[go: up one dir, main page]

JPH01293661A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH01293661A
JPH01293661A JP63126572A JP12657288A JPH01293661A JP H01293661 A JPH01293661 A JP H01293661A JP 63126572 A JP63126572 A JP 63126572A JP 12657288 A JP12657288 A JP 12657288A JP H01293661 A JPH01293661 A JP H01293661A
Authority
JP
Japan
Prior art keywords
base
groove
layer
collector
grooves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63126572A
Other languages
Japanese (ja)
Inventor
Tsutomu Matsuura
松浦 勉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP63126572A priority Critical patent/JPH01293661A/en
Publication of JPH01293661A publication Critical patent/JPH01293661A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/10Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
    • H10D62/113Isolations within a component, i.e. internal isolations
    • H10D62/115Dielectric isolations, e.g. air gaps
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D10/00Bipolar junction transistors [BJT]
    • H10D10/40Vertical BJTs
    • H10D10/421Vertical BJTs having both emitter-base and base-collector junctions ending at the same surface of the body
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/10Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
    • H10D62/102Constructional design considerations for preventing surface leakage or controlling electric field concentration
    • H10D62/112Constructional design considerations for preventing surface leakage or controlling electric field concentration for preventing surface leakage due to surface inversion layers, e.g. by using channel stoppers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/10Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
    • H10D62/124Shapes, relative sizes or dispositions of the regions of semiconductor bodies or of junctions between the regions
    • H10D62/126Top-view geometrical layouts of the regions or the junctions

Landscapes

  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To restrain a channel from being formed and to enhance an integration density by a method wherein a groove is formed between an insulating diffusion layer used to partition a device region and a base region and this groove is filled with an insulator. CONSTITUTION:A bipolar transistor of high breakdown strength is formed on a semiconductor substrate 1; two grooves 12 are formed from the surface in a collector region between an insulating diffusion layer 5 used to electrically isolate this transistor and a base of the transistor; the grooves 12 are filled with an insulator; an N<+> type channel stopper 10 is formed between the grooves 12. In addition, the grooves 12 surround the base 7 and a collector contact 9. Then, a depletion layer 21 between the base and a collector is stopped by the groove 12a; a depletion layer 22 between an insulating region from the substrate 1 to the insulating diffusion layer 5 and the collector is stopped by the groove 12b; accordingly, a distance between the layer 5 and the base 7 can be shortened.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体装置に間する。[Detailed description of the invention] [Industrial application field] The present invention relates to semiconductor devices.

〔従来の技術〕[Conventional technology]

従来、多数の高耐圧バイポーラトランジスタを同一半導
体基板上に構成するには、比較的厚い(10〜25μm
)N型エピタキシャル層をP型半導体基板上に設けてい
た。その高耐圧トランジスタの他素子との電気的絶縁は
、P+型埋込層3と半導体表面より拡散し形成したP+
型拡散層5をぶつけて、絶縁を確保していた。
Conventionally, in order to configure a large number of high-voltage bipolar transistors on the same semiconductor substrate, a relatively thick (10 to 25 μm)
) An N-type epitaxial layer was provided on a P-type semiconductor substrate. The high voltage transistor is electrically insulated from other elements by a P+ type buried layer 3 and a P+ layer formed by diffusion from the semiconductor surface.
Insulation was ensured by bumping the mold diffusion layer 5.

第5図は従来のバイポーラトランジスタの一例の断面図
である。
FIG. 5 is a cross-sectional view of an example of a conventional bipolar transistor.

P型半導体基板1にN+型埋込層2、P+型埋込層3を
設けた後、N型エピタキシャル層4を堆積する p ′
″型絶縁拡散層5で絶縁分離してN型の島領域を形成し
た後、酸化膜6を形成する。通常の方法によりP型ベー
ス7、N+型のエミッタ8、コレクタコンタクト9、チ
ャネルストッパー10を形成し電極配線11を形成する
After providing an N+ type buried layer 2 and a P+ type buried layer 3 on a P type semiconductor substrate 1, an N type epitaxial layer 4 is deposited p'
After forming an N-type island region by insulating and separating it with a "" type insulating diffusion layer 5, an oxide film 6 is formed.A P-type base 7, an N+ type emitter 8, a collector contact 9, and a channel stopper 10 are formed by a conventional method. are formed to form the electrode wiring 11.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

前述のチャネルストッパーの役割について考案する。 Let us consider the role of the channel stopper mentioned above.

第6図は第5図のC部拡大図である。FIG. 6 is an enlarged view of section C in FIG.

通常、P型半導体基板1は最低電位に接続されている。Normally, the P-type semiconductor substrate 1 is connected to the lowest potential.

そして、今、高耐圧パイボーラトランジスタのワースト
バイアス状態として、コレクタ領域4を最高電位に、又
、ベース領域7を最低電位にした時のことを考える。こ
の時、ベース7−絶縁拡散層5間で電気的につながって
いるのを防止できれば問題がな0゜ 上記の様に電圧が印加されたとすると、空乏層が形成さ
れる。第6図で番号21はベースコレクタ間に形成され
な空乏層の端を、番号22は半導体基板を含む絶縁拡散
層−コレクタ間に形成された空乏層の端を、番号23は
N型エピタキシャル層表面にできた反転層を示す、この
反転層23は高耐圧トランジスタを得るためエピタキシ
ャル層4の濃度を比較的低く (10”am’程度)し
であるためできやすいが、これを抑えるためN“型のチ
ャネルストッパー10を設けてあり、この中では不純物
濃度が高濃度であるなめチャネルが急に止まっている。
Now, let us consider a case where the collector region 4 is set to the highest potential and the base region 7 is set to the lowest potential as the worst bias state of the high-voltage piborar transistor. At this time, there is no problem as long as electrical connection between the base 7 and the insulating diffusion layer 5 can be prevented.If a voltage is applied as described above, a depletion layer is formed. In FIG. 6, number 21 indicates the end of the depletion layer formed between the base and collector, number 22 indicates the end of the depletion layer formed between the insulating diffusion layer including the semiconductor substrate and the collector, and number 23 indicates the end of the depletion layer formed between the collector and the insulating diffusion layer including the semiconductor substrate. This inversion layer 23, which represents an inversion layer formed on the surface, is easy to form because the concentration of the epitaxial layer 4 is relatively low (about 10 am') in order to obtain a high voltage transistor. A type channel stopper 10 is provided in which a diagonal channel with a high impurity concentration is abruptly stopped.

以上が高耐圧バイポーラトラジスタのチャネルストッパ
ーの働きであるが、この構造の欠点は、ベース7と絶縁
拡散層5との間の距離が非常に長くなる点にある0例え
ば、60V程度の電位を印加した時、エピタキシャル層
4の比抵抗が数Ω・C程度であれば、拡散の拡がりも考
慮すると、約50μm程度と大きくなる。
The above is the function of the channel stopper of a high voltage bipolar transistor, but the drawback of this structure is that the distance between the base 7 and the insulating diffusion layer 5 is very long. If the resistivity of the epitaxial layer 4 is about several Ω·C when a voltage is applied, the resistivity will be as large as about 50 μm, taking into account the spread of diffusion.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、−導電型半導体基板に一導電型絶縁分離層で
分離された逆導電型素子領域が形成され、該素子領域内
にバイポーラトランジスタが形成されている半導体装置
において、前記トランジスタのベースと前記絶縁分離層
との間に溝が形成され、該溝が絶縁物で埋められれこと
により構成される。
The present invention provides - a semiconductor device in which an element region of opposite conductivity type separated by an insulating separation layer of one conductivity type is formed on a conductivity type semiconductor substrate, and a bipolar transistor is formed in the element region; A groove is formed between the insulation layer and the insulation separation layer, and the groove is filled with an insulator.

〔実施例〕〔Example〕

次に本発明の実施例について図面を参照して説明する。 Next, embodiments of the present invention will be described with reference to the drawings.

第1図(a)、(b)は本発明の第1の実施例の平面図
及びA−A’線断面図である。
FIGS. 1(a) and 1(b) are a plan view and a sectional view taken along the line AA' of a first embodiment of the present invention.

第5図に示した従来例と同様に、半導体基板1に高耐圧
バイポーラトランジスタを設ける。ただし、本実施例で
は、高耐圧バイポーラトランジスタを電気的に絶縁分離
するための絶縁拡散層5とトランジスタのベース7との
間のコレクタ領域(エピタキシャル層4)に表面から2
本の渭12を掘り、絶縁物でその溝12を埋め、その溝
2の間にN+型のチャネルストッパーを設ける。この溝
12は、ベース7及びコレクタコンタクト9を2本の溝
で取囲んである。
Similar to the conventional example shown in FIG. 5, a high breakdown voltage bipolar transistor is provided on the semiconductor substrate 1. However, in this embodiment, the collector region (epitaxial layer 4) between the insulating diffusion layer 5 for electrically isolating the high voltage bipolar transistor and the base 7 of the transistor is
The edges 12 of the book are dug, the grooves 12 are filled with an insulator, and an N+ type channel stopper is provided between the grooves 2. This groove 12 surrounds the base 7 and the collector contact 9 with two grooves.

第2図は第1図(b)のB部拡大図である。FIG. 2 is an enlarged view of part B in FIG. 1(b).

第2図を参照して再び高耐圧バイポーラトランジスタの
ワーストバイアス状態を考えると、ベース−コレクタ間
の空乏層21は絶縁物で埋っな溝12aで止められ、又
、半導体基板1から絶縁拡散層に到る絶縁領域−コレク
タ間の空乏層22は溝12bで止められる。従って、ベ
ースと絶縁領域が導通してしまうことはない。
Considering again the worst bias condition of the high voltage bipolar transistor with reference to FIG. The depletion layer 22 between all the insulating regions and the collector is stopped by the groove 12b. Therefore, electrical conduction between the base and the insulating region will not occur.

ここで、N+チャネルストッパー10は、どちらかの空
乏層が万一、ノイズなどで溝を乗り越えた時、表面にあ
る高濃度の拡散層で空乏層を吸収するものである。
Here, in the N+ channel stopper 10, when one of the depletion layers crosses the groove due to noise or the like, the high concentration diffusion layer on the surface absorbs the depletion layer.

この様にして、チャネルストッパー10の両端に渭を形
成すると、コレクタにできる空乏層の途中から区切れる
ことができるので、絶縁拡散Ji15とベース7の間の
距離を大幅に小さくすることができ、高集積化に適する
構造となる(60■印加時で約20〜30μm)。
By forming the edges at both ends of the channel stopper 10 in this way, the depletion layer formed at the collector can be separated from the middle, so the distance between the insulating diffusion Ji 15 and the base 7 can be significantly reduced. The structure is suitable for high integration (approximately 20 to 30 μm when applying 60 μm).

第3図は本発明の第2の実施例の断面図である。FIG. 3 is a sectional view of a second embodiment of the invention.

第2の実施例は、N+チャネルストッパー10の片側に
だけ溝12を埋めた例であり、その他は第1の実施例と
同じである。第2の実施例は第1の実施例と比べ低い電
圧が印加される様な時、または片側しか高電圧が印加さ
れない様な時に有効である。
The second embodiment is an example in which a groove 12 is filled only on one side of the N+ channel stopper 10, and the other aspects are the same as the first embodiment. The second embodiment is effective when a lower voltage is applied than in the first embodiment, or when a high voltage is applied only on one side.

第4図は本発明の第3の実施例の断面図である。FIG. 4 is a sectional view of a third embodiment of the invention.

第3の実施例は、溝12を設けることは第2の実施例と
同じであるが、N+チャネルストッパー10を省略して
いる。
The third embodiment is the same as the second embodiment in providing the groove 12, but the N+ channel stopper 10 is omitted.

この場合も比較的低い電圧が印加された場合、または、
比較的半導体基板表面濃度の高い場合に有効である。
Again, if a relatively low voltage is applied, or
This is effective when the semiconductor substrate surface concentration is relatively high.

また、これらのチャネルストッパー及び溝はベース領域
の周囲を完全に囲む必要はなく、チャネルができる心配
のある所にのみ入れても効果がある。又、本発明は高耐
圧バイポーラで示したが他の素子に対しても有効で、拡
散抵抗lMOSトランジスタ等の半導体素子のチャンネ
ルル防止にも適用できる。
Furthermore, these channel stoppers and grooves do not need to completely surround the base region, and can be effective even if they are placed only in areas where there is a risk of channel formation. Furthermore, although the present invention has been described with respect to a high-voltage bipolar device, it is also effective for other devices, and can also be applied to channel prevention in semiconductor devices such as diffused resistance IMOS transistors.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明は、バイポーラトランジス
タを含む集積回路において、素子領域を区画する絶縁拡
散層とベース領域との間に溝を設け、この溝を絶縁物で
埋めてチャネルが形成されるのを抑制する構造にしたの
で、古有面積を小さくし、集積度を向上させる効果があ
る。
As explained above, in an integrated circuit including a bipolar transistor, the present invention provides a groove between an insulating diffusion layer that partitions an element region and a base region, and fills this groove with an insulator to form a channel. Since the structure suppresses this, it has the effect of reducing the old area and improving the degree of accumulation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)、(b)は本発明の第1の実施例の平面図
及びA−A’線断面図、第2図は第1図(b)のB部拡
大図、第3図は本発明の第2の実施例の断面図、第4図
は本発明の第3の実施例の断面図、第5図は従来のバイ
ポーラトラジスタの一例の断面図、第6図は第5図のC
部拡大図である。 1・・・P型半導体基板、2・・・N+型埋込層、3・
・・P+型埋込層、4・・・N型エピタキシャル層、5
・・・P+型絶縁拡散層、6・・・酸化膜、7・・・ベ
ース、8・・・エミッタ、9・・・コレクタコンタクト
、10・・・N+チャネルストッパー、11・・・電極
配線、12゜12a、12b−溝、21.22・・・空
乏層、23・・・反転層。
FIGS. 1(a) and (b) are a plan view and a sectional view taken along the line A-A' of the first embodiment of the present invention, FIG. 2 is an enlarged view of section B in FIG. 1(b), and FIG. 4 is a sectional view of a third embodiment of the invention, FIG. 5 is a sectional view of an example of a conventional bipolar transistor, and FIG. 6 is a sectional view of an example of a conventional bipolar transistor. C in the diagram
It is an enlarged view of the part. DESCRIPTION OF SYMBOLS 1... P-type semiconductor substrate, 2... N+ type buried layer, 3...
...P+ type buried layer, 4...N type epitaxial layer, 5
... P+ type insulating diffusion layer, 6... Oxide film, 7... Base, 8... Emitter, 9... Collector contact, 10... N+ channel stopper, 11... Electrode wiring, 12° 12a, 12b-grooves, 21.22...depletion layer, 23...inversion layer.

Claims (1)

【特許請求の範囲】[Claims]  一導電型半導体基板に一導電型絶縁分離層で分離され
た逆導電型素子領域が形成され、該素子領域内にバイポ
ーラトランジスタが形成されている半導体装置において
、前記トランジスタのベースと前記絶縁分離層との間に
溝が形成され、該溝が絶縁物で埋められていることを特
徴とする半導体装置。
In a semiconductor device in which an element region of opposite conductivity type separated by an insulating separation layer of one conductivity type is formed in a semiconductor substrate of one conductivity type, and a bipolar transistor is formed in the element region, a base of the transistor and the insulating separation layer are formed. 1. A semiconductor device, wherein a groove is formed between the semiconductor device and the groove, and the groove is filled with an insulator.
JP63126572A 1988-05-23 1988-05-23 Semiconductor device Pending JPH01293661A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63126572A JPH01293661A (en) 1988-05-23 1988-05-23 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63126572A JPH01293661A (en) 1988-05-23 1988-05-23 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH01293661A true JPH01293661A (en) 1989-11-27

Family

ID=14938485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63126572A Pending JPH01293661A (en) 1988-05-23 1988-05-23 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH01293661A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2785090A1 (en) * 1998-10-23 2000-04-28 St Microelectronics Sa POWER COMPONENT WITH INTERCONNECTIONS
JP2003086826A (en) * 2001-09-12 2003-03-20 Hamamatsu Photonics Kk Photodiode array, solid image pickup unit and radiation detector
US6831338B1 (en) 1998-10-19 2004-12-14 Stmicroelectronics S.A. Power component bearing interconnections
CN112768504A (en) * 2019-11-05 2021-05-07 珠海格力电器股份有限公司 Terminal structure of power semiconductor device and power semiconductor device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5559761A (en) * 1978-10-27 1980-05-06 Hitachi Ltd Semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5559761A (en) * 1978-10-27 1980-05-06 Hitachi Ltd Semiconductor device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6831338B1 (en) 1998-10-19 2004-12-14 Stmicroelectronics S.A. Power component bearing interconnections
FR2785090A1 (en) * 1998-10-23 2000-04-28 St Microelectronics Sa POWER COMPONENT WITH INTERCONNECTIONS
WO2000025363A1 (en) * 1998-10-23 2000-05-04 Stmicroelectronics S.A. Power component bearing interconnections
US6583487B1 (en) 1998-10-23 2003-06-24 Stmicroelectronics S.A. Power component bearing interconnections
JP2003086826A (en) * 2001-09-12 2003-03-20 Hamamatsu Photonics Kk Photodiode array, solid image pickup unit and radiation detector
JP4482253B2 (en) * 2001-09-12 2010-06-16 浜松ホトニクス株式会社 Photodiode array, solid-state imaging device, and radiation detector
CN112768504A (en) * 2019-11-05 2021-05-07 珠海格力电器股份有限公司 Terminal structure of power semiconductor device and power semiconductor device

Similar Documents

Publication Publication Date Title
JPH0357614B2 (en)
JPH04146674A (en) Semiconductor device and manufacture thereof
JPH0336311B2 (en)
KR940022887A (en) Insulated Gate Bipolar Transistor
JP3582890B2 (en) Semiconductor device
US4000507A (en) Semiconductor device having two annular electrodes
JPH01293661A (en) Semiconductor device
JPH0556667B2 (en)
JPS63194367A (en) semiconductor equipment
JP3217552B2 (en) Horizontal high voltage semiconductor device
JP3106844B2 (en) Lateral insulated gate bipolar transistor
JP3033372B2 (en) Semiconductor device
JP2883779B2 (en) Semiconductor device
JPS6230704B2 (en)
JP2518929B2 (en) Bipolar semiconductor integrated circuit
JPS6310578B2 (en)
JPH0136711B2 (en)
JPH0669510A (en) High-breakdown-strength semiconductor device
JP3233002B2 (en) Field effect transistor
JPH05110075A (en) Insulated gate type field effect transistor
JPS5863177A (en) semiconductor equipment
JPH03231471A (en) Insulated-gate field-effect transistor
JPH07114280B2 (en) Semiconductor device
JPH01143253A (en) Semiconductor device and manufacture thereof
JPS63244684A (en) Semiconductor device