、保護層6を形成するには、
保護層6を形成する樹脂を炉4の下流において、ダイス
7からクラッドの周囲に所定量押し出し、架橋装置8に
より樹脂を加熱架橋、あるいはUV照射架橋させ、固化
または溶液を除去して保護層6を形成する。この場合、
保護層6としてシリコーン樹脂、ポリイミド樹脂を使用
する場合は加熱架橋がなされ、ウレタン系樹脂、アクリ
レート系樹脂を使用する場合はUV照射架橋がなされ
る。This preform is spun to manufacture an optical fiber for transmitting ultraviolet light. The spinning is, as shown in FIG.
It can be performed by heating and melting the preform in the furnace 4 and adjusting the winding speed by the winding machine 5 so that the diameter becomes a predetermined diameter. Further, to form the protective layer 6,
A predetermined amount of resin forming the protective layer 6 is extruded from the die 7 to the periphery of the clad in the downstream of the furnace 4, and the crosslinking layer 8 heat-crosslinks or UV-irradiates the resin to solidify or remove the solution to remove the protective layer 6. To form. in this case,
When a silicone resin or a polyimide resin is used as the protective layer 6, heat crosslinking is performed, and when a urethane resin or an acrylate resin is used, UV irradiation crosslinking is performed.
【0035】紫外線透過樹脂のクラッドを有する紫外
光伝送用光ファイバーの製造
上述の方法により形成したコアロッドを、図3に示すよ
うに、炉9により加熱溶融し、所定の口径となるよう
に、巻取機10により巻取り速度を調整し、ダイス11
から紫外線透過樹脂を押出し、架橋装置12により紫外
線透過樹脂のUV架橋を行う。更に、上述のに記載す
る保護層と同様に、ダイス13から紫外線透過樹脂の外
周に保護層14を形成する樹脂を所定量押し出し、架橋
装置15により樹脂を加熱架橋、あるいはUV照射架橋
させ、保護層14を作成し、紫外光伝送用光ファイバー
を製造することができる。Manufacture of an optical fiber for ultraviolet light transmission having a clad made of an ultraviolet-transparent resin The core rod formed by the above method is heated and melted in a furnace 9 as shown in FIG. 3, and wound into a predetermined diameter. The winding speed is adjusted by the machine 10 and the die 11
The ultraviolet transmissive resin is extruded from the above and the ultraviolet transmissive resin is subjected to UV crosslinking by the crosslinking device 12. Further, similar to the above-mentioned protective layer, a predetermined amount of the resin forming the protective layer 14 is extruded from the die 13 on the outer periphery of the ultraviolet ray transmitting resin, and the resin is thermally crosslinked or UV-irradiated by the crosslinking device 15 to protect the resin. The layer 14 can be formed to manufacture an optical fiber for transmitting ultraviolet light.
【0036】クラッドに中空孔を有する紫外光伝送用
光ファイバーの製造
コアの作成と同様にして、図4に示すように、石英ガラ
ス上に所定量のSiO2の粒子を堆積させて火炎加水分
解によってガラス化させて作成する直接ガラス化法や、
別の焼結工程により作成する所謂スート法等で、口径3
0mm程度の石英ロッド16(a)を作成する。このと
き、石英ロッド16の材質はコアの材質と同様のシリカ
ガラスを用いることができる。尚、石英ロッド16は必
ずしも6角柱である必要はなく、円管を用いることもで
きる。この石英ロッド16の中心に孔17(b)を穿設
する。孔17を設けた石英ロッド16を伸線し、口径1
mm程度とし、この伸線した石英ロッド16aの中央に
コアとなるコアロッド18を組み込む(c)。このコア
ロッド18を組み込んだものを石英パイプ19で覆い、
外径30mm程度のプレフォーム20を形成する
(d)。その後、プレフォーム20を、紡糸し、所定の
口径の紫外光伝送用光ファイバーとする。保護層を形成
するのは、上述の方法と同様の方法で形成することがで
きる。As shown in FIG. 4, a predetermined amount of SiO 2 particles are deposited on quartz glass and flame hydrolysis is performed by flame hydrolysis in the same manner as in the production of an optical fiber for ultraviolet light transmission having a hollow hole in the clad. Direct vitrification method to create by vitrifying,
With a so-called soot method created by another sintering process, the caliber is 3
A quartz rod 16 (a) of about 0 mm is created. At this time, as the material of the quartz rod 16, silica glass similar to the material of the core can be used. The quartz rod 16 does not necessarily have to be a hexagonal prism, and a circular tube can be used. A hole 17 (b) is formed at the center of the quartz rod 16. The quartz rod 16 provided with the hole 17 is drawn to have a diameter of 1
The core rod 18 serving as a core is incorporated in the center of the drawn quartz rod 16a (c). What covers this core rod 18 is covered with a quartz pipe 19,
A preform 20 having an outer diameter of about 30 mm is formed (d). Then, the preform 20 is spun into an ultraviolet optical transmission optical fiber having a predetermined diameter. The protective layer can be formed by the same method as described above.
【0037】水素処理
紡糸後、水素処理がなされる。水素処理は紫外光の照射
による光ファイバーの劣化を防止するために行うもので
ある。水素処理は光ファイバーを水素に含浸するとによ
り行うことができる。水素含浸処理は、圧力0.5から
15Mpa、温度20から100℃の水素中に放置する
ことにより行うことができる。水素処理は長時間行うこ
とができるが、例えば、50時間以上行うこともできる
が、50時間の処理により光ファイバーの紫外線照射に
よる劣化防止に有効な結果を得ることができる。上記条
件による水素処理が2時間未満であると、十分な紫外線
照射劣化防止の効果が得られない。Hydrogen Treatment After spinning, hydrogen treatment is performed. The hydrogen treatment is performed to prevent the deterioration of the optical fiber due to the irradiation of ultraviolet light. The hydrogen treatment can be performed by impregnating an optical fiber with hydrogen. The hydrogen impregnation treatment can be performed by leaving it in hydrogen at a pressure of 0.5 to 15 Mpa and a temperature of 20 to 100 ° C. Although the hydrogen treatment can be performed for a long time, for example, it can be performed for 50 hours or more. However, the treatment for 50 hours can provide an effective result for preventing deterioration of the optical fiber due to ultraviolet irradiation. If the hydrogen treatment under the above conditions is less than 2 hours, sufficient effect of preventing ultraviolet irradiation deterioration cannot be obtained.
【0038】保護被覆層の作成
更に、光ファイバーの水素含浸処理後、保護被覆層を設
ける。保護被覆層はナイロン樹脂等を溶融し、ダイスか
ら光ファイバーの外周に押し出し、冷却して形成するこ
とができる。Preparation of Protective Coating Layer Further, after the optical fiber is impregnated with hydrogen, a protective coating layer is provided. The protective coating layer can be formed by melting nylon resin or the like, extruding it from the die onto the outer periphery of the optical fiber, and cooling.
【0039】その後、光ファイバーの端末加工が行わ
れ、最終製品を完成させる。端末加工は要求に応じて、
端面の研磨、コネクタ等の取付処理がなされる。Thereafter, terminal processing of the optical fiber is performed to complete the final product. Terminal processing is on request,
The end faces are polished and connectors are attached.
【0040】[0040]
【実施例】コアとしてフッ素含有量が100から200
ppm、OH基含有量が4から7ppmのフッ素ドープ
シリカガラス(商品名:AQX、旭硝子社製)を用い、
フッ素含有量が2000ppmのシリカガラスのクラッ
ドを形成した。コア径は600μm、クラッド径は75
0μmに形成した。水素処理を行った後、ArFエキシ
マレーザーを用いて、紫外光を照射した前後における、
紫外光伝送用光ファイバー1mを透過する各波長の紫外
光の透過率を測定した。図5に示すように、紫外光照射
前の透過率T1と、紫外光照射後の透過率T2となっ
た。水素処理を行わず、ArFエキシマレーザーを用い
て、紫外光を照射した前後における、紫外光伝送用光フ
ァイバー1mを透過する各波長の紫外光の透過率を測定
した。図6に示すように、紫外光照射前の透過率T3
と、紫外光照射後の透過率T4となった。Example: Fluorine content of the core is 100 to 200
Using fluorine-doped silica glass (trade name: AQX, manufactured by Asahi Glass Co., Ltd.) having a ppm and OH group content of 4 to 7 ppm,
A silica glass clad having a fluorine content of 2000 ppm was formed. Core diameter is 600 μm, clad diameter is 75
It was formed to 0 μm. After performing the hydrogen treatment, using ArF excimer laser, before and after irradiation with ultraviolet light,
The transmittance of the ultraviolet light of each wavelength passing through 1 m of the optical fiber for transmitting ultraviolet light was measured. As shown in FIG. 5, the transmittance was T1 before irradiation with ultraviolet light and the transmittance T2 after irradiation with ultraviolet light. Using ArF excimer laser without hydrogen treatment, the transmittance of ultraviolet light of each wavelength passing through 1 m of the optical fiber for transmitting ultraviolet light was measured before and after irradiation with ultraviolet light. As shown in FIG. 6, the transmittance T3 before irradiation with ultraviolet light
Then, the transmittance was T4 after irradiation with ultraviolet light.
【0041】尚、上記のArFエキシマレーザーによる
照射条件は、光密度20mJ/cm2の/pulse、繰
り返し周波数20Hz、パルス数6000pulseで
あり、透過率は反復照射した前後の、紫外光伝送用光フ
ァイバー1mを透過する各波長の紫外光の透過率を測定
した。The irradiation conditions by the ArF excimer laser are: light density of 20 mJ / cm 2 / pulse, repetition frequency of 20 Hz, pulse number of 6000 pulses, and transmittance of 1 m of the optical fiber for transmitting ultraviolet light before and after repeated irradiation. The transmittance of ultraviolet light of each wavelength passing through was measured.
【0042】以上の結果より、本発明の紫外光伝送用光
ファイバーは、紫外光の透過率を高めることができ、紫
外光照射による透過率の低減は改善され、劣化の影響を
減少させることができる。特に、水素処理を行ったもの
は、紫外光照射による透過率の低減が見られず、その特
性が著しく改善されていることがわかった。From the above results, the optical fiber for ultraviolet light transmission of the present invention can increase the transmittance of ultraviolet light, the reduction of the transmittance due to the irradiation of ultraviolet light is improved, and the influence of deterioration can be reduced. . In particular, it was found that the hydrogen-treated sample did not show a decrease in the transmittance due to the irradiation of ultraviolet light, and the characteristics thereof were remarkably improved.
【0043】[0043]
【発明の効果】以上の説明からも明らかなように、本発
明の紫外光伝送用光ファイバー及びその製造方法によれ
ば、コアに所定量のフッ素及びOH基を含有させたシリ
カガラスを用い、クラッドに所定量のフッ素またはホウ
素を含有させたシリカガラス、または、紫外線透過樹脂
を用い、あるいは中空孔を有するものとしたため、深紫
外光、真空紫外光の伝送において透過率を高くさせ、ま
た、紫外光の照射による透過率の低減を防止することが
できる。特に、水素処理を行った紫外光伝送用光ファイ
バーは、その特性を著しく改善することができる。この
ため、深紫外光、真空紫外光を使用するエキシマレーザ
ーを用いた露光装置、エキシマランプを用いた表面洗浄
装置にも好適に適用することができ、これらの露光装
置、表面洗浄装置等の小型化を図ることができる。As is clear from the above description, according to the optical fiber for ultraviolet light transmission and the method for producing the same of the present invention, the core is made of silica glass containing a predetermined amount of fluorine and OH groups , and the clad is used. Silica glass containing a predetermined amount of fluorine or boron, or using an ultraviolet-transparent resin, or having a hollow hole, to increase the transmittance in the transmission of deep ultraviolet light and vacuum ultraviolet light, It is possible to prevent a decrease in transmittance due to light irradiation. In particular, the characteristics of the optical fiber for ultraviolet light transmission which has been subjected to hydrogen treatment can be remarkably improved. Therefore, it can be suitably applied to an exposure device using an excimer laser that uses deep ultraviolet light or vacuum ultraviolet light, and a surface cleaning device that uses an excimer lamp. Can be realized.
【図1】本発明の紫外光伝送用光ケーブルの一実施例を
示す断面図。FIG. 1 is a cross-sectional view showing an embodiment of an optical cable for ultraviolet light transmission of the present invention.
【図2】本発明の紫外光伝送用光ファイバーの製造方法
を示す工程図。FIG. 2 is a process drawing showing a method for manufacturing an optical fiber for ultraviolet light transmission of the present invention.
【図3】本発明の紫外光伝送用光ファイバーの製造方法
を示す工程図。FIG. 3 is a process drawing showing a method for manufacturing an optical fiber for ultraviolet light transmission of the present invention.
【図4】本発明の紫外光伝送用光ファイバーの製造方法
を示す工程図。FIG. 4 is a process drawing showing the method for manufacturing an optical fiber for ultraviolet light transmission of the present invention.
【図5】本発明の紫外光伝送用光ファイバーの特性を示
す説明図。FIG. 5 is an explanatory diagram showing the characteristics of the optical fiber for ultraviolet light transmission of the present invention.
【図6】本発明の紫外光伝送用光ファイバーの特性を示
す説明図。FIG. 6 is an explanatory diagram showing the characteristics of the optical fiber for ultraviolet light transmission of the present invention.
【図7】従来の光ファイバーの特性を示す説明図。FIG. 7 is an explanatory diagram showing characteristics of a conventional optical fiber.
【図8】従来の光ファイバーの特性を示す説明図。FIG. 8 is an explanatory diagram showing characteristics of a conventional optical fiber.
1a、1b、1c・・・・・コア 2a、2b、2c・・・・・クラッド 3c・・・・・中空孔 1a, 1b, 1c ... Core 2a, 2b, 2c ... Clad 3c ... Hollow hole
フロントページの続き (72)発明者 平野 正浩 東京都世田谷区松原5丁目5番6号 (72)発明者 大登 正敬 神奈川県川崎市川崎区小田栄2丁目1番 1号 昭和電線電纜株式会社内 (72)発明者 森下 裕一 神奈川県川崎市川崎区小田栄2丁目1番 1号 昭和電線電纜株式会社内 (72)発明者 野呂 治人 神奈川県川崎市川崎区小田栄2丁目1番 1号 昭和電線電纜株式会社内 (72)発明者 菊川 信也 神奈川県横浜市神奈川区羽沢町1150 (56)参考文献 特開 平5−147966(JP,A) 特開 平9−309742(JP,A) 特開 平1−126602(JP,A) 特開 平10−95628(JP,A) 特開2000−103629(JP,A) 特開 平3−175405(JP,A) 特開2002−60248(JP,A) 特開 平2−14850(JP,A) (58)調査した分野(Int.Cl.7,DB名) G02B 6/00 - 6/54 C03B 37/00 - 37/16 C03C 1/00 - 14/09 (72) Inventor Masahiro Hirano 5-5-6 Matsubara Setagaya-ku, Tokyo (72) Masataka Ohto 2-1-1 Oda Sakae, Kawasaki-ku, Kawasaki-shi, Kanagawa Showa Densen Denki Co., Ltd. (72) Inventor Yuichi Morishita, 2-1-1 Oda Sakae, Kawasaki-ku, Kawasaki-shi, Kanagawa Showa Electric Wire & Cable Co., Ltd. (72) Inventor Shinya Kikukawa 1150 Hazawa-machi, Kanagawa-ku, Yokohama-shi, Kanagawa (56) References JP-A-5-147966 (JP, A) JP-A-9-309742 (JP, A) JP JP-A 1-126602 (JP, A) JP-A-10-95628 (JP, A) JP-A-2000-103629 (JP, A) JP-A-3-175405 (JP, A) JP-A-2002-60248 (JP, A) ) JP-A-2-14850 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) G02B 6/00-6/54 C03B 37/00-37/16 C03C 1/00-14 / 09
Claims (10)
m、OH基の含有量が4から7ppmでかつ水素を含浸
したシリカガラスからなるコアを有することを特徴とす
る紫外光伝送用光ファイバー。1. The content of fluorine is 100 to 1000 pp.
m , the content of OH groups is 4 to 7 ppm and impregnated with hydrogen
An optical fiber for transmitting ultraviolet light, which has a core made of the above silica glass.
pmであるシリカガラス、またはホウ素の含有量が20
00ppmから10000ppmであるシリカガラスか
らなるクラッドを有することを特徴とする請求項1記載
の紫外光伝送用光ファイバー。2. The fluorine content is 1000 to 7000 p.
pm silica glass, or the content of boron is 20
The optical fiber for ultraviolet light transmission according to claim 1, which has a clad made of silica glass having a concentration of 00 ppm to 10000 ppm.
ことを特徴とする請求項1記載の紫外光伝送用光ファイ
バー。3. The optical fiber for ultraviolet light transmission according to claim 1, further comprising a clad made of an ultraviolet transparent resin.
ドを有することを特徴とする請求項1記載の紫外光伝送
用光ファイバー。4. The optical fiber for ultraviolet light transmission according to claim 1, further comprising a clad having a plurality of hollow holes parallel to the optical axis.
徴とする請求項1乃至4のいずれか1記載の紫外光伝送
用光ファイバー。5. The optical fiber for ultraviolet light transmission according to any one of claims 1 to 4, wherein a protective layer is provided on the outer periphery of the clad.
とを特徴とする請求項1乃至5のいずれか1記載の紫外
光伝送用光ファイバー。6. The optical fiber for ultraviolet light transmission according to claim 1, wherein a protective coating layer is provided on the outer periphery of the protective layer.
m、OH基の含有量が4から7ppmであるシリカガラ
スからなるコアを有する光ファイバーを紡糸後、水素の
含浸処理を行うことを特徴とする紫外光伝送用光ファイ
バーの製造方法。7. A fluorine content of 100 to 1000 pp.
A method for producing an optical fiber for ultraviolet light transmission, which comprises performing an impregnation treatment with hydrogen after spinning an optical fiber having a core made of silica glass having a content of m 2 and OH groups of 4 to 7 ppm .
囲に配列させ、外周を被覆して一体化し、紡糸した後、
前記水素の含浸処理を行うことを特徴とする請求項7記
載の紫外光伝送用光ファイバーの製造方法。8. A thin tube having one hollow hole in the center is arranged around the core, and the outer circumference is covered and integrated, and after spinning,
The method for producing an optical fiber for ultraviolet light transmission according to claim 7, wherein the hydrogen impregnation treatment is performed.
ることを特徴とする請求項7または8記載の紫外光伝送
用光ファイバーの製造方法。9. The method for producing an optical fiber for ultraviolet light transmission according to claim 7, wherein the outer periphery of the clad is coated with a protective layer during spinning.
形成することを特徴とする請求項7乃至9のいずれか1
記載の紫外光伝送用光ファイバーの製造方法。10. A protective coating layer is formed after the hydrogen impregnation treatment, according to any one of claims 7 to 9.
A method for producing an optical fiber for transmitting ultraviolet light as described above.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001007111A JP3393120B2 (en) | 2001-01-16 | 2001-01-16 | Optical fiber for ultraviolet light transmission and method of manufacturing the same |
EP02715729A EP1353199A4 (en) | 2001-01-16 | 2002-01-11 | OPTICAL FIBER FOR TRANSMITTING ULTRAVIOLET RAYS, OPTICAL FIBER PROBE, AND PROCESS FOR PRODUCING THE OPTICAL FIBER AND THE OPTICAL FIBER PROBE |
US10/399,967 US6944380B1 (en) | 2001-01-16 | 2002-01-11 | Optical fiber for transmitting ultraviolet ray, optical fiber probe, and method of manufacturing the optical fiber probe |
PCT/JP2002/000123 WO2002056070A1 (en) | 2001-01-16 | 2002-01-11 | Optical fiber for transmitting ultraviolet ray, optical fiber probe, and method of manufacturing the optical fiber and optical fiber probe |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001007111A JP3393120B2 (en) | 2001-01-16 | 2001-01-16 | Optical fiber for ultraviolet light transmission and method of manufacturing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002214454A JP2002214454A (en) | 2002-07-31 |
JP3393120B2 true JP3393120B2 (en) | 2003-04-07 |
Family
ID=18874907
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001007111A Expired - Fee Related JP3393120B2 (en) | 2001-01-16 | 2001-01-16 | Optical fiber for ultraviolet light transmission and method of manufacturing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3393120B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7673477B2 (en) | 2004-04-15 | 2010-03-09 | Fujikura Ltd. | Optical fiber processing apparatus |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002214466A (en) * | 2001-01-23 | 2002-07-31 | Sumitomo Electric Ind Ltd | Optical fiber |
JP2004125846A (en) * | 2002-09-30 | 2004-04-22 | Totoku Electric Co Ltd | Optical fiber coil, optical fiber sensor and method of manufacturing the same |
JP2004191399A (en) * | 2002-12-06 | 2004-07-08 | Hitachi Cable Ltd | Low-loss ultraviolet transmission fiber and ultraviolet irradiation device using the same |
JP2004317802A (en) * | 2003-04-16 | 2004-11-11 | Fujikura Ltd | Optical component by irradiation with ultraviolet light, its manufacturing method and manufacturing device |
JP2005017334A (en) * | 2003-06-23 | 2005-01-20 | Fujikura Ltd | Method and apparatus for manufacturing grating type optical component and optical component produced by using apparatus for manufacturing grating type optical component |
JP3968355B2 (en) * | 2004-03-22 | 2007-08-29 | 昭和電線デバイステクノロジー株式会社 | Optical fiber for deep ultraviolet light transmission and manufacturing method thereof |
JP4213091B2 (en) * | 2004-08-05 | 2009-01-21 | 昭和電線ケーブルシステム株式会社 | Manufacturing method of optical fiber for ultraviolet light transmission |
CN106291801A (en) * | 2007-01-12 | 2017-01-04 | Nkt光子学有限公司 | Micro-structured fibres passes through life and the performance improvement of high temperature loading |
JPWO2009096557A1 (en) * | 2008-01-30 | 2011-05-26 | 旭硝子株式会社 | Optical fiber preform for energy transmission or ultraviolet light transmission and manufacturing method thereof |
EP2348001A2 (en) | 2008-07-11 | 2011-07-27 | NKT Photonics A/S | Lifetime extending and performance improvements of optical fibers via loading |
KR20240064049A (en) | 2014-12-18 | 2024-05-10 | 엔케이티 포토닉스 에이/에스 | A photonic crystal fiber, a method of production thereof and a supercontinuum light source |
WO2022014039A1 (en) * | 2020-07-17 | 2022-01-20 | 日本電信電話株式会社 | Light emission system |
WO2022024304A1 (en) * | 2020-07-30 | 2022-02-03 | 日本電信電話株式会社 | Ultraviolet irradiation system and decontamination method |
-
2001
- 2001-01-16 JP JP2001007111A patent/JP3393120B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7673477B2 (en) | 2004-04-15 | 2010-03-09 | Fujikura Ltd. | Optical fiber processing apparatus |
Also Published As
Publication number | Publication date |
---|---|
JP2002214454A (en) | 2002-07-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3393120B2 (en) | Optical fiber for ultraviolet light transmission and method of manufacturing the same | |
US6944380B1 (en) | Optical fiber for transmitting ultraviolet ray, optical fiber probe, and method of manufacturing the optical fiber probe | |
US20090232463A1 (en) | Low loss optical fiber designs and methods for their manufacture | |
KR100982765B1 (en) | Optical fiber preform, the manufacturing method thereof and the optical fiber obtained by drawing of the optical fiber preform | |
JPH044988B2 (en) | ||
CN104203850B (en) | The manufacture method of optical fiber | |
JPH11237514A (en) | Optical fiber for grating, optical fiber preform for grating, and production of this optical fiber preform | |
JP3748183B2 (en) | Core glass, method for producing the same, preform for optical fiber, and method for producing optical fiber | |
JP5363172B2 (en) | Optical fiber | |
CN102826750A (en) | Method for producing optical fiber | |
CA1221545A (en) | Process for producing image fiber | |
JP3968355B2 (en) | Optical fiber for deep ultraviolet light transmission and manufacturing method thereof | |
JP6916235B2 (en) | Optical fiber manufacturing method | |
JP5836446B2 (en) | Optical fiber | |
JP4213091B2 (en) | Manufacturing method of optical fiber for ultraviolet light transmission | |
JP7516182B2 (en) | Optical fiber manufacturing method and apparatus | |
JP2556350B2 (en) | Method for manufacturing NA conversion optical fiber | |
JP3952734B2 (en) | Optical fiber manufacturing method | |
JP3793435B2 (en) | Optical fiber probe and manufacturing method thereof | |
Kim et al. | Suppression of cladding-mode coupling loss in fiber Bragg gratings by independent control of refractive index and photosensitive profiles in a single-mode optical fiber | |
JPH0656457A (en) | Production of fiber for transmitting ultraviolet light | |
JP3315786B2 (en) | Optical amplifier type optical fiber | |
JP2020140079A (en) | Optical fiber | |
JP4057332B2 (en) | Manufacturing method of glass preform for optical fiber | |
JP2657726B2 (en) | Radiation-resistant optical fiber and image fiber |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20021224 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080124 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090124 Year of fee payment: 6 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090124 Year of fee payment: 6 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090124 Year of fee payment: 6 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100124 Year of fee payment: 7 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100124 Year of fee payment: 7 |
|
R370 | Written measure of declining of transfer procedure |
Free format text: JAPANESE INTERMEDIATE CODE: R370 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100124 Year of fee payment: 7 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100124 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110124 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120124 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120124 Year of fee payment: 9 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120124 Year of fee payment: 9 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120124 Year of fee payment: 9 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130124 Year of fee payment: 10 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140124 Year of fee payment: 11 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |