JPH0129553B2 - - Google Patents
Info
- Publication number
- JPH0129553B2 JPH0129553B2 JP55067451A JP6745180A JPH0129553B2 JP H0129553 B2 JPH0129553 B2 JP H0129553B2 JP 55067451 A JP55067451 A JP 55067451A JP 6745180 A JP6745180 A JP 6745180A JP H0129553 B2 JPH0129553 B2 JP H0129553B2
- Authority
- JP
- Japan
- Prior art keywords
- reactor
- packed bed
- reaction
- outlet
- gel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
Description
【発明の詳細な説明】
本発明は、反応生成物としてガスの発生を伴う
固−液系の充填層型反応装置に関するものであ
る。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a solid-liquid packed bed reactor that generates gas as a reaction product.
反応物質の一方が固体触媒のような液と溶け合
わない固形状物質であるような固−液系接触反応
を行わせる装置として、充填層型反応器が従来か
ら使用されている。この種の反応器は、反応器容
積当りの固−液接触面積を最大にするために固形
状物質を一定の大きさの粒子に成形して反応器内
部を該粒子で最密に充填することが有利であり、
通常実施されている。 A packed bed reactor has conventionally been used as an apparatus for carrying out a solid-liquid contact reaction in which one of the reactants is a solid substance that does not dissolve in a liquid, such as a solid catalyst. In order to maximize the solid-liquid contact area per reactor volume, this type of reactor molds the solid substance into particles of a certain size and fills the interior of the reactor with the particles most densely. is advantageous,
Usually carried out.
ところで、微生物を任意のゲル化剤を用いて固
定化したものは厳密には固体ではないが実際上、
固形触媒と同じ取り扱いが出来る。従つて、固定
化微生物を用いて固−液系反応を行なわせる反応
装置としても固定化微生物ゲルを粒子状に成形し
てカラムに詰めた充填層型反応器が使用されてい
る。この場合、アルコール発酵のようなアルコー
ルの生成と同時に等モル量の炭酸ガスが生成する
反応を行わせると次のような欠点を生じた。 By the way, microorganisms immobilized using any gelling agent are not strictly solid, but in practice,
Can be handled in the same way as solid catalysts. Therefore, a packed bed reactor in which immobilized microorganism gel is molded into particles and packed in a column is also used as a reaction device for carrying out a solid-liquid reaction using immobilized microorganisms. In this case, when a reaction such as alcohol fermentation in which an equimolar amount of carbon dioxide gas is produced simultaneously with the production of alcohol, the following drawbacks occur.
気泡に成長した炭酸ガスが反応器内で占める
空間部(ガスホールドアツプ)だけ反応液の占
める容量が減るので反応液の滞留時間が減少
し、その結果反応率が低下する。 Since the volume occupied by the reaction liquid is reduced by the space (gas hold-up) occupied by the carbon dioxide gas that has grown into bubbles in the reactor, the residence time of the reaction liquid is reduced, and as a result, the reaction rate is reduced.
気泡がゲル粒子間で停滞してしまうことが多
く、このため気泡の近傍はいわゆる死空間とな
りやすく、固−液接触面積が減少して反応率が
低下する。 Bubbles often stagnate between gel particles, and therefore the vicinity of the bubbles tends to become so-called dead space, which reduces the solid-liquid contact area and lowers the reaction rate.
このような欠点は、アルコール発酵に限らず、
メタン発酵や脱窒などの嫌気発酵を固定化微生物
を用いて行なわせるときにも生ずる。 These drawbacks are not limited to alcoholic fermentation.
It also occurs when immobilized microorganisms are used to perform anaerobic fermentation such as methane fermentation and denitrification.
反応器内に存在する気泡が問題となるのは、等
モル量のガスの占める容積は液の容積の約103倍
となるからであり、反応率を高めればそれだけこ
の問題が無視出来なくなつてくる。このような欠
点が生ずる原因の1つは、充填層型反応器の構造
に起因している。即ち、第1図に示すような従来
の充填層型反応器では反応液の供給口及び出口以
外に開放される箇所がないので、反応の結果発生
した気泡は反応液と共に出口方向に流れざるを得
ない。すなわち、充填層内で生成した気泡の圧の
ために気泡は充填ゲルや反応液を押し分けるよう
に出口方向に進み、押し出された反応液も気泡と
共に出口方向に進む。一方、ゲル粒子間をくぐり
抜けるだけの力をもたない気泡は、反応が進んで
新たにガスが発生して圧が高まつてくるまでゲル
粒子間に留まる。特に反応器入口付近で生成した
気泡は、反応器出口に達するまでゲル粒子間に停
滞しつつ除々に出口方向に進むので充填層内のガ
スホールドアツプを高める原因となつている。も
う1つの原因は、固定化微生物ゲルの物理的性質
に起因している。微生物を固定化するゲル化剤と
しては、多糖類、タンパク質系高分子物質、架橋
剤を添加した重合物質等であるが、これらのゲル
化剤で包括したゲルの内部は大半が水であるため
粘着性に富んだ弾性体である。このため充填ゲル
に圧力が加わるとゲルが破壊されたり、ゲル同志
の粘着が起つて液の流路が閉塞し、偏流が生ず
る。第1図のような反応器では、充填層内で発生
したガスが気泡を形成して膨張するときにゲル粒
子に圧力が加わつてゲル粒子同志が粘着している
のがわかつた。 Bubbles existing in the reactor become a problem because the volume occupied by an equimolar amount of gas is approximately 10 3 times the volume of the liquid, and the higher the reaction rate, the more this problem becomes impossible to ignore. It's coming. One of the causes of such drawbacks is due to the structure of the packed bed reactor. In other words, in a conventional packed bed reactor as shown in Figure 1, there are no open parts other than the supply port and outlet for the reaction liquid, so the bubbles generated as a result of the reaction have no choice but to flow toward the outlet together with the reaction liquid. I don't get it. That is, due to the pressure of the bubbles generated in the packed bed, the bubbles move toward the outlet so as to push apart the filled gel and the reaction liquid, and the extruded reaction liquid also moves toward the outlet together with the bubbles. On the other hand, air bubbles that do not have enough force to pass through the gel particles remain between the gel particles until the reaction progresses and new gas is generated, increasing the pressure. In particular, air bubbles generated near the reactor inlet remain stagnant among the gel particles until they reach the reactor outlet and gradually move toward the outlet, which causes an increase in gas holdup in the packed bed. Another reason is due to the physical properties of the immobilized microbial gel. Gelling agents that immobilize microorganisms include polysaccharides, protein-based polymeric substances, polymeric substances with added crosslinking agents, etc., but since the interior of the gel enclosed by these gelling agents is mostly water, It is an elastic body with high adhesiveness. For this reason, when pressure is applied to the filled gel, the gel may be destroyed or the gels may stick together, blocking the liquid flow path and causing uneven flow. In the reactor shown in Figure 1, it was found that when the gas generated in the packed bed forms bubbles and expands, pressure is applied to the gel particles, causing them to stick together.
そこで、粒子状に成形した固定化微生物ゲルを
充填した充填層型反応器でガスの発生を伴う反応
を行わせる場合、(1)反応の結果発生するガスを速
やかに充填層外に排出して充填層内のガスホール
ドアツプを下げる、(2)ゲル粒子同志の粘着を防い
で充填層内の液の偏流をなくする、ことが重要な
課題となる。 Therefore, when carrying out a reaction that generates gas in a packed bed reactor filled with immobilized microorganism gel formed into particles, (1) the gas generated as a result of the reaction must be immediately discharged outside the packed bed; The important issues are to lower the gas holdup in the packed bed, and (2) to prevent gel particles from sticking together to eliminate uneven flow of liquid in the packed bed.
本発明者らは、これらの課題に対し、以下に示
す条件を満足する構造を有する反応器であれば、
前記の欠点を解決できることを見出した。即ち、
(1) 反応液の流れ方向と気泡の流れ方向とが充填
層内の全域もしくは一部に於いて異なつている
こと、
(2) 充填層から抜け出た気泡を捕集し、反応器外
に排出するための排気孔を設けた空間部を有す
ること。 The present inventors have solved these problems by using a reactor with a structure that satisfies the conditions shown below.
It has been found that the above-mentioned drawbacks can be overcome. That is, (1) the flow direction of the reaction liquid and the flow direction of bubbles are different in the entire area or part of the packed bed, and (2) the bubbles that escape from the packed bed are collected and removed from the reactor. It shall have a space with an exhaust hole for discharging the air.
これらの条件を満足する反応器の例を、第2〜
6図に示す。これらの反応器の特徴は、反応液の
出口と発生したガスの排出口が異なること及び充
填層表面が自由表面になつていることである。充
填層高さは、ゲル粒子の自重によつてゲル粒子が
つぶれて反応液の流路をふさいだり、気泡がゲル
層から抜けにくくなるのを避けるため、通常、1
m以下にするのが望ましい。 Examples of reactors that satisfy these conditions are shown in
It is shown in Figure 6. These reactors are characterized by the fact that the outlet for the reaction liquid is different from the outlet for the generated gas, and that the surface of the packed bed is a free surface. The height of the packed bed is usually set to 1 to prevent the gel particles from collapsing under their own weight and blocking the flow path of the reaction solution, or from making it difficult for air bubbles to escape from the gel layer.
It is desirable to make it less than m.
このような構造を有すれば、充填層内で生成し
たガスは気泡を形成し次第、浮力で上昇し、自由
表面になつている充填層上面から空間部へ移動す
るから、第1図のような反応液出口まで気泡が充
填層内に留まる反応器に比べ充填層内のガスホー
ルドアツプが著しく減少し、高い反応率で安定し
た連続反応が達成できる。 With such a structure, as soon as the gas generated in the packed bed forms bubbles, it rises due to buoyancy and moves from the top surface of the packed bed, which is a free surface, to the space, as shown in Figure 1. Compared to a reactor in which air bubbles remain in the packed bed up to the outlet of the reaction liquid, the gas hold-up in the packed bed is significantly reduced, and stable continuous reaction can be achieved at a high reaction rate.
次に、反応器の構造について説明する。第1〜
6図において、1は充填層である。6は、中に微
生物を固定化して2〜10mm径に粒子化したゲルで
ある。微生物の栄養源となる反応物質は2から供
給され、充填層の内部を出口3方向に進む間にゲ
ル粒子表面の微生物と反応する。4は反応後の流
れ方向を示す。反応の結果、生成するガスの流れ
方向を5に示す。第2〜6図において、7は充填
層から抜け出してくる気泡を捕集する空間部であ
り、ここにガスの排出口8を設けて気泡が充填層
から抜け出し易くすると共に反応器内の圧の上昇
を防ぐ。本発明の基本的な構造は第2図である。
第3〜5図は、充填層内で反応液が流れやすいよ
うに改良した例である。第3図において、9は邪
魔板である。上、下にすき間をつけた板を交互に
垂直方向に仕切つて充填層を流れる反応液の流れ
方向を上下に蛇行させたものである。第4図は反
応器全体を30°以下の角度をつけて重力で反応液
を流すようにしている。第5図は反応液出口を、
ゲルを最密に充填したときの充填表面よりも高い
位置11に設けて気泡の浮力でゲル粒子を浮遊さ
せて気泡を抜けやすくするとともに液の混合にも
役立てようとしたものである。第2〜5図は、い
ずれも横長であるが、これを縦長に応用したのが
第6図である。10はゲル粒子径よりも小さな径
の孔を多数あけた多孔板である。上部からゲル層
に流下してくる反応液は、ゲル層で反応して多孔
板孔から下段のゲル層に落下するようになつてい
る。発生するガスは各段毎に側部の空間部を経て
反応器外に排出される。 Next, the structure of the reactor will be explained. 1st~
In Figure 6, 1 is a packed layer. 6 is a gel in which microorganisms are immobilized and made into particles with a diameter of 2 to 10 mm. A reactant that serves as a nutrient source for microorganisms is supplied from 2, and reacts with the microorganisms on the surface of the gel particles while traveling inside the packed bed toward the exit 3. 4 indicates the flow direction after the reaction. 5 shows the flow direction of the gas produced as a result of the reaction. In Figures 2 to 6, 7 is a space for collecting air bubbles coming out of the packed bed, and a gas outlet 8 is provided here to make it easier for the air bubbles to escape from the packed bed and to reduce the pressure inside the reactor. Prevent rise. The basic structure of the present invention is shown in FIG.
Figures 3 to 5 are examples of improvements in which the reaction liquid flows easily within the packed bed. In FIG. 3, 9 is a baffle plate. The flow direction of the reaction liquid flowing through the packed bed is meandered up and down by vertically partitioning plates with gaps at the top and bottom alternately. In Figure 4, the entire reactor is angled at an angle of less than 30° so that the reaction liquid flows by gravity. Figure 5 shows the reaction solution outlet.
It is intended to be provided at a position 11 higher than the filling surface when the gel is most densely packed, so that the buoyancy of the bubbles causes the gel particles to float, making it easier for the bubbles to escape, and also to help mix the liquid. 2 to 5 are all horizontally elongated, but FIG. 6 is an application of this to a vertically elongated image. Reference numeral 10 denotes a perforated plate having a large number of holes with a diameter smaller than the gel particle diameter. The reaction solution flowing down from the top to the gel layer reacts in the gel layer and falls through the holes in the porous plate to the gel layer at the lower stage. The generated gas is discharged to the outside of the reactor through the side spaces of each stage.
本発明装置は、上記の構造であるので反応の結
果発生するガスが速かに充填層外に排出され充填
層内のガスホールドアツプが減少し、かつゲル粒
子同志の粘着が防止できるので工業的に有利であ
る。 Since the device of the present invention has the above-mentioned structure, the gas generated as a result of the reaction is quickly discharged outside the packed bed, reducing gas hold-up inside the packed bed, and preventing gel particles from sticking together, making it industrially suitable. advantageous to
次に実施例を記載する。 Next, examples will be described.
サツカロミセス・セリビシエ酵母の生菌体7.2
g(ウエツトセル)を含んだ生理食塩水120c.c.に
カラギーナン4.0gを加えて10℃で固定化し、2
mm立方に成形したものを第2図の装置及び比較の
対象として第1図の反応器に夫々充填する。栄養
源としてはPH5.0に調整した糖濃度15%の廃糖密
を用い、30℃でアルコール発酵させた。アルコー
ルの生成に伴い、等モルのCO2が発生する。各々
の反応器に対し、反応液の供給量を3水準変えて
反応器出口のアルコール濃度とアルコール生成速
度を測定して反応器の性能を比較した。実験結果
を第7図に示す。CO2ガスが多く発生する領域、
即ち、反応液供給量が大きいところでは第2図の
反応器の方が第1図のそれに比べ、反応が1.2倍
進んでいることがわかる。 Viable cells of Satucharomyces cerevisiae yeast 7.2
Add 4.0 g of carrageenan to 120 c.c. of physiological saline containing g (wet cell) and immobilize at 10°C.
The molded product was packed into the apparatus shown in FIG. 2 and the reactor shown in FIG. 1 for comparison. As a nutrient source, waste molasses with a sugar concentration of 15% adjusted to pH 5.0 was used, and alcoholic fermentation was performed at 30°C. With the production of alcohol, equimolar CO 2 is generated. The performance of the reactors was compared by measuring the alcohol concentration at the outlet of the reactor and the alcohol production rate while varying the amount of reaction liquid supplied to each reactor at three levels. The experimental results are shown in Figure 7. Areas where a lot of CO2 gas is generated,
That is, it can be seen that the reaction progresses 1.2 times faster in the reactor shown in FIG. 2 than in the reactor shown in FIG. 1 where the amount of reaction liquid supplied is large.
第1図は従来の充填層型反応器の断面図、第2
〜6図は本発明の反応器の例の断面図、第2〜5
図は横型、第6図は縦型反応器。第7図は本発明
反応器と比較例についての、反応液供給量と出口
アルコール濃度又はアルコール生成速度との関係
を示すグラフ。
1……ゲル充填層、2……反応液入口、3……
反応液出口、4……反応液の流れ方向、5……ガ
スの流れ方向、6……ゲル粒子、7……空間部、
8……ガス排出口、9……邪魔板、10……多孔
板、11……ゲルを最密充填層表面と液面との間
隔。
Figure 1 is a cross-sectional view of a conventional packed bed reactor;
Figures 2 to 5 are cross-sectional views of examples of the reactor of the present invention.
The figure shows a horizontal reactor, and Figure 6 shows a vertical reactor. FIG. 7 is a graph showing the relationship between the reaction liquid supply amount and the outlet alcohol concentration or alcohol production rate for the reactor of the present invention and a comparative example. 1... Gel packed layer, 2... Reaction liquid inlet, 3...
Reaction liquid outlet, 4... Reaction liquid flow direction, 5... Gas flow direction, 6... Gel particles, 7... Space,
8... Gas discharge port, 9... Baffle plate, 10... Perforated plate, 11... Distance between the surface of the gel closest packed layer and the liquid level.
Claims (1)
し、反応に伴つてガスが発生する固−液系反応を
行わせる充填層型反応器において、反応器内部の
充填層の上面に、充填層内から抜け出たガスを反
応器外に排出するための排出口を設けた空間部を
有することを特徴とする固定化微生物ゲルを充填
した反応装置。 2 充填層内に1個以上の邪魔板を設けて液の流
れを蛇行させる特許請求の範囲第1項記載の反応
装置。 3 充填層を水平面から30°以下の角度で傾けた
特許請求の範囲第1項記載の反応装置。 4 反応液出口の位置を、粒状固定化微生物ゲル
を最密に充填したときの充填層表面より該充填層
の高さの10〜30%だけ高くとりつけた特許請求の
範囲第1項記載の反応装置。 5 底面に多孔板を有する少くとも1以上の充填
層を、反応装置内に略垂直方向に積み重ね、かつ
ガス排出のための排出口を設けた空間部を有する
特許請求の範囲第1項記載の反応装置。[Scope of Claims] 1. In a packed bed reactor in which a solid-liquid reaction is carried out using immobilized microbial gel formed into particles as a catalyst and gas is generated during the reaction, the upper surface of the packed bed inside the reactor A reaction device filled with immobilized microbial gel, characterized in that it has a space provided with an outlet for discharging gas released from the packed bed to the outside of the reactor. 2. The reaction device according to claim 1, wherein one or more baffle plates are provided in the packed bed to meander the flow of the liquid. 3. The reactor according to claim 1, wherein the packed bed is inclined at an angle of 30° or less from the horizontal plane. 4. The reaction according to claim 1, wherein the outlet of the reaction solution is positioned 10 to 30% higher than the surface of the packed bed when the granular immobilized microbial gel is most densely packed. Device. 5. The reactor according to claim 1, wherein at least one packed bed having a perforated plate on the bottom is stacked in a substantially vertical direction in a reaction device, and has a space provided with an outlet for discharging gas. Reactor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6745180A JPS56164784A (en) | 1980-05-20 | 1980-05-20 | Reactor filled with immobilized microorganism gel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6745180A JPS56164784A (en) | 1980-05-20 | 1980-05-20 | Reactor filled with immobilized microorganism gel |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS56164784A JPS56164784A (en) | 1981-12-17 |
JPH0129553B2 true JPH0129553B2 (en) | 1989-06-12 |
Family
ID=13345296
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6745180A Granted JPS56164784A (en) | 1980-05-20 | 1980-05-20 | Reactor filled with immobilized microorganism gel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS56164784A (en) |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5616238Y2 (en) * | 1975-12-15 | 1981-04-15 |
-
1980
- 1980-05-20 JP JP6745180A patent/JPS56164784A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS56164784A (en) | 1981-12-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4545909A (en) | Growth of biomass | |
US5091315A (en) | Bioconversion reactor | |
US4066540A (en) | Apparatus and method for continuous froth flotation | |
US4820415A (en) | Polymer carrier masses as carriers in biochemical conversion processes in the aqueous phase | |
US4670140A (en) | Fixed bed reactor column for anaerobic decomposition processes | |
JP2006110424A (en) | Organic wastewater treatment method and treatment apparatus | |
JPH0129553B2 (en) | ||
JPS61227892A (en) | Method and apparatus for performing microbial fermentation | |
US4493735A (en) | Device and method for forming a fluidized bed | |
EP0015680B1 (en) | Fermentation process and apparatus | |
CN210506367U (en) | Novel reaction device for immobilized enzyme | |
CA1181538A (en) | Process and apparatus for promoting growth of biomass | |
WO1991016268A1 (en) | System for treating organic wastes and waste water | |
CN217555871U (en) | Aeration type sedimentation tank sludge discharge system | |
JP4000593B2 (en) | Immobilized microorganism carrier and method for producing the same | |
CN215627074U (en) | Assembled wave-shaped flow artificial wetland sewage treatment device | |
CN218784802U (en) | Dipping reaction kettle | |
CN114700004B (en) | A Soap Film Microchemical Reactor | |
JPS594743Y2 (en) | Three-phase flow reactor | |
JPH031948B2 (en) | ||
JPH0366009B2 (en) | ||
Ogbonna | Atomisation techniques for immobilisation of cells in micro gel beads | |
CN208362121U (en) | A kind of bioanalysis sewage disposal device | |
JPH09124544A (en) | Method for producing acetic anhydride | |
JPS6225120Y2 (en) |