[go: up one dir, main page]

JPH01288338A - Catalyst for catalytic reduction of nitrogen oxides - Google Patents

Catalyst for catalytic reduction of nitrogen oxides

Info

Publication number
JPH01288338A
JPH01288338A JP63118858A JP11885888A JPH01288338A JP H01288338 A JPH01288338 A JP H01288338A JP 63118858 A JP63118858 A JP 63118858A JP 11885888 A JP11885888 A JP 11885888A JP H01288338 A JPH01288338 A JP H01288338A
Authority
JP
Japan
Prior art keywords
catalyst
oxide
pore volume
pores
heavy metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63118858A
Other languages
Japanese (ja)
Other versions
JP2638067B2 (en
Inventor
Nobue Tejima
手嶋 信江
Yasuyoshi Kato
泰良 加藤
Kunihiko Konishi
邦彦 小西
Toshiaki Matsuda
松田 敏昭
Hiroshi Akama
弘 赤間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP63118858A priority Critical patent/JP2638067B2/en
Publication of JPH01288338A publication Critical patent/JPH01288338A/en
Application granted granted Critical
Publication of JP2638067B2 publication Critical patent/JP2638067B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To obtain a catalyst prevented from a degradation due to heavy metal compound vapor in a flue gas by using a catalyst, which is composed of titanium oxide, one or more oxides of V, Cu, Fe or Mn and an oxide of Mo or W and which has few fine pores. CONSTITUTION:A catalyst for reduction of nitrogen oxide with ammonia as a reducing agent is composed of a titanium oxide, one or more oxides of V, Cu, Fe or Mn and an oxide of Mo of W. A summation of mole numbers of Mo or W oxide per unit specific surface area of this catalyst is specified to be 2X10<-6>-20X10<-6>mol/m<2>. Furthermore, a total pore volume of this catalyst is specified to the 0.2ml/g or larger and a volume of pores not larger than 30Angstrom in diameter is specified to the 25% or less of the total pore volume. As this catalyst has a reduced proportion of fine pores so as to prevent cloggings of pores, it is possible to keep a high denitration performance for a long time even in a flue gas containing a large amount of heavy metal compound vapor.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、アンモニアを還元剤とする窒素酸化物還元用
触媒に係り、特に重金属酸化物を多量に含有する排ガス
中の窒素酸化物の接触還元用触媒に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a catalyst for reducing nitrogen oxides using ammonia as a reducing agent, and in particular to a catalyst for reducing nitrogen oxides in exhaust gas containing a large amount of heavy metal oxides. Regarding reduction catalysts.

〔従来の技術〕[Conventional technology]

各種固定発生源から排出された窒素酸化物(NOx)は
、硫黄酸化物(SOx)とともに主要な大気汚染物質で
ある。このNOxの除去方法としては、種々の方法があ
るが、触媒を用いて排ガス中に添加したアンモニアで選
択的に還元する方法が主流となっている。このアンモニ
ア接触還元脱硝触媒には、石油、石炭などの化石燃料の
燃焼排ガスに含まれるSOxや灰分によって劣化しない
ことが必要であり、この要求を満たすものとして、酸化
チタンをベースにした各種の触媒が発明され、現在すで
に広く実用化されている(特開昭50−128681号
、特開昭53−28148号)。
Nitrogen oxides (NOx) emitted from various stationary sources are major air pollutants along with sulfur oxides (SOx). Although there are various methods for removing NOx, the mainstream method is to selectively reduce the NOx with ammonia added to the exhaust gas using a catalyst. This ammonia catalytic reduction denitrification catalyst must not be degraded by SOx or ash contained in the combustion exhaust gas of fossil fuels such as oil and coal. was invented and has already been widely put into practical use (Japanese Patent Application Laid-open No. 50-128681, JP-A No. 53-28148).

これらの触媒は、メタチタン酸または酸化チタンにバナ
ジウム、モリブデン、タングステン、鉄、クロムなどの
遷移金属元素の酸化物を混練、含浸などで添加し焼成し
たものであり、通常の石油や石炭の排煙脱硝触媒として
は活性、寿命ともに優れたものである。
These catalysts are made by adding oxides of transition metal elements such as vanadium, molybdenum, tungsten, iron, and chromium to metatitanic acid or titanium oxide through kneading, impregnation, etc., and then firing them. As a denitrification catalyst, it has excellent activity and longevity.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、低質の石炭燃焼排ガスやヨーロッパにお
いて多用されている、第1図に示した灰循環を有するボ
イラの排ガスなどの重金属酸化物蒸気を多量に含有する
排ガスを処理する場合の触媒活性の低下については考慮
されていなかった。
However, when treating exhaust gas containing a large amount of heavy metal oxide vapor, such as low-quality coal combustion exhaust gas or exhaust gas from a boiler with ash circulation shown in Figure 1, which is frequently used in Europe, there is a possibility of a decrease in catalytic activity. was not taken into account.

特に第1図に示すように、電気集じん器7で捕集した燃
焼灰を、天竜環路を介して火炉1に再循環し、火炉内で
熔融スラグとし外部に取出す燃焼方式の場合には、石炭
中の鉱物質中に含有される鉛(Pb)、セレン(Se)
、砒素(As)、カドミニウム(Cd)、亜鉛(Zn)
などの金属は、灰分が火炉中で熔融され、スラグとして
回収される過程で、単体もしくは酸化物の蒸気となって
排ガス中に移行し、通常脱硝装置を設置する空気予熱器
の前流では、高濃度の蒸気として存在することが知られ
ている(H,Brumsack  etaj2.、En
vironmentsl TecnoAogy  Le
tters;5.7 22 (1,982))。脱硝触
媒がこれらの蒸気によって被毒し、その対策が必要であ
ることが判明したが、上記実用触媒は、この点について
考慮されていなかった。
In particular, as shown in Fig. 1, in the case of a combustion method in which the combustion ash collected by the electrostatic precipitator 7 is recirculated to the furnace 1 via the Tenryu ring road, it is made into molten slag in the furnace and taken out to the outside. , lead (Pb) and selenium (Se) contained in minerals in coal.
, arsenic (As), cadmium (Cd), zinc (Zn)
When the ash content is melted in the furnace and recovered as slag, metals such as metals are transferred into the exhaust gas as a single element or as oxide vapor, and in the upstream of the air preheater where the denitrification equipment is usually installed. It is known to exist as a highly concentrated vapor (H, Brumsack etaj2., En.
vironmentsl TecnoAogy Le
5.7 22 (1,982)). It has been found that denitrification catalysts are poisoned by these vapors and that countermeasures are required, but this point has not been taken into account in the above-mentioned practical catalysts.

本発明の目的は、上記従来技術には考慮されていなかっ
た排ガス中に含まれる重金属化合物の蒸気による劣化を
防止した触媒を提供し、従来の触媒では活性低下が大き
く実現することが困難であった、第1図に示す灰循環を
有する灰溶融式ボイラのように、多量の重金属化合物の
蒸気を有する排ガスを、通常の排煙脱硝と同程度の触媒
量と簡便さで実施可能にすることにある。
The purpose of the present invention is to provide a catalyst that prevents deterioration of heavy metal compounds contained in exhaust gas due to steam, which has not been considered in the above-mentioned prior art, and which is difficult to achieve with conventional catalysts due to a significant decrease in activity. In addition, it is possible to denitrate exhaust gas containing a large amount of heavy metal compound vapor, such as the ash melting boiler with ash circulation shown in Figure 1, with the same amount of catalyst and simplicity as ordinary flue gas denitrification. It is in.

〔課題を解決するための手段〕[Means to solve the problem]

上記した従来技術の問題点は、酸化チタンとバナジウム
、銅、鉄、マンガンのうち1種以上の元素の酸化物、お
よびモリブデンまたはタングステンの酸化物とからなり
、モリブデンまたはタングステンの酸化物のモル数の和
が触媒の単位比表面積当たり2X10−6から20X1
0−″6モル/dの範囲にあり、全細孔容積が0.2 
m 1 / g以上であり、かつ直径30Å以下の細孔
容積が全細孔容積の25%以下であるように調整された
アンモニアを還元剤とする窒素酸化物の接触還元用触媒
により解決される。
The problem with the above-mentioned conventional technology is that it is composed of titanium oxide, an oxide of one or more elements among vanadium, copper, iron, and manganese, and an oxide of molybdenum or tungsten, and the number of moles of the oxide of molybdenum or tungsten is The sum is 2X10-6 to 20X1 per unit specific surface area of the catalyst.
0-''6 mol/d, with a total pore volume of 0.2
m 1 / g or more and the volume of pores with a diameter of 30 Å or less is 25% or less of the total pore volume, and is solved by a catalyst for catalytic reduction of nitrogen oxides using ammonia as a reducing agent. .

〔作用〕[Effect]

重金属化合物を含むガスに触媒を接触させると、触媒中
に重金属化合物が蓄積し、活性が低下する。
When a catalyst is brought into contact with a gas containing heavy metal compounds, the heavy metal compounds accumulate in the catalyst, reducing its activity.

このときの細孔分布の変化を調べると、重金属化合物に
接触した後は、直径30Å以下の細孔が大きく減少して
いる。このことから直径30Å以下の細孔は、短時間で
細孔閉塞を引き起こし、この部分は失活すると考えられ
る。また、触媒活性は細孔容積が大きいほど高くなるの
で、すべての細孔を減少させると、初期活性から低(な
り使用できない。そこで、本発明では全細孔容積を大き
く減少させることなく、30Å以下の細孔を少なくし、
活性をこの30Å以下の細孔に負わせないようにするこ
とにより、重金属化合物による活性低下が少ない。
Examining the change in pore distribution at this time, it was found that the number of pores with a diameter of 30 Å or less decreased significantly after contact with the heavy metal compound. From this, it is considered that pores with a diameter of 30 Å or less cause pore blockage in a short period of time, and this portion becomes inactive. In addition, the catalytic activity increases as the pore volume increases, so if all pores are reduced, the initial activity will drop (and become unusable). Reduce the following pores,
By preventing activity from being imposed on the pores of 30 Å or less, the activity is less likely to be lowered by heavy metal compounds.

〔実施例〕〔Example〕

本発明になる触媒は、酸化チタンと■、Cu、FesM
nのうち1種以上の酸化物とMoまたはWの酸化物とか
らなり、直径30Å以下の細孔容積が全細孔容積に対し
て25%以下のものである。
The catalyst of the present invention includes titanium oxide, Cu, FesM
It consists of one or more oxides among n and an oxide of Mo or W, and the volume of pores with a diameter of 30 Å or less is 25% or less of the total pore volume.

具体的には、上記組成になる触媒粉末もしくは成形体に
、硫酸アルミニウムや硫酸マグネシウム等の硫酸塩、ま
たはケイ酸エチルやシリカゾル等を混練もしくは含浸し
、乾燥、焼成することにより実現できる。また、酸化チ
タンを高温で焼成もしくは、ケイ酸エチル、チタニアゾ
ル、シリカゾル等を添加し焼成したものに、上記組成に
なる活性成分を担持することにより実現できる。この他
の方法でも本発明を実現することは可能で、手段にはと
られれない。
Specifically, this can be achieved by kneading or impregnating a catalyst powder or compact having the above composition with a sulfate such as aluminum sulfate or magnesium sulfate, or ethyl silicate or silica sol, followed by drying and firing. It can also be realized by supporting an active ingredient having the above composition on titanium oxide calcined at a high temperature or on a calcined product to which ethyl silicate, titania sol, silica sol, etc. are added. It is possible to realize the present invention in other ways as well, and this method is not taken.

細孔容積の大きい状態の触媒に、硫酸アルミニウムやケ
イ酸エチル等を添加すると、これら添加物により触媒表
面が覆われ、その結果小さい細孔は閉塞して減少する。
When aluminum sulfate, ethyl silicate, etc. are added to a catalyst with a large pore volume, the surface of the catalyst is covered with these additives, and as a result, the small pores are closed and reduced.

このとき、添加前の細孔容積が充分に大きいため、全細
孔容積は若干減少しても大きい値を維持し、これら添加
物は重金属化合物と異なり被毒作用がないので、活性低
下はほとんどない。また、酸化チタンにケイ酸エチルや
シリカゾル、チタニアゾルを添加することにより、同様
に小さい細孔を減少させたり、酸化チタンを高温で焼成
することにより、シンタリングにより小さい細孔を減少
させたものに、活性成分を担持することにより、有効に
活性成分を担持することが可能で、活性の高い触媒が得
られる。このように、小さい細孔は減少させ、なおかつ
高活性な触媒であるため、重金属化合物によっても活性
低下をすることがない。
At this time, the pore volume before addition is sufficiently large, so even if the total pore volume decreases slightly, it maintains a large value, and unlike heavy metal compounds, these additives have no poisoning effect, so there is almost no decrease in activity. do not have. In addition, by adding ethyl silicate, silica sol, or titania sol to titanium oxide, small pores can be reduced in the same way, or by sintering titanium oxide at high temperatures, small pores can be reduced by sintering. By supporting the active component, it is possible to effectively support the active component and a highly active catalyst can be obtained. In this way, the number of small pores is reduced, and since the catalyst is highly active, the activity will not be reduced even by heavy metal compounds.

以下、具体的実施例により本発明の詳細な説明する。Hereinafter, the present invention will be explained in detail with reference to specific examples.

実施例1 酸化チタンを3Qwt%含有するメタチタン酸スラリ5
0kgに、メタバナジン酸アンモン(NH4VO3) 
1.02kgと、モリブデン酸アンモン3゜81kgを
加え、ニーダで加熱混練し水分34%のペーストを得た
。得られたペーストを押出造粒機により造粒後、流動層
乾燥機で乾燥し400℃で2時間焼成した後、ハンマミ
ルで100メツシュバス90%以上に粉砕した。この粉
末に硫酸アルミニウム(Al1  (304)3)4w
t%と水とカオリン系無機繊維15wt%を加えてペー
スト状にし、このペーストを厚さ0.3 n mの5U
S304の帯鋼を金網状にメタルラス加工した後、酸化
アルミ溶射した金属基板ヘローラを用いて加圧塗布した
。これを12時間風乾した後、500℃で2時間焼成し
て板状触媒を得た。
Example 1 Metatitanic acid slurry 5 containing 3Qwt% titanium oxide
0kg, ammonium metavanadate (NH4VO3)
1.02 kg of ammonium molybdate and 3.81 kg of ammonium molybdate were added and heated and kneaded in a kneader to obtain a paste with a water content of 34%. The resulting paste was granulated using an extrusion granulator, dried using a fluidized bed dryer, baked at 400° C. for 2 hours, and then ground to 90% or more in a 100 mesh bath using a hammer mill. Add 4w of aluminum sulfate (Al1 (304)3) to this powder.
t%, water, and 15wt% of kaolin-based inorganic fibers to form a paste, and this paste was made into a 5U powder with a thickness of 0.3 nm.
After S304 steel strip was lath-processed into a wire mesh shape, aluminum oxide was thermally sprayed onto a metal substrate using a roller and applied under pressure. This was air-dried for 12 hours and then calcined at 500°C for 2 hours to obtain a plate-shaped catalyst.

比較例1 実施例1の硫酸アルミニウムを添加せず、他は同様にし
て板状触媒を得た。
Comparative Example 1 A plate-shaped catalyst was obtained in the same manner as in Example 1 except that aluminum sulfate was not added.

実施例2 比較例1で得られた板状触媒を、硫酸アルミニウムを2
0wt%含む水溶液に含浸し、風乾し、500℃で2時
間焼成して触媒を得た。
Example 2 The plate-shaped catalyst obtained in Comparative Example 1 was mixed with aluminum sulfate for 2
It was impregnated with an aqueous solution containing 0 wt%, air-dried, and calcined at 500° C. for 2 hours to obtain a catalyst.

実施例3 実施例2の硫酸アルミニウム水溶液を硫酸マグネシウム
水溶液(MgSO+)20wt%に変え、同様の方法で
触媒を得た。
Example 3 A catalyst was obtained in the same manner as in Example 2, except that the aqueous aluminum sulfate solution in Example 2 was replaced with 20 wt % of an aqueous magnesium sulfate solution (MgSO+).

実施例4 実施例2の硫酸アルミニウム水溶液をケイ酸エチル(S
 i  (OC2H邑)4)に変え、同様の方法で触媒
を得た。
Example 4 The aluminum sulfate aqueous solution of Example 2 was mixed with ethyl silicate (S
i (OC2H)4) and obtained a catalyst in the same manner.

実施例5 酸化チタンを30wt%含有するメタチタン酸スラリを
蒸発乾固した後、150℃で乾燥し、粉砕して酸化チタ
ン粉末を得た。この粉末を500℃で2時間焼成したち
の200gに、メタバナジン酸アンモニウム12.9g
とモリブデン酸アンモニウム24.3 gと水100g
を加え、加熱混練しながら蒸発乾固させた。これを45
0℃で2時間焼成した後、粉砕した後5φ×5鶴に加圧
成形し、触媒を得た。
Example 5 A metatitanic acid slurry containing 30 wt % titanium oxide was evaporated to dryness, dried at 150° C., and pulverized to obtain titanium oxide powder. After baking this powder at 500℃ for 2 hours, add 200g of ammonium metavanadate to 12.9g of ammonium metavanadate.
24.3 g of ammonium molybdate and 100 g of water
was added and evaporated to dryness while heating and kneading. This is 45
After calcining at 0°C for 2 hours, the mixture was pulverized and then pressure-molded into a size of 5φ×5 cranes to obtain a catalyst.

実施例6.7 実施例5の酸化チタン粉末の焼成温度を300℃および
700℃に変え、他は同様の方法で触媒を得た。
Example 6.7 A catalyst was obtained in the same manner as in Example 5 except that the firing temperature of the titanium oxide powder was changed to 300°C and 700°C.

比較例2 実施例5の酸化チタン粉末を焼成せずに、150℃で乾
燥しただけで、他は同様の方法で触媒を得た。
Comparative Example 2 A catalyst was obtained in the same manner as in Example 5 except that the titanium oxide powder of Example 5 was only dried at 150° C. without being calcined.

実施例8 実施例5の150℃で乾燥した酸化チタン粉末200g
にケイ酸エチル70gを加え、加熱混練し蒸発乾固させ
た後、400℃で2時間焼成し、粉砕して粉末を得た。
Example 8 200g of titanium oxide powder dried at 150°C from Example 5
70 g of ethyl silicate was added to the mixture, heated and kneaded, evaporated to dryness, then calcined at 400° C. for 2 hours and pulverized to obtain a powder.

この粉末200gを用い、他は実施例5と同様の方法で
板状の触媒を得た。
A plate-shaped catalyst was obtained using 200 g of this powder in the same manner as in Example 5, except for the same procedure as in Example 5.

実施例9 実施例5のモリブデン酸アンモンに変え、パラタングス
テン酸アンモンを過酸化水素水溶液に熔解して等モルを
添加し、他は同様の方法で触媒を得た。
Example 9 A catalyst was obtained in the same manner as in Example 5 except that ammonium paratungstate was dissolved in an aqueous hydrogen peroxide solution and an equimolar amount was added instead of ammonium molybdate in Example 5.

実施例10〜12 実施例5のメタバナジン酸アンモンに変え、硝酸銅、硝
酸鉄、硝酸マンガンを等モル添加し、他は同様の方法で
触媒を得た。
Examples 10 to 12 Catalysts were obtained in the same manner as in Example 5, except that in place of ammonium metavanadate, copper nitrate, iron nitrate, and manganese nitrate were added in equal moles.

本発明の効果を明らかにするため、実施例および比較例
の各触媒の細孔容積を、100Å以下は液体N2温度に
おけるN2吸着によるBET法により、100Å以上は
水銀圧入法により求め、両者をあわせて全細孔容積とし
た。また、第1表に示す条件でそれらの寿命テストを行
なった。本条件は、石炭中の重金属化合物として亜酸化
砒素(AS203)をガス中に含有させて、石炭排ガス
脱硝条件を模擬したものである。
In order to clarify the effects of the present invention, the pore volume of each catalyst in Examples and Comparative Examples was determined by the BET method using N2 adsorption at liquid N2 temperature for 100 Å or less, and by the mercury intrusion method for 100 Å or more. The total pore volume was taken as the total pore volume. In addition, a life test was conducted under the conditions shown in Table 1. These conditions simulate coal exhaust gas denitrification conditions by containing arsenic oxide (AS203) as a heavy metal compound in coal in the gas.

第1表 さらに第2表に、実施例1〜12および比較例1.2の
全細孔容積と、これに対する30Å以下の細孔容積の割
合、ならびに寿命テストの結果をあわせて示した。
Table 1 and Table 2 also show the total pore volume of Examples 1 to 12 and Comparative Example 1.2, the ratio of pore volume of 30 Å or less to the total pore volume, and the results of the life test.

以下余白 第   2   表 本発明になる触媒は、寿命テストによる活性低下が小さ
く、さらに優れた耐久性を有することが示されている。
Table 2 below shows that the catalyst of the present invention exhibits little decrease in activity in the life test and has excellent durability.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、重金属化合物の蒸気を多量に含有する
排ガスでも、長時間高い脱硝性能を維持でき、触媒量の
少ない脱硝装置を実現できる。特に、第1図に示した天
竜環式ボイラの場合は、重金属蒸気濃度が著しく高く、
従来の触媒を用いた方法では、触媒量が通常の2〜3倍
必要と試算されるのに対し、本発明では触媒量をほとん
ど増加させる必要がない。
According to the present invention, high denitrification performance can be maintained for a long period of time even with exhaust gas containing a large amount of vapor of heavy metal compounds, and a denitrification device with a small amount of catalyst can be realized. In particular, in the case of the Tenryu ring boiler shown in Figure 1, the heavy metal vapor concentration is extremely high.
In the conventional method using a catalyst, it is estimated that the amount of catalyst is required to be two to three times the normal amount, whereas in the present invention, there is almost no need to increase the amount of catalyst.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の実施対象の一例である天竜環を有す
るボイラの系統図である。 1・・・火炉、2・・・節炭器、6・・・空気予熱器、
7・・・電気集じん器、8・・・煙突、9・・・天竜環
路。 代理人 弁理士 川 北 武 長
FIG. 1 is a system diagram of a boiler having a Tenryu ring, which is an example of the object of the present invention. 1... Furnace, 2... Energy saver, 6... Air preheater,
7...Electrostatic precipitator, 8...Chimney, 9...Tenryu Kanro. Agent Patent Attorney Takenaga Kawakita

Claims (1)

【特許請求の範囲】[Claims] (1)酸化チタンとバナジウム、銅、鉄、マンガンのう
ち1種以上の元素の酸化物、およびモリブデンまたはタ
ングステンの酸化物とからなり、モリブデンまたはタン
グステンの酸化物のモル数の和が触媒の単位比表面積当
たり2×10^−^6から20×10^−^6モル/m
^2の範囲にあり、全細孔容積が0.2ml/g以上で
あり、かつ直径30Å以下の細孔容積が全細孔容積の2
5%以下であるように調整された、アンモニアを還元剤
とする窒素酸化物の接触還元用触媒。
(1) Consisting of titanium oxide, an oxide of one or more elements among vanadium, copper, iron, and manganese, and an oxide of molybdenum or tungsten, the unit of the catalyst is the sum of the moles of the oxides of molybdenum or tungsten. 2 x 10^-^6 to 20 x 10^-^6 mol/m per specific surface area
^2, the total pore volume is 0.2 ml/g or more, and the pore volume with a diameter of 30 Å or less is 2 of the total pore volume.
A catalyst for catalytic reduction of nitrogen oxides using ammonia as a reducing agent, which is adjusted to have a concentration of 5% or less.
JP63118858A 1988-05-16 1988-05-16 Catalyst for catalytic reduction of nitrogen oxides Expired - Fee Related JP2638067B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63118858A JP2638067B2 (en) 1988-05-16 1988-05-16 Catalyst for catalytic reduction of nitrogen oxides

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63118858A JP2638067B2 (en) 1988-05-16 1988-05-16 Catalyst for catalytic reduction of nitrogen oxides

Publications (2)

Publication Number Publication Date
JPH01288338A true JPH01288338A (en) 1989-11-20
JP2638067B2 JP2638067B2 (en) 1997-08-06

Family

ID=14746882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63118858A Expired - Fee Related JP2638067B2 (en) 1988-05-16 1988-05-16 Catalyst for catalytic reduction of nitrogen oxides

Country Status (1)

Country Link
JP (1) JP2638067B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2361653A (en) * 2000-04-28 2001-10-31 Johnson Matthey Plc Improvements in catalytic reduction of NOx
JP2008068154A (en) * 2006-09-12 2008-03-27 Babcock Hitachi Kk Denitration catalyst for coal flue gas, and exhaust gas purification method
JP2013031818A (en) * 2011-08-03 2013-02-14 Babcock Hitachi Kk Denitration catalyst for ammonia catalytic reduction
JP2014515311A (en) * 2012-03-28 2014-06-30 ヒュンダイ ヘビー インダストリーズ カンパニー リミテッド Metal filter for purification of ship exhaust gas and method for producing the same
CN110523436A (en) * 2019-07-03 2019-12-03 南京工业大学 Powdery denitration catalyst and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62282623A (en) * 1985-06-10 1987-12-08 Nippon Shokubai Kagaku Kogyo Co Ltd Purifying method for exhaust gas

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62282623A (en) * 1985-06-10 1987-12-08 Nippon Shokubai Kagaku Kogyo Co Ltd Purifying method for exhaust gas

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2361653A (en) * 2000-04-28 2001-10-31 Johnson Matthey Plc Improvements in catalytic reduction of NOx
JP2008068154A (en) * 2006-09-12 2008-03-27 Babcock Hitachi Kk Denitration catalyst for coal flue gas, and exhaust gas purification method
JP2013031818A (en) * 2011-08-03 2013-02-14 Babcock Hitachi Kk Denitration catalyst for ammonia catalytic reduction
JP2014515311A (en) * 2012-03-28 2014-06-30 ヒュンダイ ヘビー インダストリーズ カンパニー リミテッド Metal filter for purification of ship exhaust gas and method for producing the same
CN110523436A (en) * 2019-07-03 2019-12-03 南京工业大学 Powdery denitration catalyst and preparation method thereof

Also Published As

Publication number Publication date
JP2638067B2 (en) 1997-08-06

Similar Documents

Publication Publication Date Title
KR100549778B1 (en) A catalyst for removing vanadium / titania-based nitrogen oxides having low temperature denitrification characteristics, a method of using the same, and a denitrification method thereof
KR100686381B1 (en) Vanadium / Titania-based catalysts containing natural manganese ores for removing nitrogen oxides and dioxins over a wide range of active temperatures and methods of using them
TWI412400B (en) Removal device of trace and harmful substances in exhaust gas and its operation method
US6054408A (en) Catalyst for reducing the nitrogen oxide concentration in a flowing medium and method for producing the catalyst
US8088709B2 (en) Preparation method of vanadium/titania-based catalyst showing excellent nitrogen oxide-removal performance at wide temperature window through introduction of ball milling, and use thereof
KR101298305B1 (en) Apparatus for removing of trace of toxic substance from exhaust gas and method of operating the same
JP2583911B2 (en) Nitrogen oxide removal catalyst
JPH01176431A (en) Method for removing nitrogen oxide
US20220226803A1 (en) Scr catalyst having excellent sulfur tolerance
JPH01288338A (en) Catalyst for catalytic reduction of nitrogen oxides
KR100973675B1 (en) Catalyst for reduction of nitrogen oxide and oxidation of mercury in exhaust gas and method for removing nitrogen oxide and mercury simultaneously using the catalyst
US20210187490A1 (en) LOW-TEMPERATURE DeNOx CATALYST FOR SELECTIVE CATALYTIC REDUCTION HAVING IMPROVED SULFUR RESISTANCE, AND METHOD OF MANUFACTURING SAME
JP2008030017A (en) Removal apparatus of trace harmful substance in exhaust gas and its operation method
KR100549777B1 (en) Vanadium / Titania-based catalysts containing nitrogen oxides and / or vanadium trioxide for dioxin removal with a wide active temperature range
KR100382051B1 (en) Catalyst for Selective Catalytic Reduction of Nitrogen Oxides Including Sulfur Dioxide at Low Temperature
JP2001252562A (en) Low temperature denitration catalyst and low temperature denitration method
JP3745407B2 (en) Exhaust gas purification catalyst, production method thereof, and exhaust gas purification method
KR100382050B1 (en) Catalyst for Removing Dioxin and Nitrogen Oxides in Flue Gas and Method for Treating Combustion Exhaust Gases Using the Same
JPH07114964B2 (en) Nitrogen oxide reduction catalyst and method for producing the same
JP4959218B2 (en) Method for producing plate-shaped denitration catalyst
JPH08196871A (en) Decomposition of ammonia
JPH07213908A (en) Catalyst for purifying exhaust gas and method therefor
JP2638067C (en)
JP2010022974A (en) Method and apparatus for treating exhaust gas
JPS6147128B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees