[go: up one dir, main page]

JPH01290559A - Production of high-density carbon material - Google Patents

Production of high-density carbon material

Info

Publication number
JPH01290559A
JPH01290559A JP63119586A JP11958688A JPH01290559A JP H01290559 A JPH01290559 A JP H01290559A JP 63119586 A JP63119586 A JP 63119586A JP 11958688 A JP11958688 A JP 11958688A JP H01290559 A JPH01290559 A JP H01290559A
Authority
JP
Japan
Prior art keywords
pitch
globules
mesocarbon
self
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63119586A
Other languages
Japanese (ja)
Other versions
JP2635996B2 (en
Inventor
Noriyoshi Fukuda
福田 典良
Makoto Honma
本間 信
Shosuke Takahashi
高橋 祥介
Takeshi Nagasawa
長沢 健
Takashi Matsumoto
松本 喬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Toyo Tanso Co Ltd
Original Assignee
Toyo Tanso Co Ltd
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tanso Co Ltd, Kawasaki Steel Corp filed Critical Toyo Tanso Co Ltd
Priority to JP63119586A priority Critical patent/JP2635996B2/en
Publication of JPH01290559A publication Critical patent/JPH01290559A/en
Application granted granted Critical
Publication of JP2635996B2 publication Critical patent/JP2635996B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/528Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained from carbonaceous particles with or without other non-organic components

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Coke Industry (AREA)
  • Working-Up Tar And Pitch (AREA)

Abstract

PURPOSE:To efficiently obtain the title material having an excellent sealing property by pulverizing mesocarbon globules to less than a specified diameter when the globules having a self-sintering property are pulverized, formed without using a binder, and calcined. CONSTITUTION:Tar, pitch, etc., are heat-treated, and the self-sintering mesocarbon globules having >=10mum average diameter are separated from the pitch matrix in the heat-treated pitch. The globules are then pulverized to obtain the powder having <=5mum average particle diameter. The powder is formed without using a binder, and calcined. In this case, smaller pulverized globules are preferably used from the standpoint of the sealing property. However, excessive pulverization is not favorable from the economical point of view. Consequently, the globules are generally crushed to <=5mum, and the sealing property for gas or liq. required as the carbon for machine can be secured though it depends on a thickness of a product.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、自己焼結性を有するメソカーボン小球体から
バインダーを使用することなく高密度炭素材料を製造す
る方法に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for producing a high-density carbon material from self-sintering mesocarbon spherules without using a binder.

〈従来の技術〉 バインダーを使用せず高密度・高強度の炭素材料を製造
する方法としてピッチ類を熱処理して得られる熱処理物
を直接10μm以下に微粉砕したもの、あるいは成形体
の焼成時の溶融を防止するため該熱処理の過程に酸化処
理を追加導入して得られる微粉砕品を利用する方法が提
案されている(特公昭53−18359号、特公昭59
−42823号参照)。 しかし、これらの方法は自己
焼結力を付与するための品質調整を1回の熱処理で実施
するのが困難であり工業的に安定した製造が難しく再現
性が困難である。 加えてこの熱処理物はコークス状物
質であるため粉砕に際して針状、葉状に破壊されやすく
、成形体に異方性が出やすいこと、さらには事前の熱処
理温度が高いため成形体の焼成時のコークスの収縮が高
温側で急速に起りクラックが発生しやすく大型化が難し
いといった問題も有している。
<Prior art> As a method for manufacturing high-density, high-strength carbon materials without using a binder, a heat-treated product obtained by heat-treating pitches is directly pulverized to 10 μm or less, or a molded product is pulverized during firing. In order to prevent melting, a method has been proposed in which a finely ground product obtained by additionally introducing oxidation treatment into the heat treatment process is used (Japanese Patent Publication No. 53-18359, Japanese Patent Publication No. 53-18359,
-42823). However, in these methods, it is difficult to carry out quality adjustment for imparting self-sintering power in a single heat treatment, and industrially stable production is difficult and reproducibility is difficult. In addition, since this heat-treated product is a coke-like substance, it is easily broken into needles and leaves during crushing, and anisotropy is likely to occur in the molded product.Furthermore, because the pre-heat treatment temperature is high, coke is generated during firing of the molded product. Another problem is that shrinkage occurs rapidly at high temperatures, making cracks easy to occur and making it difficult to increase the size.

これに対して、自己焼結性を有するメソカーボン小球体
は、上記諸問題を解決して従来の骨材コークスにバイン
ダーを添加する方法や熱処理物を直接微粉砕する方法に
くらべ高密度・高強度の炭素材料を工業的に製造するう
えで大きな利点を有する原料である。
On the other hand, mesocarbon spherules with self-sintering properties solve the above problems and have a higher density and higher density compared to the conventional method of adding binder to aggregate coke or directly pulverizing heat-treated material It is a raw material that has great advantages in industrially producing strong carbon materials.

〈発明が解決しようとする課題〉 ところで、通常10μm以上の平均粒径を有するメソカ
ーボン小球体から製造した炭素材料は若干の大きな気孔
を有しており、ガスあるいは液体に対して完全なシール
性が要求される、例えば機械用カーボン等への利用はそ
のままでは無理であった。 通常の場合、シール性を向
上させる方法として樹脂等による含浸を実施して不浸透
性を実現するが、樹脂等の含浸は多大の労力を要するこ
とおよび樹脂類の耐熱温度の関係から使用可能な温度が
最大150℃程度という大きな欠点があった。 もちろ
ん、自己焼結性を有するメソカーボン小球体から得られ
る炭素材料に含浸処理を行うことは可能であるが、上記
と同様の問題が生じる。
<Problems to be Solved by the Invention> By the way, carbon materials manufactured from mesocarbon spherules having an average particle size of 10 μm or more usually have somewhat large pores, and do not have perfect sealing properties against gas or liquid. It was impossible to use it as it is, for example, in mechanical carbon, which requires the following. In normal cases, impregnation with resin, etc. is implemented as a way to improve sealing performance to achieve impermeability, but impregnation with resin, etc. requires a lot of labor, and due to the heat resistance temperature of resins, it is not possible to use it. A major drawback was that the maximum temperature was about 150°C. Of course, it is possible to impregnate a carbon material obtained from mesocarbon spherules having self-sintering properties, but the same problems as above arise.

一方、メソカーボン小球体の製造原料であるタールピッ
チ等の熱処理条件を制御することにより直接101.1
m以下の微細なメソカーボン小球体を製造することも可
能であるが、この場合は、通常原料ピッチ等に対するメ
ソカーボン小球体の歩留が数%と極めて低いという経済
的な問題がある。
On the other hand, by controlling the heat treatment conditions such as tar pitch, which is the raw material for producing mesocarbon spherules, it is possible to directly
Although it is possible to produce mesocarbon spherules with a size of less than m, there is an economical problem in that the yield of mesocarbon spherules is usually extremely low at a few percent relative to the pitch of the raw material.

本発明は、バインダーを使用することなく経済的に効率
よく、シール性の著しく改善された高密度炭素材料を製
造する方法を提供することを目的としている。
An object of the present invention is to provide an economically efficient method for producing a high-density carbon material with significantly improved sealing properties without using a binder.

〈課題を解決するための手段〉 上記目的を達成するために、本発明によれば、タール・
ピッチ類を熱処理したのち、熱処理ピッチ中のピッチマ
トリックスから分離して得られる平均粒径が10μm以
上の自己焼結性を有するメソカーボン小球体を、微粉砕
して平均粒径が5μm以下の粉末とし、該粉末をバイン
ダーを使用することなく成形し、焼成することを特徴と
する高密度炭素材料の製造方法が提供される。
<Means for Solving the Problems> In order to achieve the above object, according to the present invention, tar
After heat-treating pitches, mesocarbon spherules with self-sintering properties with an average particle size of 10 μm or more obtained by separating from the pitch matrix in the heat-treated pitch are finely pulverized to produce powder with an average particle size of 5 μm or less. Provided is a method for producing a high-density carbon material, characterized in that the powder is molded and fired without using a binder.

以下に本発明をさらに詳細に説明する。The present invention will be explained in more detail below.

本発明において用いる自己焼結性を有するメソカーボン
小球体は、タールピッチまたは石油系重質油を例えば3
50〜500℃の温度で加熱したときにピッチ中に生成
するメソカーボン小球体(別名球晶とも称する)を、そ
の表面にバインダー成分である一部ピッチ分が均一に分
散するように熱処理ピッチ中から分離したものであり、
炭素材料を製造するにあたりバインダーを使用すること
なく成形、焼成、黒鉛化が可能なものである。
The self-sintering mesocarbon spherules used in the present invention are made of tar pitch or petroleum heavy oil, for example,
The mesocarbon spherules (also called spherulites) that are generated in the pitch when heated at a temperature of 50 to 500°C are heat-treated during the pitch so that a portion of the pitch, which is a binder component, is uniformly dispersed on the surface. It is separated from
In manufacturing carbon materials, it is possible to mold, bake, and graphitize without using a binder.

自己焼結性を有するメンカーボン小球体の製造方法の一
例としては、本出願人等が先ぎに特公昭60−2536
4号で示したようなピッチマトリックス中に生成したメ
ソカーボン小球体をピッチ中のβ成分(ベンゼンに不溶
でキノリンに可溶な成分)等の重質成分とともに溶剤分
別したのち、不活性雰囲気中において200〜500℃
の温度で力焼する方法があるが、この方法に限定するも
のではない。
As an example of a method for producing mencarbon spherules having self-sintering properties, the present applicant et al.
After the mesocarbon spherules formed in the pitch matrix as shown in No. 4 are separated in a solvent together with heavy components such as the β component (component insoluble in benzene and soluble in quinoline) in the pitch, they are separated in an inert atmosphere. at 200-500℃
There is a method of force-firing at a temperature of , but it is not limited to this method.

炭素材料のシール性、即ち気孔分布を調整する方法とし
ては、一般の炭素材料の製造法にあっては骨材コークス
の粒度調整が極めて重要であることは破く知られている
所である。 即ち、平均気孔径が小さくシール性の優れ
た炭素材料を製造するには、できるだけ粒径の小さな骨
材コークスを使用することが好ましいが、−方で粒径を
小さくするとバインダーの使用量が多くなり、その結果
成形体の焼成時にバインダーの揮発に起因する気孔が生
じるためち密化および微細気孔化が難しいという一面を
持っている。  しかし、自己焼結性を有するメンカー
ボン小球体の場合には、バインダーの揮発に起因する気
孔が生じないため、平均粒径をより小さくしても上記の
ような問題は発生しない。
As a method for adjusting the sealing properties of carbon materials, that is, the pore distribution, it is well known that in general carbon material manufacturing methods, particle size adjustment of aggregate coke is extremely important. In other words, in order to produce a carbon material with a small average pore size and excellent sealing properties, it is preferable to use aggregate coke with as small a particle size as possible; As a result, pores are generated due to volatilization of the binder during firing of the molded body, so it is difficult to make the molded body dense and finely porous. However, in the case of mencarbon spherules having self-sintering properties, no pores are generated due to volatilization of the binder, so even if the average particle size is made smaller, the above problem does not occur.

通常メソカーボン小球体の粒径制御は、メソカーボン小
球体を生成させる原料ピッチ類の熱処理条件で決定され
る。 即ち、熱処理時の処理温度を上げ保持時間を長く
する等条件を苛酷にするに従ってメソカーボン小球体の
粒径は増大するとともに歩留も増加する。  しかし、
熱処理条件が苛酷になりすぎるとメゾカーボン小球体同
士が合体して球体として存在し得なくなり、結果的にメ
ソカーボン小球体からの炭素材の特徴である強度、電気
比抵抗、熱膨張係数等の物理的特性の等方性化が失なわ
れることに加え、相対的にバインダー成分である熱処理
ピッチ中のβ成分等の重質成分が減少するため、強い自
己焼結性を有することが困難となる。 −方、熱処理条
件を緩和してメソカーボン小球体の粒径を小さくする場
合は、原料ピッチに対するメソカーボン小球体の歩留が
大巾に低下する。 こうした関係から、通常メソカーボ
ン小球体の平均粒径は10〜20μm程度に制御されて
いる。
Normally, the particle size control of mesocarbon spherules is determined by the heat treatment conditions of raw material pitches for producing mesocarbon spherules. That is, as conditions become more severe, such as raising the treatment temperature and lengthening the holding time during heat treatment, the particle size of the mesocarbon spherules increases and the yield also increases. but,
If the heat treatment conditions become too harsh, the mesocarbon spherules will coalesce and will no longer exist as a sphere, resulting in a decrease in the characteristics of the carbon material made from the mesocarbon spherules, such as strength, electrical resistivity, thermal expansion coefficient, etc. In addition to the loss of isotropy in physical properties, it is difficult to have strong self-sintering properties due to a relative decrease in heavy components such as β components in the heat-treated pitch, which is a binder component. Become. - On the other hand, when the particle size of the mesocarbon spherules is reduced by relaxing the heat treatment conditions, the yield of the mesocarbon spherules relative to the raw material pitch is greatly reduced. Because of this relationship, the average particle size of mesocarbon small spheres is usually controlled to about 10 to 20 μm.

そこで、これ等10〜20μmのメソカーボン小球体を
さらに微粉砕することによりシール性の改善された高密
度の炭素材料が容易に製造できることを見いだした。 
つまり、メソカーボン小球体は、例えばジェット型超微
粉砕機を使用すれば容易に平均粒径5μm以下の超微粉
に粉砕可能であり、しかも驚くべきことには通常のコー
クスとは異なり、針状に粉砕されることはなく、はぼ球
状を保持したまま粉砕できる。 その上、自己焼結性は
、粉砕前に比較してより強くなり、結果として細粒化と
自己焼結性の増加による、ち密化と気孔径の減少が達成
された。 即ち、メソカーボン小球体の粒径を小さくす
るために、原料ピッチ類の熱処理条件を緩和して歩留を
低下させることなく、ち密で気孔径の小さな炭素材料の
製造が可能となった。
Therefore, it has been discovered that a high-density carbon material with improved sealing properties can be easily produced by further pulverizing these 10-20 μm mesocarbon spherules.
In other words, mesocarbon spherules can be easily pulverized into ultrafine powder with an average particle size of 5 μm or less using, for example, a jet-type ultrafine pulverizer. It is not crushed into pieces, and can be crushed while retaining its spherical shape. Moreover, the self-sintering property became stronger compared to before milling, and as a result, densification and reduction of pore size were achieved due to grain refinement and increased self-sintering property. That is, in order to reduce the particle size of the mesocarbon spherules, it has become possible to produce a dense carbon material with a small pore size without reducing the yield by relaxing the heat treatment conditions for the raw material pitch.

通常上記粉砕後のメソカーボン小球体の粒径は小さいほ
どシール性の向上の面からは好ましいが、粉砕効率の関
係からあまり小さくすることは経済性の観点から好まし
くない、 一般に、5μm以下に粉砕を行えば、製品の
厚みにもよるがIa械用カーボンとして要求されるガス
あるいは液体に対するシール性が確保される。
Normally, the smaller the particle size of the mesocarbon spherules after pulverization, the better from the perspective of improving sealing performance, but from the viewpoint of pulverization efficiency, it is not preferable to make the particle size too small from an economic point of view.In general, pulverization to 5 μm or less is preferable. If this is done, the gas or liquid sealing performance required for Ia mechanical carbon can be ensured, although it depends on the thickness of the product.

また、粉砕方法としては、先きに述べたジェット型粉砕
機のほか、市販されている超微粉砕機であるマイクロナ
イザー、マイクロアトマイザ−、ミクロンミル、マジャ
ックミル、分級衝撃ミル、らいかい機等の利用が可能で
ある。
In addition to the jet-type pulverizer mentioned above, the pulverizing method can be used as a commercially available ultra-fine pulverizer such as a micronizer, a micro-atomizer, a micron mill, a majac mill, a classification impact mill, or a liar mill. etc. can be used.

平均粒径が5μm以下になるよう粉砕された自己焼結性
を有するメソカーボン小球体粉末は、バインダーを使用
することなく所望の形状に成形し、常法により焼成し、
さらに必要に応じて黒鉛化することにより高密度炭素材
料が得られる。
Mesocarbon small spherical powder with self-sintering properties that has been pulverized to have an average particle size of 5 μm or less is molded into a desired shape without using a binder, and fired by a conventional method.
A high-density carbon material can be obtained by further graphitizing the material if necessary.

〈実施例〉 以下に本発明を実施例に基づき具体的に説明する。<Example> The present invention will be specifically explained below based on Examples.

(実施例1) 平均粒径15.5μIの自己焼結性を有するメソカーボ
ン小球体(商品名KMFC川崎製鉄(株)製)をホソカ
ワミクロン(株)類ジェットミルを使用して微粉砕した
。 得られた微粉砕品の平均粒径は5.0μmであった
。 該微粉砕品をバインダーを使用することなく成形圧
力800 kg/ cab”で80mmφX30mmに
成形後、常法に従って焼成・黒鉛化を行った。 焼成温
度は1000℃、昇温速度は10℃/時とした。 また
、黒鉛化温度は2500℃、昇温速度は室温〜1000
℃/1時間、 tooo〜2500℃/4時間とした。
(Example 1) Mesocarbon small spheres (trade name: KMFC, manufactured by Kawasaki Steel Corporation) having an average particle diameter of 15.5 μI and having self-sintering properties were finely pulverized using a jet mill manufactured by Hosokawa Micron Corporation. The average particle size of the resulting finely pulverized product was 5.0 μm. The finely pulverized product was molded into a size of 80 mmφ x 30 mm at a molding pressure of 800 kg/cab'' without using a binder, and then fired and graphitized according to a conventional method.The firing temperature was 1000°C, and the heating rate was 10°C/hour. In addition, the graphitization temperature was 2500℃, and the temperature increase rate was from room temperature to 1000℃.
℃/1 hour, too~2500℃/4 hours.

 得られた黒鉛材料の物理特性値および気孔分布をそれ
ぞれ表−1および第1図に示した。
The physical property values and pore distribution of the obtained graphite material are shown in Table 1 and FIG. 1, respectively.

(実施例2) 実施例1における平均粒径15.5μmの自己焼結性を
有するメソカーボン小球体をホソカワミクロン(株)類
ジェットミルを使用して平均粒径3.3μmに微粉砕し
た。 得られた微粉砕品をバインダーを使用することな
〈実施例1と同様に処理して黒鉛材料を得た。 該黒鉛
材料の物理特性および気孔分布を表−1および第1図に
示した。
(Example 2) The mesocarbon small spheres having self-sintering property and having an average particle size of 15.5 μm in Example 1 were pulverized to an average particle size of 3.3 μm using a jet mill manufactured by Hosokawa Micron Co., Ltd. The obtained finely pulverized product was treated in the same manner as in Example 1 without using a binder to obtain a graphite material. The physical properties and pore distribution of the graphite material are shown in Table 1 and FIG.

(実施例3) 実施例2における平均粒径15,5μIの自己焼結性を
有するメソカーボン小球体をホソカワミクロン(株)族
ジェットミルを使用して平均粒径1,5μmに微粉砕し
た。 得られた微粉砕品をバインダーを使用することな
〈実施例1と同様に処理して黒鉛材料を得た。 該黒鉛
材料の物理特性および気孔分布を表−1および第1図に
示した。
(Example 3) The self-sintering mesocarbon small spheres having an average particle size of 15.5 μI in Example 2 were pulverized to an average particle size of 1.5 μm using a jet mill manufactured by Hosokawa Micron Corporation. The obtained finely pulverized product was treated in the same manner as in Example 1 without using a binder to obtain a graphite material. The physical properties and pore distribution of the graphite material are shown in Table 1 and FIG.

(比較例1) 実施例1における平均粒径15.5μmの自己焼結性を
有するメソカーボン小球体を微粉砕することなくそのま
ま実施例1と同様の条件で成形、焼成、黒鉛化を行った
。 得られた黒鉛材料の物理特性値および気孔分布をそ
れぞれ表−1および第1図に示した。
(Comparative Example 1) The mesocarbon small spheres having self-sintering properties with an average particle size of 15.5 μm in Example 1 were molded, fired, and graphitized under the same conditions as in Example 1 without being pulverized. . The physical property values and pore distribution of the obtained graphite material are shown in Table 1 and FIG. 1, respectively.

実施例1〜3で得られた黒鉛材料はいずれも比較例にく
らべ高密度化し、気孔径も極めて小さくなっており、シ
ール性が重要視される機械用カーボンに好適であること
が示されている。
The graphite materials obtained in Examples 1 to 3 all had higher density and extremely smaller pore diameters than the comparative examples, and were shown to be suitable for mechanical carbon where sealing performance is important. There is.

〈発明の効果〉 本発明は、以上説明したように構成されているので、自
己焼結性を有するメソカーボン小球体から、バインダー
を使用することなく、シール性の著しく改善された高密
度炭素材料を製造することができる。
<Effects of the Invention> Since the present invention is configured as described above, a high-density carbon material with significantly improved sealing properties can be produced from mesocarbon small spheres having self-sintering properties without using a binder. can be manufactured.

本発明により得られた高密度炭素材料は、例えば放電加
工用電極等の電気科学用、坩堝、ボート材等の冶金用、
さらに原子炉用黒鉛、特にシール性が要求される機械用
カーボン等の用途に使用できるものである。
The high-density carbon material obtained by the present invention can be used for electrical science such as electrodes for electrical discharge machining, for metallurgy such as crucibles and boat materials, etc.
Furthermore, it can be used for applications such as graphite for nuclear reactors, and especially carbon for machines that require sealing properties.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は高密度炭素材料の気孔分布を示す図である。 FIG、I S L 4−イ杢(pm) 手続ネ甫正書(自発) 平成01年07月10日 昭和63年特許@第119586号 2、発明の名称 高密度炭素材料の製造方法 3、補正をする者 事件との関係   特許出願人 名 称  (125)川崎製鉄株式会社名 称 東洋炭
素株式会社 4、代理人 〒101電話864−4498住  所 
 東京都千代田区岩本町3丁目2番2号2、特許請求の
範囲 (1)タールピッチ類を熱処理したのち、熱処理ピッチ
中のピッチマトリックスから分離して得られる平均粒径
が10μm以上の自己焼結性を有するメンカーボン小球
体を、微粉砕して平均粒径が5μm以下の粉末とし、該
粉末をバインダーを使用すことなく成形し、焼成するこ
とを特徴とする高密度炭素材料の製造方法。 (2)前記自己焼結性を有するメソカーボン小球体が、
タールピッチまたは石油系重質油を350〜500℃の
温度で加熱処理し、生成するメソカーボン小球体表面に
一部ピッチ分が均一に分散するように熱処理ピッチ中か
ら分離したものである請求項1記載の高密度炭素材料の
製造方法。 (3)前記自己焼結性を有するメソカーボン小球体が、
ピッチマトリックス中に生成したメソカーボン小球体を
ピッチ中のβ成分(ベンゼンに不溶でキノリンに可溶な
成分)を含む重質成分とともに溶剤分別したのち、不活
性7囲気中において200〜500℃の温度で力焼した
ものである請求項1記載の高密度炭素材料の製造方法。 (4)前記微粉砕が、ジェット型粉砕機、マイクロナイ
ザー、マイクロアトマイザ−、ミクロンミル、マジャッ
クミル、分級衝撃ミルまたはらいかい機を用いて行われ
る請求項1記載の高密度炭素材料の製造方法。 (5)平均粒径15.5μmの自己焼結性を有するメソ
カーボン小球体をジェットミルを使用して平均粒径5.
0μmに微粉砕し、該微粉砕品をバインダーを使用する
ことなく成形圧力800 kg/cm2で成形後、焼成
温度1000℃、昇温速度10℃/時として焼成し、黒
鉛化温度2500℃、昇温速度室温〜1000℃/1時
間、1000〜b 1 、96g/cm’ 、曲げ強度1150kg/cm
’、圧縮強度2065kg/ca+2、ショアー硬度C
I(,190、電気比抵抗1520μΩ−cm、平均気
孔径0.048μmおよび全気孔量o、os9cc/g
の物理特性を有する黒鉛材料を得ることを特徴とする高
密度炭素材料の製造方法。 (6)平均粒径15.5μmの自己焼結性を有するメソ
カーボン小球体をジェットミルを使用して平均粒径3.
3μmに微粉砕し、該微粉砕品をバインダーを使用する
ことなく成形圧力800 kg/cm2で成形後、焼成
温度1000℃、昇温速度10℃/時として焼成し、黒
鉛化温度2500℃、昇温速度室温〜1000℃/1時
間、1000〜b 1 、98g/cm3.曲げ強度1230 kg/cm
2、圧縮強度2140kg/cI11’、ショアー硬度
(H,)93、電気比抵抗1730μΩ−cm、平均気
孔径0.034μmおよび全気孔量0.058cc/g
の物理特性を有する黒鉛材料を得ることを特徴とする高
密度炭素材料の製造方法。 (7)平均粒径15.5μmの自己焼結性を有するメソ
カーボン小球体をジェットミルを使用して平均粒径1.
5μmに微粉砕し、該微粉砕品をバインダーを使用する
ことなく成形圧力800 kg/cm2で成形後、焼成
温度1000℃、昇温速度10℃/時として焼成し、黒
鉛化温度2500℃、昇温速度室温〜1000℃/1時
間、1000〜b 2、01 g7cm″、曲げ強度1250kg/cn+
2、圧縮強度2120kg/cm’、ショアー硬度(H
,)98、電気比抵抗1870μΩ−cm、平均気孔径
0.025μmおよび全気孔量0.051cc/gの物
理特性を有する黒鉛材料を得ることを特徴とする高密度
炭素材料の製造方法。
FIG. 1 is a diagram showing the pore distribution of a high-density carbon material. FIG, I S L 4-i heather (pm) Procedural supplementary text (spontaneous) July 10, 1999 1986 patent @ No. 119586 2, title of invention Method for manufacturing high-density carbon material 3, amendment Relationship with the case involving a person who does
3-2-2-2 Iwamoto-cho, Chiyoda-ku, Tokyo, Claims (1) A self-sintered product with an average particle size of 10 μm or more obtained by heat-treating tar pitch and separating it from the pitch matrix in the heat-treated pitch. A method for producing a high-density carbon material, which comprises finely pulverizing mencarbon small spheres having crystallization properties into a powder with an average particle size of 5 μm or less, molding the powder without using a binder, and firing the powder. . (2) The mesocarbon spherules having self-sintering properties are
A claim in which tar pitch or petroleum-based heavy oil is heat-treated at a temperature of 350 to 500°C and separated from the heat-treated pitch so that a portion of the pitch is uniformly dispersed on the surface of the resulting mesocarbon spherules. 1. The method for producing a high-density carbon material according to 1. (3) The mesocarbon spherules having self-sintering properties are
After solvent fractionation of the mesocarbon spherules formed in the pitch matrix along with the heavy components including the β component (component insoluble in benzene and soluble in quinoline) in the pitch, the mesocarbon spherules were heated at 200 to 500°C in an inert atmosphere. The method for producing a high-density carbon material according to claim 1, wherein the high-density carbon material is calcined at high temperature. (4) The production of the high-density carbon material according to claim 1, wherein the fine pulverization is performed using a jet-type pulverizer, a micronizer, a microatomizer, a micron mill, a Majac mill, a classification impact mill, or a sieve. Method. (5) Using a jet mill, mesocarbon small spheres having an average particle size of 15.5 μm and having self-sintering properties were formed with an average particle size of 5.5 μm.
The finely pulverized product was molded at a molding pressure of 800 kg/cm2 without using a binder, and then fired at a firing temperature of 1000°C and a temperature increase rate of 10°C/hour. Temperature rate room temperature to 1000°C/1 hour, 1000 to b 1 , 96g/cm', bending strength 1150kg/cm
', Compressive strength 2065kg/ca+2, Shore hardness C
I (,190, electrical resistivity 1520 μΩ-cm, average pore diameter 0.048 μm and total pore volume o, os9cc/g
A method for producing a high-density carbon material, characterized by obtaining a graphite material having physical properties. (6) Using a jet mill, mesocarbon small spheres with an average particle size of 15.5 μm and having self-sintering properties were formed with an average particle size of 3.5 μm.
The finely pulverized product was molded at a molding pressure of 800 kg/cm2 without using a binder, and then fired at a firing temperature of 1000°C and a heating rate of 10°C/hour. Temperature rate room temperature to 1000°C/1 hour, 1000 to b1, 98g/cm3. Bending strength 1230 kg/cm
2. Compressive strength 2140 kg/cI11', Shore hardness (H,) 93, electrical resistivity 1730 μΩ-cm, average pore diameter 0.034 μm and total pore amount 0.058 cc/g
A method for producing a high-density carbon material, characterized by obtaining a graphite material having physical properties. (7) Using a jet mill, mesocarbon small spheres with an average particle size of 15.5 μm and having self-sintering properties were produced with an average particle size of 1.5 μm.
The finely pulverized product was molded at a molding pressure of 800 kg/cm2 without using a binder, and then fired at a firing temperature of 1000°C and a heating rate of 10°C/hour. Temperature rate room temperature to 1000℃/1 hour, 1000 to b 2,01 g7cm'', bending strength 1250kg/cn+
2. Compressive strength 2120kg/cm', Shore hardness (H
, ) 98, a method for producing a high-density carbon material, characterized in that a graphite material having physical properties of an electrical resistivity of 1870 μΩ-cm, an average pore diameter of 0.025 μm, and a total pore amount of 0.051 cc/g is obtained.

Claims (1)

【特許請求の範囲】[Claims] (1)タール・ピッチ類を熱処理したのち、熱処理ピッ
チ中のピッチマトリックスから分離して得られる平均粒
径が10μm以上の自己焼結性を有するメソカーボン小
球体を、微粉砕して平均粒径が5μm以下の粉末とし、
該粉末をバインダーを使用することなく成形し、焼成す
ることを特徴とする高密度炭素材料の製造方法。
(1) After heat-treating tar and pitch, mesocarbon spherules with an average particle size of 10 μm or more and having self-sintering properties are obtained by separating them from the pitch matrix in the heat-treated pitch, and are finely pulverized to obtain an average particle size of 10 μm or more. is a powder with a diameter of 5 μm or less,
A method for producing a high-density carbon material, which comprises molding and firing the powder without using a binder.
JP63119586A 1988-05-17 1988-05-17 Powder for molded high-density carbon material and method for producing high-density carbon material Expired - Lifetime JP2635996B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63119586A JP2635996B2 (en) 1988-05-17 1988-05-17 Powder for molded high-density carbon material and method for producing high-density carbon material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63119586A JP2635996B2 (en) 1988-05-17 1988-05-17 Powder for molded high-density carbon material and method for producing high-density carbon material

Publications (2)

Publication Number Publication Date
JPH01290559A true JPH01290559A (en) 1989-11-22
JP2635996B2 JP2635996B2 (en) 1997-07-30

Family

ID=14765035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63119586A Expired - Lifetime JP2635996B2 (en) 1988-05-17 1988-05-17 Powder for molded high-density carbon material and method for producing high-density carbon material

Country Status (1)

Country Link
JP (1) JP2635996B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993002988A1 (en) * 1991-08-02 1993-02-18 Osaka Gas Company Ltd. Process for producing sintered mesocarbon microbeads and quality control therefor
WO1996004204A1 (en) * 1994-08-03 1996-02-15 Maxwell Wilkinson Manufacture of carbon compacts/pellets from cellulose based materials
US5522127A (en) * 1994-02-10 1996-06-04 Matsushita Electric Industrial Co., Ltd. Method of manufacturing a non-aqueous electrolyte secondary cell
KR20020036676A (en) * 2001-09-13 2002-05-16 극동씰테크 주식회사 Method for carbon seal with coal tar pitch
JP2009242196A (en) * 2008-03-31 2009-10-22 Ibiden Co Ltd Graphite elastic body and its manufacturing method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61122110A (en) * 1984-11-16 1986-06-10 Agency Of Ind Science & Technol Production of high-density carbon material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61122110A (en) * 1984-11-16 1986-06-10 Agency Of Ind Science & Technol Production of high-density carbon material

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993002988A1 (en) * 1991-08-02 1993-02-18 Osaka Gas Company Ltd. Process for producing sintered mesocarbon microbeads and quality control therefor
US5395562A (en) * 1991-08-02 1995-03-07 Osaka Gas Company, Ltd. Method of producing mesocarbon microbeads and method for quality control of sintered mesocarbon products
US5522127A (en) * 1994-02-10 1996-06-04 Matsushita Electric Industrial Co., Ltd. Method of manufacturing a non-aqueous electrolyte secondary cell
US5789111A (en) * 1994-02-10 1998-08-04 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary cell and method of manufacturing same
WO1996004204A1 (en) * 1994-08-03 1996-02-15 Maxwell Wilkinson Manufacture of carbon compacts/pellets from cellulose based materials
KR20020036676A (en) * 2001-09-13 2002-05-16 극동씰테크 주식회사 Method for carbon seal with coal tar pitch
JP2009242196A (en) * 2008-03-31 2009-10-22 Ibiden Co Ltd Graphite elastic body and its manufacturing method

Also Published As

Publication number Publication date
JP2635996B2 (en) 1997-07-30

Similar Documents

Publication Publication Date Title
DE2751769A1 (en) SILICON CARBIDE POWDER AND METHOD FOR MANUFACTURING A SINTER BODY FROM THE POWDER
CN105645960A (en) Method for preparing isotropic graphite from isotropic asphalt with high softening point through self-sintering
CN110655413B (en) Preparation method of isotropic graphite material
DE2923729C2 (en)
JPH01290559A (en) Production of high-density carbon material
JPH0124724B2 (en)
JPH0234508A (en) Preparation of isotropic carbon material having high density
JP2001130963A (en) Method for producing isotropic high-density carbon material
JPH07223809A (en) Graphite material and production thereof
JP2558173B2 (en) Method for producing carbon material having fine pores
CN111348916A (en) A kind of high-performance boron carbide grinding medium, preparation method and application thereof
JP3278190B2 (en) Method for producing isotropic high-density graphite material
JP2924061B2 (en) Production method of raw material powder for carbon material
JPH0132162B2 (en)
JP2924062B2 (en) Production method of raw material powder for carbon material
JP2808807B2 (en) Production method of raw material powder for carbon material
JP2697482B2 (en) Method for producing pitch-based material and method for producing carbon material using the same as raw material
JPH04321560A (en) Production of isotropic graphite material having high strength
JPH0158125B2 (en)
JPS63151610A (en) Raw material composition for producing large-sized carbonaceous material
WO2023062154A1 (en) Process for producing silicon pellets and for melting pellets produced
JP3599062B2 (en) Method for producing carbon material having fine optically anisotropic structure
JPH06172032A (en) Method for producing boron carbide / carbon composite neutron shielding material
JPH0288464A (en) Production of density and high strength carbon material and graphite electrode material for electric spark machining
JPH01103956A (en) Graphite electrode stock for discharge processing

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080425

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090425

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090425

Year of fee payment: 12