[go: up one dir, main page]

JP3745407B2 - Exhaust gas purification catalyst, production method thereof, and exhaust gas purification method - Google Patents

Exhaust gas purification catalyst, production method thereof, and exhaust gas purification method Download PDF

Info

Publication number
JP3745407B2
JP3745407B2 JP09510795A JP9510795A JP3745407B2 JP 3745407 B2 JP3745407 B2 JP 3745407B2 JP 09510795 A JP09510795 A JP 09510795A JP 9510795 A JP9510795 A JP 9510795A JP 3745407 B2 JP3745407 B2 JP 3745407B2
Authority
JP
Japan
Prior art keywords
exhaust gas
catalyst
component
ammonia
volatile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09510795A
Other languages
Japanese (ja)
Other versions
JPH08290062A (en
Inventor
泰良 加藤
尚美 今田
邦彦 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP09510795A priority Critical patent/JP3745407B2/en
Publication of JPH08290062A publication Critical patent/JPH08290062A/en
Application granted granted Critical
Publication of JP3745407B2 publication Critical patent/JP3745407B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)
  • Treating Waste Gases (AREA)

Description

【0001】
【産業上の利用分野】
本発明は未反応アンモニアの分解活性を有する排ガス浄化硝触媒とその製造方法および該触媒を用いる排ガスの浄化方法に係り、特に触媒の酸化活性をコントロールすることにより、二酸化硫黄(SO2)の三酸化硫黄(SO3)への転化抑制、アンモニア使用量の増加の抑制、およびひ素などの揮発性酸化物蒸気による未反応アンモニア分解活性の低下防止とを図って高い脱硝性能と未反応アンモニアのリーク量の低減を長期間維持できるようにしたアンモニア(NH3)を還元剤とする排ガス浄化触媒とその製造方法および排ガス浄化方法に関する。
【0002】
【従来の技術】
発電所、各種工場、自動車などから排出される排煙中のNOxは、光化学スモッグや酸性雨の原因物質であり、その効果的な除去方法として、アンモニア(NH3)を還元剤とした選択的接触還元による排煙脱硝法が火力発電所を中心に幅広く用いられている。触媒には、バナジウム(V)、モリブデン(Mo)あるいはタングステン(W)を活性成分にした酸化チタン(TiO2)系触媒が使用されており、特に活性成分の一つとしてバナジウムを含むものは活性が高いだけでなく、排ガス中に含まれている不純物による劣化が小さいこと、より低温から使用できることなどから、現在の脱硝触媒の主流になっている(特開昭50−12681号公報など)。
【0003】
近年の環境保全の観点から発電所用大容量ボイラなどの固定発生源にはNOx排出量に総量規制が適用され、設備から排出される排ガス中のNOx量を極めて低いレベルに抑えて運転することが必須になってきている。このためアンモニア還元方式の脱硝装置でも触媒の充填量を増やし、アンモニア注入量を増加して脱硝装置を高脱硝率で運転するなどの方法が検討されている。このような高度な脱硝に対する需要に伴って、脱硝反応に使用されなかった未反応アンモニアを低減するため分解触媒の設置、アンモニアの増加は免れない。このため、未反応アンモニア(以下リークNH3)もNOxレベルと同程度まで低減することが必須となってきているが、上記した高脱硝率運転では未反応アンモニアの増加は免れない。このため未反応アンモニアを低減するための分解触媒の設置、アンモニアの均一注入・混合などが検討されている。本発明者らも貴金属を担持した多孔体と酸化チタン系組成物とからなるアンモニアの分解活性を有する脱硝触媒を発明し、それを用いて高脱硝率・低リークNH3を実現できる排ガスの浄化方法を出願している(特願平3−312308号、特願平4−138514号など)。
【0004】
【発明が解決しようとする課題】
上記従来技術の触媒の内、本発明者らの特願平3−312308号および特願平4−138514号になる触媒は、高い未反応アンモニア分解活性を有しており、ガス焚ボイラなどの比較的きれいな排ガス浄化に際しては非常に高い脱硝率と低リークNH3濃度を実現することができる画期的な触媒であったが、次の(イ)〜(ハ)に示すような多くの改良点も残されていた。
【0005】
(イ)触媒成分である貴金属の酸化活性が高く、同一脱硝率を得るためにはNH3/NO比を高くする必要があり、アンモニア消費量が増大する。
図4は未反応アンモニアの分解活性を有しない脱硝触媒(A)と特願平4−138514号になる未反応アンモニア分解活性を有する従来触媒(B)のNH3/NO比を変化させた場合の脱硝率とリークNH3量を示したものであるが、NH3/NO比を高めれば高脱硝率と低リークNH3量を満足できるものの、式(1)
2NH3+3/2O2 → N2+3H2O (1)
のNH3の消費反応が無視できず、同一脱硝率を得るためにはNH3分解活性を持たないものに比し、多量のNH3注入が必要であった。
【0006】
(ロ)NH3の酸化成分である貴金属の酸化活性が高く、排ガスがSO2を含有する場合には下記式(2)
SO2+1/2O2 → SO3 (2)
のSO2酸化反応が生じ、排ガス中のSO3濃度が高くなり、後流機器の酸性腐食が増大する場合があった。
【0007】
(ハ)石炭排ガスなどの排ガス中にひ素、セレン、レニウムなどの揮発性酸化物が含まれる場合などの酸化反応によって揮発性酸化物が不揮発化して触媒に蓄積し、リークNH3の分解率が経時的に低下するという問題があった。
【0008】
本発明の目的は、上記した従来触媒の問題点をなくし、油、石炭燃焼排ガスで使用する場合の必須の性質であるSO2酸化活性の低減の防止と、ひ素酸化物などの揮発性酸化物による劣化を防止した排ガス浄化触媒とその製造方法および排ガス浄化方法を提供することである。また本発明の目的は、排ガス中に添加する還元剤であるNH3消費量の増大を低減することができる脱硝触媒とその製造方法および排ガス浄化方法を提供することである。
【0009】
また、本発明の目的は、排ガス中の二酸化硫黄(SO2)の三酸化硫黄(SO3)への転化抑制、アンモニア使用量の増加の抑制、およびひ素などの揮発性酸化物蒸気による未反応アンモニア分解活性の低下防止とを図って高い脱硝性能と未反応アンモニアのリーク量の低減を長期間維持できるようにしたアンモニア(NH3)を還元剤とする排ガス浄化触媒とその製造方法および排ガス浄化方法を提供することである。
【0010】
【課題を解決するための手段】
上記目的を達成するための本発明は、次の構成からなる。チタン酸化物およびモリブデン(Mo)、タングステン(W)、バナジウム(V)から選ばれた一種以上の元素の酸化物からなる組成物または銅(Cu)もしくは鉄(Fe)を担持したゼオライトからなる組成物を第1成分とし、イリジウム(Ir)、パラジウム(Pd)、ロジウム(Rh)、ルテニウム(Ru)から選ばれる少なくとも一つの金属と白金(Pt)とからなり、前記金属の白金(Pt)に対する重量比が0を超えて5以下の割合で含まれる予め多孔体に担持した第2成分とからなる窒素酸化物のアンモニア還元機能とアンモニアの酸化分解機能を有する二酸化硫黄及び揮発性酸化物を含有する排ガス浄化触媒である。
【0011】
本発明の触媒は第1成分としてNOxのアンモニアによる還元反応に活性な触媒組成物、第2成分として白金(Pt)を主成分とし、これにイリジウム(Ir)、パラジウム(Pd)、ロジウム(Rh)またはルテニウム(Ru)から選ばれる一種以上の貴金属とを高シリカゼオライト、シリカ、アルミナから選ばれる一種以上の多孔物質に担持せしめたものを用い、両者を混ぜ合せて得られる。
【0012】
具体的には、第1成分としてはあらかじめ公知の方法で調製したTi−V、Ti−Mo、Ti−W、Ti−V−W、Ti−Mo−Vの組み合わせの酸化物、CuまたはFeを担持したゼオライト(モルデナイトなど)などのNOxのNH3による還元活性を有するものを用い、第2成分としてはゼオライト、多孔質シリカ、多孔質アルミナにあらかじめ上記金属元素をイオン交換、含浸などにより担持せしめた組成物を焼成したものを用いる。
【0013】
第2成分中の貴金属とは、Ptを主成分にし、これにIr、Pd、Rh、Ruから選ばれる一種以上の貴金属を添加し、該貴金属の添加量は貴金属/Ptの重量比が0を超えて5以下の範囲で添加したものであり、該貴金属は塩化物、硝酸塩、有機塩の混合溶液の形で同時に、あるいは逐次担持することにより複合化して用いられる。
【0014】
また、両成分を混合して触媒体とする方法には、
▲1▼予め調製した第1成分と、第2成分粉末をそのまま乾式でペレット状に成形する方法、
▲2▼両成分粉体を所定割合で水の存在下、必要に応じて有機/無機バインダ、無機繊維などを添加して混練して得たペーストをハニカム状に成形したり金属基板に塗布する方法
など従来の脱硝触媒に用いる一般的方法を用いることができる。さらに得られた成形体は必要に応じて乾燥・焼成される。
【0015】
例えば、チタン化合物にV、Mo、Wのうち少なくとも一種以上の元素の化合物を水とともに添加混合し、乾燥、焼成したもの、またはCuまたはFeをイオン交換して担持したゼオライトを第1成分とし、予めゼオライト、シリカ、アルミナなどの多孔体にPtとその他の金属としてIr、Pd、Rh、Ruから選ばれる少なくとも一つの金属を担持後、焼成して第2成分とし、第1成分と第2成分を混合後、所定形状に成形し、乾燥、焼成して本発明の触媒とする。
【0016】
前記調製方法を含め、公知のどのような方法で本発明の触媒を製造してもよく、
(A)Ir、Pd、RhまたはRuがPtと共に多孔性担体に担持されており、Ptに対するIr、Pd、RhまたはRuの重量比が0を超えて5以下、望ましくは0を超えて2以下の範囲にあること、
(B)貴金属担持多孔体(第2成分)に対するNOのNH3の酸化活性を有する触媒成分(第1成分)の重量比が、80%以上であり、全体の貴金属含有量は100ppm以下であることが望ましい。
【0017】
図3(a)〜(c)に本発明の触媒の使用形態を示す。ボイラ1からの排ガスの流路に反応器2、熱交換機3、電気集塵機4、煙突5をこの順に配置する。また反応器2の前流部にはNH3注入ライン6を設ける。そして反応器2内の全部に、もしくは従来の酸化チタン系触媒などの公知の脱硝触媒8と組み合せて一部に本発明の触媒7を用いて脱硝触媒層を形成させる。図3(a)は反応器2内の全部に本発明の触媒7を用いて脱硝触媒層を形成させた例であり、図3(b)は反応器2内に公知の脱硝触媒8の後流側に本発明の触媒7を配置して脱硝触媒層を形成させた例であり、図3(c)は反応器2内に二つの公知の脱硝触媒8の間に本発明の触媒7を配置して脱硝触媒層を形成させた例である。図3(a)〜(c)のいずれの場合にも本発明の触媒7の特色であるNH3による窒素酸化物(NOx)の還元とその際の未反応アンモニアを窒素と水に酸化分解してリークNH3を低減させる効果が得られることはもとより、従来触媒に比べNH3の消費量を少なくでき、SO2のSO3への添加を低レベルで維持できるので、後流機器への悪影響を小さくできるのみならず、長時間高い触媒活性を維持することができる。
【0018】
本発明の触媒7の特徴は前述したように第2成分中の貴金属の種類と第2成分と第1成分を混合した点に特色があり、その調製法も前述の要件を満たせばどのような調製法であっても採用できることは言うまでもない。しかし、次のような方法を用いればより優れた触媒を得ることができる。
【0019】
本発明の触媒7の第1成分は、前記したような各種のものを使用することができるが、特に触媒成分としてTi−V、Ti−V−Mo、Ti−W−Vなどの元素からなる酸化物触媒を用いた場合に好結果をもたらす。これらは、チタメタン酸などの含水酸化チタンのスラリにバナジウム、モリブデン、タングステンの酸素酸塩などの塩類を添加し、加熱ニーダを用いて水を蒸発させながらペースト状にし、乾燥後、400℃から700℃で焼成、必要に応じて粉砕することによって得られる。
【0020】
本発明の触媒7の第2成分は、あらかじめゼオライト、シリカ、アルミナから選ばれる一種以上の多孔体のミクロポア内にイオン交換や混練により担持して調製される。第2成分に用いられる多孔体はモルデナイト、クリノプチロライト、エリオナイト、Y型ゼオライトなどの水素置換体、ナトリウム置換体、カルシウム置換体などのゼオライト、表面積が100m2/gから500m2/gのシリカ、アルミナなどが使用できる。使用に際しての粒径は1から10μm程度が良く、あらかじめ粉砕して用いることもできる。これらにPtおよびその他の貴金属(Ir、Pd、RhあるいはRu)から選ばれる少なくとも一以上の貴金属をその塩化物、硝酸塩、あるいはアンミン錯体の形で溶解した水溶液中に浸漬してイオン交換するか、水溶液と共に蒸発乾固し、前記貴金属を0.01wt%〜0.1wt%担持後焼成して貴金属塩を金属に分解して用いる。Ptに添加するその他の貴金属の添加比率はPtに対する重量比で0を超えて5以下、望ましくは2以下が適当である。
【0021】
第1、第2成分の混合比率は第2成分中の貴金属担持量により最適値が異なるが、第2成分/第1成分比(以下第2成分/第1成分比)として20/80〜0.5/99.5望ましくは10/90〜1/99(重量比)の範囲が適当である。
【0022】
第1、第2成分の両方の成分の粉末に、水と必要に応じて無機バインダ、成形助剤、無機繊維など周知の成形性向上剤を添加し、ニーダなどの混練機で混練してペースト状にする。
【0023】
得られたペースト状触媒は無機繊維製網状基材、溶射などにより粗面化した金属基板などに塗布され板状触媒に成形されるか、押出成形機により柱状あるいはハニカム状に成形される。成形体は乾燥後硫酸塩が硫酸塩として残存する温度、通常450℃〜550℃で焼成して用いられる。
【0024】
得られた本発明の触媒7は、図3のように反応器2の脱硝触媒層の全部もしくは従来の公知の脱硝触媒8と組み合わせて、その一部を構成する触媒7として充填され、排ガス中のNOx濃度が高い領域では脱硝触媒として、また、排ガス中のNOx濃度が低下した領域では未反応(余剰)アンモニアの分解触媒として作用する。使用条件としては、特に制限はないが、本発明の触媒7の特徴であるリークNH3の低減効果が大きいのは排ガス中のNOxと還元剤であるNH3のモル比(NH3/NOx比)が0.8以上の場合であり、高脱硝率運転を行う脱硝装置として好適である。
【0025】
本発明の触媒7の第2成分中のPtとこれに添加する貴金属の重量比率は特に重要であり、Ptに対する他の貴金属の添加重量比が小さい場合には式(1)〜(3)の副反応の抑制が十分でなく、また大きすぎる場合には式(5)の反応が生じにくくなり、リークNH3の分解率の低下を招くようになる。前記重量比率は0を超えて5重量比以下で選定できるが、2重量比以下、または添加する貴金属によっては1重量比以下に選定した場合に好結果を得易い。
【0026】
本発明では、第2成分/第1成分比も重要で前述した範囲のうち、貴金属担持量の大きいゼオライト、シリカ、アルミナなどを用いて第2成分/第1成分比が小さくなるように選定し、かつ触媒全体の貴金属担持量が1から1000ppm望ましくは10から100ppmの範囲にすることが好結果を与える。これは第2成分の形成するミクロポアが第1成分の形成するマクロポア内にまばらに存在してNH3が選択的に第1成分に吸着し、脱硝反応に用いられ易くするためである。また貴金属量を少なくすることは触媒単価を低くできるという経済的効果以外に、脱硝反応とアンモニアの酸化反応をNOの存在の有無によって分離され易くする効果もある。
【0027】
また、第2成分/第1成分比は、触媒層全体を本発明の触媒7で構成する場合には小さく選定し、従来触媒と組み合わせて一部に本発明の触媒7を使用する時には大きくすると同時に貴金属含有量も多くすると好結果を得易い。
【0028】
排ガスがひ素(As)、セレン(Se)および/またはレニウム(Re)の揮発性酸化物を含有していても本発明の触媒活性は低下しない。
【0029】
【作用】
従来の未反応アンモニアの分解活性を有する脱硝触媒は、貴金属を担持した多孔性担体とTi−W−V系などに代表されるNOxのNH3による還元化性を有する触媒成分とで構成されることを特徴としている(特願平3−312308号および特願平4−138514号など)。これらの従来の触媒は、Ti−W−V系などの成分上で生じる下記式(4)の脱硝反応で余った/もしくは使用されなかった未反応アンモニアを、貴金属表面で式(5)の反応により一部NOに酸化し、その後残留する未反応アンモニアで再び式(4)の反応により窒素にまで還元することにより高い脱硝率と高い未反応アンモニア分解活性とを発現するようにした画期的なものであった。
NH3+NO+1/4O2 → N2+3/2H2O (4)
NH3+3/2O2 → NO+3/2H2O (5)
【0030】
ところが、これらの触媒では、Pt、Pd、Rhなどの貴金属を単独で多孔性担体に担持せしめた成分を用いていたため高い未反応アンモニア分解率を得ようとすると触媒の酸化活性が高くなることに起因する問題を生じていた。すなわち、式(1)のNH3消費反応が大きく、高脱硝率を得るためには多くのNH3の添加が必要となること、式(2)による反応で排ガス中のSO2をSO3に酸化し、排ガス流路の後流側に配置した機器へ悪影響を与えること、式(3)に例示される揮発性酸化物が不揮発性酸化物に転化する反応で触媒表面に不揮発性酸化物が蓄積することにより石炭排ガス中で劣化が生じ易いことなどである。
2NH3+3/2O2 → N2+3H2O (1)
SO2+1/2O2 → SO3 (2)
As23+O2 → As25 (3)
【0031】
本発明の触媒7では、式(5)の反応に特に優れるPtをベースに、これにIr、Pd、RhあるいはRuを添加されている点に特徴がある。このような組成にすることにより、式(5)の反応活性は前記本発明者らの従来触媒と同等で、しかも式(1)〜(3)の副反応を大きく抑制することができる。その結果、未反応アンモニアを効率よく除去できるにもかかわらず、アンモニア消費量の増大やSO2のSO3への転化をほとんど招くことがない上、揮発性酸化物の不揮発化による触媒の劣化も生じにくい。
【0032】
これにより従来の触媒が使用できなかった石油、石炭燃焼排ガスなどのSO2含有排ガスの脱硝装置の未反応アンモニアの分解が可能になるほか、NH3使用量の増大を招かない高脱硝率・低リークNH3の脱硝装置を実現することが可能になる。
【0033】
【実施例】
本発明の一実施例を説明する。本発明は以下の実施例に限定されるものではない。
以下、具体的実施例を用いて本発明を詳細に説明する。
【0034】
実施例1
メタチタン酸スラリ(TiO2含有量:30wt%、SO4含有量:8wt%)67kgにパラタングステン酸アンモニウム((NH41010・W1246・6H2O)を2.41kgおよびメタバナジン酸アンモン0.63kgとを加えて加熱ニーダを用いて水を蒸発させながら混練し水分約36%のペーストを得た。これを3φの柱状に押し出し造粒後、流動層乾燥機で乾燥し、次に大気中550℃で2時間焼成した。得られた顆粒をハンマーミルで1μm以下の粒径が60%以上になるように粉砕して第1成分である脱硝触媒粉末を得た。このときの組成はV/W/Ti=2/5/92(原子比)である。
【0035】
一方、塩化白金酸(H2[PtC16]・6H2O)0.332gと塩化イリジウム(IrCl4)0.217gとを水1リットルに溶解したものに、高表面積微粒シリカ(富田製薬(株):マイコンF)500gを加え、砂浴上で蒸発乾固してPtを担持した。これを180℃で2時間乾燥後、500℃で2時間焼成し、0.025wt%Pt−0.025wt%Ir−シリカを調製して第2成分にした。このときのIr/Pt重量比は1である。
【0036】
これとは別に繊維径9μmのEガラス製繊維1400本の捻糸を10本/インチの粗さで平織りした網状物にチタニア40%、シリカゾル20%、ポリビニールアルコール1%のスラリーを含浸し、150℃で乾燥して剛性を持たせ触媒基材を得た。
【0037】
第1成分19.8kgと第2成分200gとに、シリカ・アルミナ系無機繊維5.3kg、水17kgを加えてニーダで混練し、触媒ペーストを得た。上記基材2枚の間に調製したペースト状触媒混合物を置き、加圧ローラを通過させることにより基材の編目間および表面に触媒を圧着して厚さ約1mmの板状触媒を得た。得られた触媒は、180℃で2時間乾燥後、大気中550℃で2時間焼成した。本触媒中の第1成分と第2成分の第2成分/第1成分比(重量比)は1/99で有り、貴金属含有量は触媒基材・無機繊維を除いて5ppmに相当する。
【0038】
実施例2〜4
実施例1の塩化イリジウムを硝酸パラジウム(Pd(NO32)0.271g(実施例2)、硝酸ロジウム(Rh(NO33・2H2O)0.393g(実施例3)および塩化ルテニウム(RuCL4・5H2O)0.237g(実施例4)に代え、他は実施例1と同様にして触媒を調製した。
【0039】
調製した触媒の貴金属含有量は5ppmであり、Pd/Pt、Rh/PtおよびRu/Pt重量比はともに1である。
【0040】
比較例1〜5
実施例1の貴金属に代え塩化白金酸、塩化イリジウム、塩化パラジウム、塩化ロジウムおよび塩化ルテニウムの単独塩類とし、添加量をそれぞれ0.665g、0.434g、0.542g、0.786g、0.474gとして実施例1と同様に触媒を調製した。
【0041】
実施例1〜4および比較例1〜5の触媒を幅20mm×長さ100mmに切断し、3mm間隔で反応器2(図3)に3枚充填し、表1に示した条件で脱硝率と反応器2出口で検出される未反応アンモニアの濃度を測定し、未反応アンモニアの分解率を算出した。これと同時に、反応器2内の触媒層の前後でのSO2の濃度を測定してSO2の減少率からSO2の酸化率を算出した。
【0042】
【表1】

Figure 0003745407
【0043】
なお、ここで未反応アンモニアの分解率は次式で求められるものである。
未反応NH3分解率(%)=([NH3]in−[NH3]denox−[NH3]out)
÷([NH3]in−[NH3]denox)×100
[NH3]in :反応器入口NH3濃度
[NH3]out :反応器出口NH3濃度(リークNH3濃度)
[NH3]denox :脱硝反応に使用されたNH3の濃度
得られた結果を表2にまとめて示す。
【0044】
【表2】
Figure 0003745407
【0045】
表2から明らかなように、比較例1の触媒は高い未反応アンモニア分解率を有するもののSO2酸化率は著しく高く、後流機器への悪影響が懸念される上、脱硝率も低くSO2含有排ガス触媒としては不適当である。また、比較例2〜5の触媒は、SO2酸化率は低いが未反応アンモニアの分解率は非常に低く、リークNH3の低減を目的とする用途には不適当であることは自明である。
【0046】
一方、本発明になる実施例1〜5の触媒は未反応アンモニアの分解率が高いにもかかわらず、高い脱硝率を得ることができる上、SO2酸化率は比較例1の触媒の1/4〜1/10以下と低い値である。
【0047】
このように、本発明の上記実施例の触媒は、Ptと他の貴金属を組み合わせることにより、高脱硝率、高未反応アンモニア分解率を維持しつつ、SO2酸化率を抑制した点に特徴がある。
【0048】
また、実施例1の触媒と未反応アンモニア分解率の高かった比較例1の触媒について、表1の条件下でNH3濃度を変化させた場合の脱硝率と反応器2の触媒層出口で検出されるアンモニア濃度(リークNH3濃度)を測定し、図1に示した。実施例1および比較例1の触媒ともに未反応アンモニアのリーク濃度が低い点は同様であるが、脱硝率の挙動は大きく異なっている。すなわち、比較例1の触媒では高脱硝率を得るためにはNH3/NO比を1を大きく超えてNH3を添加する必要があるのに対し、実施例1の触媒では脱硝反応の量論量である1近辺のNH3注入量で高脱硝率が達成でき、脱硝装置の運転経費を大きく低減できることが可能である。
【0049】
実施例5〜8
実施例1〜4の全貴金属量は5ppmとそれぞれ同じ含有量とし、Ir、Pd、Rh、RuのPtに対する重量比を0.1、0.5、1、2、5とそれぞれ変化させて触媒を調製した。
【0050】
得られた触媒について、表1の条件でSO2酸化率、脱硝率、未反応アンモニアの分解率を測定して得られた触媒について、表1の条件でSO2酸化率、脱硝率、未反応アンモニアの分解率を測定した結果を図2に示す。Ptに対する他の貴金属の添加量が0の点の比較例1の触媒と比較すると、実施例5〜8の触媒は、いずれの貴金属を添加した場合にもSO2酸化率の顕著な抑制効果がみられると同時に脱硝率の向上が認められる。しかしながら、貴金属の添加量が増大するにしたがって、未反応アンモニアの分解率の低下が認められ、Ir、Pd、Rh、RuのPtに対する重量比は5以下望ましくは2以下がよいことが解る。
【0051】
実施例9
実施例1の触媒の第2成分中の貴金属担持量を0.01wt%に変更すると同時に、第2成分と第1成分の混合比を0.5/99.5に変更し全貴金属量0.5ppmの触媒を調製した。
【0052】
実施例10〜12
比較例2〜4の触媒における第2成分の貴金属に代え、Pd/Pt、Rh/Pt、Ru/Ptを重量比を2とし、第2成分/第1成分比をそれぞれ2/98、20/80、10/90に変更して触媒を調製した。この場合の貴金属含有量は各々10ppm、100ppm、50ppmである。
【0053】
比較例6〜9
実施例9〜10触媒における第2成分の貴金属をすべてPtに置き換えてPt担持量が0.5、10、100、50ppmの触媒を調製した。
【0054】
得られた実施例9〜12および比較例6〜9の触媒について、実施例1の場合と同様に表1の条件で脱硝率、未反応アンモニア分解率、SO2酸化率を測定し表3にまとめた。
【0055】
【表3】
Figure 0003745407
【0056】
表3からわかるように、本発明になる触媒はPtと他貴金属の組み合わせにより、貴金属担持量の少ないものから多いものまで、高脱硝率、高未反応分解率および低SO2酸化率を保つことができることが分かる。
【0057】
実施例13〜16
石炭排ガスなどに含まれる酸化ひ素などの揮発性酸化物を用いて本発明の触媒の劣化を加速させる試験をするため、実施例1〜4の触媒と比較例1の触媒を用い、表1の組成のガス中に亜酸化ひ素(As23)水溶液を添加・蒸発させ、As23濃度が50ppmになるように調整した。この条件で5時間保持して触媒にひ素酸化物を吸着させ、触媒性能の変化を調べた。
表4に上記加速劣化試験前後の触媒の未反応アンモニア分解率の変化をまとめた。
【0058】
【表4】
Figure 0003745407
【0059】
この表4から明らかなように本発明になる触媒は、石炭排ガスなどに含まれる亜酸化ひ素の蒸気による劣化に対しても耐久性を示し、ダーティ排ガス脱硝用触媒に最適なものである。
【0060】
実施例17
実施例1の第1成分を8%のCuをイオン交換したモルデナイトに代えて、その他は実施例1と同様にして触媒を調製した。この触媒を用いて実施例1の場合と同様に表1の条件で脱硝率、未反応アンモニアの分解率、SO2酸化率を測定したところ、それぞれ98%、97%、1.9%と、実施例1と同等の性能が得られた。
【0061】
【発明の効果】
従来のNH3分解活性を有する脱硝触媒の欠点であるNH3消費量の増大を低減できるとともに、SO2酸化活性が非常に低くでき、脱硝触媒後流側の被処理ガス流路に配置される機器の酸性腐食などの悪影響を小さくできる。
【0062】
さらに本発明になる触媒は、酸化ひ素を始めとする揮発性酸化物蒸気を触媒毒として含有する石炭燃焼排ガス、産業廃棄物燃焼炉排ガス、ゴミ焼却炉排ガス処理に用いても未反応アンモニアの分解活性が長期間低下せず、これらの排ガスを処理する脱硝反応器からリークするアンモニアを低減するために使用できる。
【図面の簡単な説明】
【図1】 本発明の一実施例になる脱硝触媒がアンモニアの使用量の低減に効果があることを示す図である。
【図2】 本発明の一実施例の触媒組成がSO2の酸化率の抑制に好適であることを示す図である。
【図3】 本発明の触媒を被処理ガス流路に配置する実施態様を示す図である。
【図4】 従来の本発明者らの発明した脱硝触媒の解決すべき課題を示すための説明図である。
【符号の説明】
1…ボイラ、2…反応器、3…熱交換器、4…電気集塵機、5…煙突、
6…アンモニア注入ライン、7…本発明の触媒、8…公知脱硝触媒[0001]
[Industrial application fields]
The present invention relates to an exhaust gas purification nitrate catalyst having an activity of decomposing unreacted ammonia, a method for producing the same, and a purification method for exhaust gas using the catalyst. In particular, by controlling the oxidation activity of the catalyst, sulfur dioxide (SO 2 ) Sulfur trioxide (SO Three Longer reduction of unreacted ammonia and leakage of unreacted ammonia by suppressing the conversion to), suppressing the increase in the amount of ammonia used, and preventing the degradation of unreacted ammonia decomposition activity by volatile oxide vapors such as arsenic Ammonia (NH that can be maintained for a period of time Three The present invention relates to an exhaust gas purification catalyst using a reducing agent as a reducing agent, a production method thereof, and an exhaust gas purification method.
[0002]
[Prior art]
NOx in flue gas discharged from power plants, various factories, automobiles, etc. is a causative substance of photochemical smog and acid rain. As an effective removal method, ammonia (NH Three ) Is widely used mainly in thermal power plants. For the catalyst, titanium oxide (TiO2) containing vanadium (V), molybdenum (Mo) or tungsten (W) as an active component is used. 2 ) Based catalysts are used, especially those containing vanadium as one of the active components are not only high in activity, but also less deteriorated due to impurities contained in the exhaust gas, and can be used from a lower temperature. The current mainstream of denitration catalyst is disclosed in JP-A-50-12681.
[0003]
From the viewpoint of environmental conservation in recent years, the total amount restriction is applied to NOx emissions for fixed sources such as large-capacity boilers for power plants, and it is possible to operate with the NOx content in the exhaust gas discharged from the facility kept at a very low level. It has become essential. For this reason, a method of increasing the catalyst filling amount in the ammonia reduction type denitration apparatus and increasing the ammonia injection amount to operate the denitration apparatus at a high denitration rate has been studied. With the demand for such advanced denitration, it is inevitable to install a decomposition catalyst and increase ammonia in order to reduce unreacted ammonia that was not used in the denitration reaction. For this reason, unreacted ammonia (hereinafter referred to as leak NH) Three ) Also has become essential to reduce to the same level as the NOx level, but the increase in unreacted ammonia is inevitable in the above-described high denitration rate operation. For this reason, installation of a decomposition catalyst for reducing unreacted ammonia, uniform injection / mixing of ammonia, and the like have been studied. The present inventors also invented a denitration catalyst having a decomposition activity of ammonia comprising a porous body supporting a noble metal and a titanium oxide-based composition, and using it, a high denitration rate and a low leak NH Three Have been filed (Japanese Patent Application No. 3-31308, Japanese Patent Application No. 4-138514, etc.).
[0004]
[Problems to be solved by the invention]
Among the above prior art catalysts, the catalysts of the present inventors' Japanese Patent Application No. 3-312308 and Japanese Patent Application No. 4-138514 have high unreacted ammonia decomposition activity, such as gas fired boilers. Very high denitration rate and low leak NH for clean exhaust gas purification Three Although it was an epoch-making catalyst capable of realizing the concentration, many improvements as shown in the following (a) to (c) were also left.
[0005]
(B) The oxidation activity of the precious metal that is a catalyst component is high, and in order to obtain the same denitration rate, NH Three It is necessary to increase the / NO ratio, and ammonia consumption increases.
FIG. 4 shows a denitration catalyst (A) having no decomposition activity of unreacted ammonia and NH of a conventional catalyst (B) having an unreacted ammonia decomposition activity as disclosed in Japanese Patent Application No. 4-138514 Three NOx removal rate and leak NH when the / NO ratio is changed Three The amount is shown as NH Three High NOx removal rate and low leakage NH by increasing / NO ratio Three Although the amount can be satisfied, the formula (1)
2NH Three + 3 / 2O 2 → N 2 + 3H 2 O (1)
NH Three In order to obtain the same denitration rate, NH cannot be ignored. Three Compared to those that do not have decomposition activity, a large amount of NH Three An injection was required.
[0006]
(B) NH Three Oxidizing component of noble metal has high oxidation activity and exhaust gas is SO 2 In the case of containing the following formula (2)
SO 2 + 1 / 2O 2 → SO Three (2)
SO 2 Oxidation reaction occurs, SO in exhaust gas Three In some cases, the concentration increased and acid corrosion of the downstream equipment increased.
[0007]
(C) Volatile oxides become non-volatile by an oxidation reaction such as when volatile oxides such as arsenic, selenium, and rhenium are contained in exhaust gas such as coal exhaust gas, and accumulate in the catalyst. Three There was a problem that the decomposition rate of the ash decreased with time.
[0008]
The object of the present invention is to eliminate the problems of the conventional catalysts described above, and to provide SO, which is an essential property when used in oil and coal combustion exhaust gas. 2 An object of the present invention is to provide an exhaust gas purification catalyst that prevents reduction in oxidation activity and prevents deterioration due to volatile oxides such as arsenic oxide, a method for producing the same, and an exhaust gas purification method. Another object of the present invention is NH, which is a reducing agent added to exhaust gas. Three An object of the present invention is to provide a denitration catalyst that can reduce an increase in consumption, a method for producing the catalyst, and a method for purifying exhaust gas.
[0009]
Another object of the present invention is to provide sulfur dioxide (SO 2 ) Sulfur trioxide (SO Three Longer reduction of unreacted ammonia and leakage of unreacted ammonia by suppressing the conversion to), suppressing the increase in the amount of ammonia used, and preventing the degradation of unreacted ammonia decomposition activity by volatile oxide vapors such as arsenic Ammonia (NH that can be maintained for a period of time Three ) As a reducing agent, a manufacturing method thereof, and an exhaust gas purification method.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, the present invention has the following configuration. A composition comprising an oxide of one or more elements selected from titanium oxide and molybdenum (Mo), tungsten (W), vanadium (V), or a composition comprising a zeolite carrying copper (Cu) or iron (Fe) The first component is made of at least one metal selected from iridium (Ir), palladium (Pd), rhodium (Rh), and ruthenium (Ru) and platinum (Pt). It has an ammonia reduction function of nitrogen oxide and an oxidative decomposition function of ammonia comprising a second component previously supported on a porous body, the weight ratio of which exceeds 0 and is 5 or less. Contains sulfur dioxide and volatile oxides Exhaust gas of It is a purification catalyst.
[0011]
The catalyst of the present invention is a catalyst composition that is active in the reduction reaction of NOx with ammonia as the first component, and platinum (Pt) as the main component as the second component, and iridium (Ir), palladium (Pd), rhodium (Rh) ) Or one or more noble metals selected from ruthenium (Ru) and high silica zeolite, silica, alumina More than one kind selected from It is obtained by mixing the two using a porous material.
[0012]
Specifically, as the first component, Ti-V, Ti-Mo, Ti-W, Ti-V-W, Ti-Mo-V combination oxides prepared in advance by a known method, Cu or Fe are used. NH of NOx such as supported zeolite (such as mordenite) Three As the second component, a material obtained by firing a composition in which the above metal element is supported in advance by ion exchange, impregnation, or the like on zeolite, porous silica, or porous alumina is used as the second component.
[0013]
The precious metal in the second component is mainly composed of Pt, and one or more precious metals selected from Ir, Pd, Rh, and Ru are added to the precious metal. The amount of the precious metal added is such that the weight ratio of precious metal / Pt is 0. The noble metal is added in the range of 5 or less, and the noble metal is used in the form of a mixed solution of chloride, nitrate, and organic salt simultaneously or sequentially by being combined and used.
[0014]
In addition, in the method of mixing both components into a catalyst body,
(1) A method in which a first component prepared in advance and a second component powder are directly formed into pellets by a dry process,
(2) A paste obtained by kneading both component powders in the presence of water at a predetermined ratio and adding an organic / inorganic binder or inorganic fiber as necessary is formed into a honeycomb or applied to a metal substrate. Method
The general method used for the conventional denitration catalyst can be used. Furthermore, the obtained molded body is dried and fired as necessary.
[0015]
For example, at least one elemental compound of V, Mo, and W is added to a titanium compound and mixed with water, dried and calcined, or zeolite supported by ion exchange of Cu or Fe as the first component, First, Pt and at least one metal selected from Ir, Pd, Rh, Ru as a porous material such as zeolite, silica, alumina, etc. are supported, and then fired as the second component. The first component and the second component Are mixed, then formed into a predetermined shape, dried and fired to obtain the catalyst of the present invention.
[0016]
The catalyst of the present invention may be produced by any known method including the preparation method,
(A) Ir, Pd, Rh or Ru is supported on a porous support together with Pt, and the weight ratio of Ir, Pd, Rh or Ru to Pt is more than 0 and less than 5, preferably more than 0 and less than 2 In the range of
(B) NH of NO with respect to the noble metal-supported porous body (second component) Three It is desirable that the weight ratio of the catalyst component (first component) having the above oxidation activity is 80% or more and the total noble metal content is 100 ppm or less.
[0017]
3 (a) to 3 (c) show usage forms of the catalyst of the present invention. A reactor 2, a heat exchanger 3, an electrostatic precipitator 4, and a chimney 5 are arranged in this order in the exhaust gas flow path from the boiler 1. In addition, NH in the upstream part of the reactor 2 Three An injection line 6 is provided. Then, a denitration catalyst layer is formed using the catalyst 7 of the present invention in part in the reactor 2 or in combination with a known denitration catalyst 8 such as a conventional titanium oxide catalyst. FIG. 3A shows an example in which a denitration catalyst layer is formed in the entire reactor 2 using the catalyst 7 of the present invention, and FIG. FIG. 3C shows an example in which the catalyst 7 of the present invention is arranged on the flow side to form a denitration catalyst layer. FIG. 3C shows the catalyst 7 of the present invention between two known denitration catalysts 8 in the reactor 2. This is an example in which a denitration catalyst layer is formed by arranging. 3 (a) to 3 (c), NH which is a feature of the catalyst 7 of the present invention Three Of nitrogen oxides (NOx) by oxygen and oxidative decomposition of unreacted ammonia into nitrogen and water to leak NH Three In addition to the effect of reducing the NO, the NH Three Can reduce the consumption of SO 2 SO Three Can be maintained at a low level, not only the adverse effect on the downstream equipment can be reduced, but also high catalytic activity can be maintained for a long time.
[0018]
The characteristics of the catalyst 7 of the present invention are characterized in that the kind of the noble metal in the second component and the second component and the first component are mixed as described above, and the preparation method also satisfies any of the above requirements. It goes without saying that even a preparation method can be adopted. However, a superior catalyst can be obtained by using the following method.
[0019]
As the first component of the catalyst 7 of the present invention, various types as described above can be used, and in particular, the catalyst component is composed of elements such as Ti-V, Ti-V-Mo, Ti-W-V and the like. Good results are obtained when oxide catalysts are used. These are prepared by adding a salt such as vanadium, molybdenum, or tungsten oxyacid salt to a slurry of hydrous titanium oxide such as titamethanoic acid, evaporating water using a heating kneader, drying, and after drying, 400 ° C. to 700 ° C. It can be obtained by baking at 0 ° C. and grinding if necessary.
[0020]
The second component of the catalyst 7 of the present invention is zeolite, silica, alumina in advance. More than one kind selected from It is prepared by being supported in the micropores of the porous body by ion exchange or kneading. Porous materials used for the second component are mordenite, clinoptilolite, erionite, zeolites such as Y-type zeolite, sodium-substituted, calcium-substituted, etc., silica having a surface area of 100 m2 / g to 500 m2 / g Alumina or the like can be used. The particle size at the time of use is preferably about 1 to 10 μm, and can be pulverized in advance. These are immersed in an aqueous solution in which at least one or more precious metals selected from Pt and other precious metals (Ir, Pd, Rh, or Ru) are dissolved in the form of chlorides, nitrates, or ammine complexes, and are subjected to ion exchange. Evaporated to dryness with an aqueous solution, supported by 0.01 wt% to 0.1 wt% of the noble metal, and then fired to decompose the noble metal salt into a metal. The addition ratio of the other noble metal added to Pt is more than 0 and 5 or less, preferably 2 or less in weight ratio to Pt.
[0021]
The mixing ratio of the first and second components varies depending on the amount of noble metal supported in the second component, but the second component / first component ratio (hereinafter referred to as second component / first component ratio) is 20 / 80-0. 5 / 99.5 Desirably, the range of 10/90 to 1/99 (weight ratio) is appropriate.
[0022]
To the powders of both the first and second components, water and a known moldability improver such as an inorganic binder, a molding aid, and inorganic fibers are added as necessary, and the paste is kneaded with a kneader such as a kneader Shape.
[0023]
The obtained paste-like catalyst is applied to an inorganic fiber network substrate, a metal substrate roughened by thermal spraying or the like and formed into a plate-like catalyst, or formed into a columnar shape or a honeycomb shape by an extruder. The molded body is used after being dried and fired at a temperature at which sulfate remains as a sulfate, usually 450 ° C. to 550 ° C.
[0024]
The obtained catalyst 7 of the present invention is packed as a catalyst 7 constituting a part of the denitration catalyst layer of the reactor 2 or a conventional known denitration catalyst 8 as shown in FIG. In the region where the NOx concentration is high, it functions as a denitration catalyst, and in the region where the NOx concentration in the exhaust gas decreases, it functions as a decomposition catalyst for unreacted (surplus) ammonia. Use conditions are not particularly limited, but leak NH which is a feature of the catalyst 7 of the present invention. Three NOx in exhaust gas and NH that is a reducing agent Three Molar ratio (NH Three / NOx ratio) is 0.8 or more, and is suitable as a denitration apparatus that performs high denitration rate operation.
[0025]
The weight ratio of Pt in the second component of the catalyst 7 of the present invention and the precious metal added thereto is particularly important. When the weight ratio of the other precious metal to Pt is small, the formulas (1) to (3) When the side reaction is not sufficiently suppressed and is too large, the reaction of the formula (5) becomes difficult to occur and leak NH Three This leads to a decrease in the decomposition rate. The weight ratio can be selected from more than 0 to 5 weight ratio or less, but good results can be easily obtained when it is selected to be 2 weight ratio or less, or depending on the noble metal to be added, 1 weight ratio or less.
[0026]
In the present invention, the ratio of the second component / first component is also important. Among the ranges described above, the ratio of the second component / first component is selected to be small by using zeolite, silica, alumina, etc. with a large amount of noble metal supported. In addition, it is preferable that the amount of noble metal supported by the entire catalyst is in the range of 1 to 1000 ppm, preferably 10 to 100 ppm. This is because the micropores formed by the second component are sparsely present in the macropores formed by the first component, and NH Three Is selectively adsorbed on the first component and is easily used in the denitration reaction. Further, reducing the amount of noble metal has an effect of facilitating separation of the denitration reaction and the oxidation reaction of ammonia depending on the presence or absence of NO, in addition to the economic effect of reducing the unit cost of the catalyst.
[0027]
Further, the second component / first component ratio should be selected to be small when the entire catalyst layer is composed of the catalyst 7 of the present invention, and should be increased when a part of the catalyst 7 of the present invention is used in combination with the conventional catalyst. At the same time, if the noble metal content is increased, good results are easily obtained.
[0028]
Even if the exhaust gas contains a volatile oxide of arsenic (As), selenium (Se) and / or rhenium (Re), the catalytic activity of the present invention does not decrease.
[0029]
[Action]
A conventional denitration catalyst having an activity of decomposing unreacted ammonia is a porous carrier supporting a noble metal and a NOx NH represented by a Ti-W-V system or the like. Three And a catalytic component having reducibility by the method (Japanese Patent Application No. 3-31308 and Japanese Patent Application No. 4-138514). In these conventional catalysts, unreacted ammonia that has remained or was not used in the denitration reaction of the following formula (4) generated on components such as Ti-W-V system is reacted with the reaction of formula (5) on the surface of the noble metal. Is epoch-making by partially oxidizing to NO, and then reducing the remaining unreacted ammonia to nitrogen again by the reaction of formula (4) to express a high denitration rate and a high unreacted ammonia decomposition activity It was something.
NH Three + NO + 1 / 4O 2 → N 2 + 3 / 2H 2 O (4)
NH Three + 3 / 2O 2 → NO + 3 / 2H 2 O (5)
[0030]
However, in these catalysts, since a component in which a noble metal such as Pt, Pd, Rh, etc. is supported alone on a porous carrier is used, an attempt to obtain a high unreacted ammonia decomposition rate increases the oxidation activity of the catalyst. Caused problems. That is, NH in formula (1) Three The consumption reaction is large, and in order to obtain a high denitration rate, many NH Three In the exhaust gas due to the reaction of formula (2) 2 SO Three Which is oxidized on the downstream side of the exhaust gas flow path, and the volatile oxide exemplified in Formula (3) is converted into a non-volatile oxide, which causes a non-volatile oxide on the catalyst surface. It is easy to deteriorate in coal exhaust gas by accumulating.
2NH Three + 3 / 2O 2 → N 2 + 3H 2 O (1)
SO 2 + 1 / 2O 2 → SO Three (2)
As 2 O Three + O 2 → As 2 O Five (3)
[0031]
The catalyst 7 of the present invention is characterized in that Ir, Pd, Rh, or Ru is added to Pt, which is particularly excellent in the reaction of the formula (5). By setting it as such a composition, the reaction activity of Formula (5) is equivalent to the said conventional catalyst of the present inventors, and the side reaction of Formula (1)-(3) can be suppressed greatly. As a result, despite the fact that unreacted ammonia can be efficiently removed, an increase in ammonia consumption and SO 2 SO Three The catalyst is hardly deteriorated due to the non-volatility of the volatile oxide.
[0032]
As a result, SO, such as petroleum and coal combustion exhaust gas, for which conventional catalysts could not be used. 2 In addition to decomposing unreacted ammonia in the denitration equipment for contained exhaust gas, NH Three High denitration rate and low leakage NH without increasing usage Three It is possible to realize a denitration apparatus.
[0033]
【Example】
An embodiment of the present invention will be described. The present invention is not limited to the following examples.
Hereinafter, the present invention will be described in detail using specific examples.
[0034]
Example 1
Metatitanate slurry (TiO 2 Content: 30wt%, SO Four Content: 8 wt%) 67 kg and ammonium paratungstate ((NH Four ) Ten H Ten ・ W 12 O 46 ・ 6H 2 2.4) kg of O) and 0.63 kg of ammonium metavanadate were added and kneaded while evaporating water using a heating kneader to obtain a paste having a water content of about 36%. This was extruded into a 3φ columnar shape, granulated, dried in a fluidized bed dryer, and then calcined in the atmosphere at 550 ° C. for 2 hours. The obtained granule was pulverized with a hammer mill so that the particle size of 1 μm or less was 60% or more to obtain a denitration catalyst powder as the first component. The composition at this time is V / W / Ti = 2/5/92 (atomic ratio).
[0035]
On the other hand, chloroplatinic acid (H 2 [PtC 16 ] 6H 2 O) 0.332 g and iridium chloride (IrCl Four ) 0.217 g was dissolved in 1 liter of water, 500 g of high surface area fine silica (Tonda Pharmaceutical Co., Ltd .: Microcomputer F) was added and evaporated to dryness on a sand bath to carry Pt. This was dried at 180 ° C. for 2 hours and then calcined at 500 ° C. for 2 hours to prepare 0.025 wt% Pt-0.025 wt% Ir-silica as a second component. At this time, the Ir / Pt weight ratio is 1.
[0036]
Separately, a mesh of 1400 E-glass fibers with a fiber diameter of 9 μm and plain weave with a roughness of 10 / inch is impregnated with a slurry of 40% titania, 20% silica sol, 1% polyvinyl alcohol, The catalyst base material was obtained by drying at 150 ° C. to give rigidity.
[0037]
To 19.8 kg of the first component and 200 g of the second component, 5.3 kg of silica / alumina inorganic fiber and 17 kg of water were added and kneaded with a kneader to obtain a catalyst paste. The prepared catalyst mixture was placed between the two substrates, and the catalyst was pressure-bonded between the stitches and the surface of the substrate by passing through a pressure roller to obtain a plate catalyst having a thickness of about 1 mm. The obtained catalyst was dried at 180 ° C. for 2 hours and then calcined in the atmosphere at 550 ° C. for 2 hours. The second component / first component ratio (weight ratio) of the first component and the second component in the catalyst is 1/99, and the noble metal content corresponds to 5 ppm excluding the catalyst substrate and inorganic fibers.
[0038]
Examples 2-4
The iridium chloride of Example 1 was converted to palladium nitrate (Pd (NO Three ) 2 ) 0.271 g (Example 2), rhodium nitrate (Rh (NO Three ) Three ・ 2H 2 O) 0.393 g (Example 3) and ruthenium chloride (RuCL) Four ・ 5H 2 O) A catalyst was prepared in the same manner as in Example 1 except that 0.237 g (Example 4) was used.
[0039]
The prepared catalyst has a noble metal content of 5 ppm, and the Pd / Pt, Rh / Pt and Ru / Pt weight ratios are all 1.
[0040]
Comparative Examples 1-5
Instead of the noble metal of Example 1, chloroplatinic acid, iridium chloride, palladium chloride, rhodium chloride and ruthenium chloride are used alone, and the addition amounts are 0.665 g, 0.434 g, 0.542 g, 0.786 g and 0.474 g, respectively. As in Example 1, a catalyst was prepared.
[0041]
The catalysts of Examples 1 to 4 and Comparative Examples 1 to 5 were cut into a width of 20 mm and a length of 100 mm, and three reactors 2 (FIG. 3) were packed at intervals of 3 mm. The concentration of unreacted ammonia detected at the outlet of the reactor 2 was measured, and the decomposition rate of unreacted ammonia was calculated. At the same time, SO before and after the catalyst layer in the reactor 2 2 Measure the concentration of SO 2 From the rate of decrease in SO 2 The oxidation rate of was calculated.
[0042]
[Table 1]
Figure 0003745407
[0043]
Here, the decomposition rate of unreacted ammonia is obtained by the following equation.
Unreacted NH Three Decomposition rate (%) = ([NH Three ] In- [NH Three ] Denox- [NH Three ] Out)
÷ ([NH Three ] In- [NH Three ] Denox) × 100
[NH Three ] In: Reactor inlet NH Three concentration
[NH Three ] Out: Reactor outlet NH Three Concentration (Leak NH Three concentration)
[NH Three ] Denox: NH used for denitration reaction Three Concentration of
The obtained results are summarized in Table 2.
[0044]
[Table 2]
Figure 0003745407
[0045]
As is apparent from Table 2, the catalyst of Comparative Example 1 has a high unreacted ammonia decomposition rate, but has an SO decomposition rate. 2 Oxidation rate is remarkably high, and there is concern about adverse effects on downstream equipment. 2 It is unsuitable as a contained exhaust gas catalyst. The catalysts of Comparative Examples 2 to 5 are SO 2 Although the oxidation rate is low, the decomposition rate of unreacted ammonia is very low and leak NH Three It is obvious that it is unsuitable for the use aiming at the reduction of the above.
[0046]
On the other hand, the catalysts of Examples 1 to 5 according to the present invention can obtain a high NOx removal rate despite the high decomposition rate of unreacted ammonia, and SO 2 The oxidation rate is as low as 1/4 to 1/10 or less that of the catalyst of Comparative Example 1.
[0047]
As described above, the catalyst of the above-described embodiment of the present invention combines SO and other noble metals to maintain a high denitration rate and a high unreacted ammonia decomposition rate, while maintaining SO 2 It is characterized in that the oxidation rate is suppressed.
[0048]
Further, with respect to the catalyst of Example 1 and the catalyst of Comparative Example 1 having a high unreacted ammonia decomposition rate, NH 3 under the conditions shown in Table 1 were used. Three Denitration rate when the concentration is changed and ammonia concentration detected at the catalyst layer outlet of the reactor 2 (leak NH Three Concentration) was measured and shown in FIG. The catalyst of Example 1 and Comparative Example 1 is similar in that the leak concentration of unreacted ammonia is low, but the behavior of the denitration rate is greatly different. That is, in order to obtain a high denitration rate in the catalyst of Comparative Example 1, NH Three / NO ratio greatly exceeds 1 and NH Three In contrast to the catalyst of Example 1, NH in the vicinity of 1 which is the stoichiometric amount of the denitration reaction is required. Three A high denitration rate can be achieved with the injection amount, and the operating cost of the denitration apparatus can be greatly reduced.
[0049]
Examples 5-8
In Examples 1 to 4, the total precious metal content is 5 ppm, and the weight ratio of Ir, Pd, Rh, and Ru to Pt is changed to 0.1, 0.5, 1, 2, and 5, respectively. Was prepared.
[0050]
About the obtained catalyst, it was SO under the conditions shown in Table 1. 2 The catalyst obtained by measuring the oxidation rate, the denitration rate, and the decomposition rate of unreacted ammonia was subjected to SO under the conditions shown in Table 1. 2 The results of measuring the oxidation rate, the denitration rate, and the decomposition rate of unreacted ammonia are shown in FIG. Compared with the catalyst of Comparative Example 1 in which the amount of other noble metal added to Pt is 0, the catalysts of Examples 5 to 8 are SO. 2 A remarkable suppression effect of the oxidation rate is seen and at the same time an improvement in the denitration rate is observed. However, as the amount of noble metal added increases, the decomposition rate of unreacted ammonia decreases, and the weight ratio of Ir, Pd, Rh, Ru to Pt is 5 or less, preferably 2 or less.
[0051]
Example 9
At the same time that the amount of noble metal supported in the second component of the catalyst of Example 1 was changed to 0.01 wt%, the mixing ratio of the second component and the first component was changed to 0.5 / 99.5, and the total noble metal amount was changed to 0. A 5 ppm catalyst was prepared.
[0052]
Examples 10-12
In place of the precious metal of the second component in the catalysts of Comparative Examples 2 to 4, the weight ratio of Pd / Pt, Rh / Pt, Ru / Pt is 2, and the ratio of the second component / first component is 2/98, 20 / The catalyst was prepared by changing to 80, 10/90. In this case, the noble metal contents are 10 ppm, 100 ppm and 50 ppm, respectively.
[0053]
Comparative Examples 6-9
Examples 9 to 10 Catalysts having Pt loadings of 0.5, 10, 100, and 50 ppm were prepared by replacing all precious metals of the second component in the catalysts with Pt.
[0054]
For the obtained catalysts of Examples 9 to 12 and Comparative Examples 6 to 9, the NOx removal rate, the unreacted ammonia decomposition rate, the SO 2 The oxidation rates were measured and summarized in Table 3.
[0055]
[Table 3]
Figure 0003745407
[0056]
As can be seen from Table 3, the catalyst according to the present invention has a high denitration rate, a high unreacted decomposition rate, and a low SO, depending on the combination of Pt and other noble metals, from those with a small amount of noble metal supported. 2 It can be seen that the oxidation rate can be maintained.
[0057]
Examples 13-16
In order to perform a test for accelerating the deterioration of the catalyst of the present invention using a volatile oxide such as arsenic oxide contained in coal exhaust gas, the catalysts of Examples 1 to 4 and the catalyst of Comparative Example 1 were used. Arsenic suboxide (As 2 O Three ) Add and evaporate the aqueous solution, As 2 O Three The concentration was adjusted to 50 ppm. Under these conditions, the arsenic oxide was adsorbed on the catalyst by maintaining for 5 hours, and the change in the catalyst performance was examined.
Table 4 summarizes changes in the unreacted ammonia decomposition rate of the catalyst before and after the accelerated deterioration test.
[0058]
[Table 4]
Figure 0003745407
[0059]
As is apparent from Table 4, the catalyst according to the present invention exhibits durability against deterioration due to the vapor of arsenic oxide contained in coal exhaust gas and the like, and is optimal for a dirty exhaust gas denitration catalyst.
[0060]
Example 17
A catalyst was prepared in the same manner as in Example 1 except that the first component of Example 1 was replaced with mordenite obtained by ion exchange of 8% Cu. Using this catalyst, the denitration rate, the decomposition rate of unreacted ammonia, the SO 2 When the oxidation rate was measured, 98%, 97%, and 1.9% were obtained, respectively, and the same performance as in Example 1 was obtained.
[0061]
【The invention's effect】
Conventional NH Three NH, which is a disadvantage of denitration catalyst with cracking activity Three Increase in consumption can be reduced and SO 2 Oxidation activity can be very low, and adverse effects such as acidic corrosion of equipment disposed in the gas flow path to be treated on the downstream side of the denitration catalyst can be reduced.
[0062]
Furthermore, the catalyst according to the present invention decomposes unreacted ammonia even if it is used for the treatment of coal combustion exhaust gas, industrial waste combustion furnace exhaust gas, and waste incinerator exhaust gas containing volatile oxide vapor such as arsenic oxide as catalyst poison. The activity does not decrease for a long period of time and can be used to reduce ammonia leaking from the denitration reactor for treating these exhaust gases.
[Brief description of the drawings]
FIG. 1 is a diagram showing that a denitration catalyst according to an embodiment of the present invention is effective in reducing the amount of ammonia used.
FIG. 2 shows that the catalyst composition of one embodiment of the present invention is SO. 2 It is a figure which shows that it is suitable for suppression of the oxidation rate of this.
FIG. 3 is a view showing an embodiment in which the catalyst of the present invention is disposed in a gas flow path to be treated.
FIG. 4 is an explanatory diagram for illustrating a problem to be solved by a conventional denitration catalyst invented by the present inventors.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Boiler, 2 ... Reactor, 3 ... Heat exchanger, 4 ... Electric dust collector, 5 ... Chimney,
6 ... Ammonia injection line, 7 ... Catalyst of the present invention, 8 ... Known denitration catalyst

Claims (9)

チタン酸化物およびモリブデン、タングステン、バナジウムから選ばれた一種以上の元素の酸化物からなる組成物または銅もしくは鉄を担持したゼオライトからなる組成物を第1成分とし、イリジウム、パラジウム、ロジウム、ルテニウムから選ばれる少なくとも一つの金属と白金とからなり、前記金属の白金に対する重量比が0を超えて5以下の割合で含まれる予め多孔体に担持した第2成分とからなることを特徴とする窒素酸化物のアンモニア還元機能とアンモニアの酸化分解機能とを有する二酸化硫黄及び揮発性酸化物を含有する排ガス浄化触媒。A composition comprising a titanium oxide and an oxide of one or more elements selected from molybdenum, tungsten and vanadium or a composition comprising a zeolite supporting copper or iron is used as the first component, from iridium, palladium, rhodium and ruthenium. Nitrogen oxidation characterized by comprising at least one selected metal and platinum, and comprising a second component previously supported on the porous body, the weight ratio of the metal to platinum being greater than 0 and not greater than 5 A catalyst for purification of exhaust gas containing sulfur dioxide and volatile oxides, which has an ammonia reduction function of substances and an oxidative decomposition function of ammonia. 第2成分中のイリジウム、パラジウム、ロジウム、ルテニウムから選ばれる少なくとも一つの金属の白金に対する重量比が0を超えて2以下であることを特徴とする請求項1に記載の窒素酸化物のアンモニア還元機能とアンモニアの酸化分解機能とを有する二酸化硫黄及び揮発性酸化物を含有する排ガス浄化触媒。2. The ammonia reduction of nitrogen oxide according to claim 1, wherein the weight ratio of at least one metal selected from iridium, palladium, rhodium, and ruthenium in the second component to platinum is more than 0 and 2 or less. A purification catalyst for exhaust gas containing sulfur dioxide and volatile oxide having a function and an oxidative decomposition function of ammonia. 第2成分/第1成分比(重量比)が20/80〜0.5/95.5であり、触媒中の貴金属の含有量が100ppm以下であることを特徴とする請求項1または2記載の窒素酸化物のアンモニア還元機能とアンモニアの酸化分解機能とを有する二酸化硫黄及び揮発性酸化物を含有する排ガス浄化触媒。3. The ratio of the second component / first component (weight ratio) is 20/80 to 0.5 / 95.5, and the content of the noble metal in the catalyst is 100 ppm or less. A catalyst for purifying exhaust gas containing sulfur dioxide and volatile oxide, which has an ammonia reduction function and an oxidative decomposition function of ammonia. チタン化合物にバナジウム、モリブデン、タングステンのうち少なくとも一種以上の元素の化合物を水とともに添加混合し、乾燥、焼成したもの、または銅または鉄をイオン交換して担持したゼオライトを第1成分とし、予めゼオライト、シリカ、アルミナから選ばれる一種以上の多孔体に白金とその他の金属としてイリジウム、パラジウム、ロジウム、ルテニウムから選ばれる少なくとも一つの金属を担持後、焼成して第2成分とし、第1成分と第2成分を混合後、所定形状に成形し、乾燥、焼成して触媒とすることを特徴とする窒素酸化物の還元機能とアンモニアの酸化分解機能とを有する二酸化硫黄及び揮発性酸化物を含有する排ガス浄化触媒の製造方法。At least one elemental compound of vanadium, molybdenum, or tungsten is added to and mixed with water in a titanium compound, dried and calcined, or a zeolite loaded with copper or iron ion-exchanged as a first component. At least one metal selected from iridium, palladium, rhodium, and ruthenium as platinum and other metals is supported on one or more porous bodies selected from silica, alumina, and fired to form a second component. It contains sulfur dioxide and volatile oxides, which have a nitrogen oxide reduction function and ammonia oxidative decomposition function, which are formed by mixing the two components, then shaping them into a predetermined shape, drying and firing to form a catalyst. method for producing a purifying catalyst of the exhaust gas. 第2成分/第1成分比が20/80〜0.5/95.5となる重量比で各々の成分を混合し、かつ触媒中の貴金属の含有量が100ppm以下となるように貴金属を混合することを特徴とする請求項4記載の窒素酸化物の還元機能とアンモニアの酸化分解機能とを有する二酸化硫黄及び揮発性酸化物を含有する排ガス浄化触媒の製造方法。Each component is mixed at a weight ratio of the second component / first component ratio of 20/80 to 0.5 / 95.5, and the precious metal is mixed so that the content of the precious metal in the catalyst is 100 ppm or less. The method for producing a purification catalyst for exhaust gas containing sulfur dioxide and a volatile oxide having a nitrogen oxide reduction function and an ammonia oxidative decomposition function according to claim 4. 請求項1ないし3のいずれかに記載の排ガス浄化触媒と排ガスとをアンモニアの存在下に接触させ、排ガス中の窒素酸化物を還元除去するとともに、未反応のアンモニアの酸化分解を行うことを特徴とする二酸化硫黄及び揮発性酸化物を含有する排ガス浄化方法。The exhaust gas purification catalyst according to any one of claims 1 to 3 is contacted with exhaust gas in the presence of ammonia to reduce and remove nitrogen oxides in the exhaust gas, and to oxidatively decompose unreacted ammonia. A method for purifying exhaust gas containing sulfur dioxide and volatile oxide . 排ガスが窒素酸化物を含有し、排ガス中の窒素酸化物に対するアンモニアのモル比を0.8以上となるようにアンモニアを該排ガスと混合することを特徴とする請求項6記載の二酸化硫黄及び揮発性酸化物を含有する排ガス浄化方法。 Exhaust gas containing nitrogen oxides and sulfur dioxide according to claim 6, wherein the mixing of ammonia with the exhaust gas so that the molar ratio of ammonia to nitrogen oxides in the exhaust gas is 0.8 or more A method for purifying exhaust gas containing volatile oxides . 前記揮発性酸化物がひ素、セレンおよびレニウムの少なくともいずれかの元素であることを特徴とする請求項6または7記載の二酸化硫黄及び揮発性酸化物を含有する排ガス浄化方法。 It said volatile oxides Gahiso, selenium and method for purifying exhaust gas containing the claims 6 or 7 sulfur dioxide and volatile oxides, wherein the at least one element of rhenium. 請求項1ないし3のいずれかに記載の排ガス浄化触媒を脱硝触媒とを組み合わせて排ガス中の窒素酸化物を還元除去するとともに、未反応のアンモニアの酸化分解を行うことを特徴とする二酸化硫黄及び揮発性酸化物を含有する排ガス浄化方法。A combination of the exhaust gas purification catalyst according to any one of claims 1 to 3 with a denitration catalyst to reduce and remove nitrogen oxides in the exhaust gas, and oxidatively decompose unreacted ammonia and sulfur dioxide, A method for purifying exhaust gas containing volatile oxides .
JP09510795A 1995-04-20 1995-04-20 Exhaust gas purification catalyst, production method thereof, and exhaust gas purification method Expired - Fee Related JP3745407B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09510795A JP3745407B2 (en) 1995-04-20 1995-04-20 Exhaust gas purification catalyst, production method thereof, and exhaust gas purification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09510795A JP3745407B2 (en) 1995-04-20 1995-04-20 Exhaust gas purification catalyst, production method thereof, and exhaust gas purification method

Publications (2)

Publication Number Publication Date
JPH08290062A JPH08290062A (en) 1996-11-05
JP3745407B2 true JP3745407B2 (en) 2006-02-15

Family

ID=14128647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09510795A Expired - Fee Related JP3745407B2 (en) 1995-04-20 1995-04-20 Exhaust gas purification catalyst, production method thereof, and exhaust gas purification method

Country Status (1)

Country Link
JP (1) JP3745407B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5030343B2 (en) * 2001-08-31 2012-09-19 三菱重工業株式会社 Exhaust gas purification apparatus and exhaust gas treatment method
JP4813830B2 (en) * 2004-10-14 2011-11-09 三菱重工業株式会社 Exhaust gas treatment catalyst, exhaust gas treatment method and exhaust gas treatment device
DE102006020158B4 (en) * 2006-05-02 2009-04-09 Argillon Gmbh Extruded full catalyst and process for its preparation
DK2363194T3 (en) * 2006-08-01 2013-02-11 Cormetech Inc Nitrous oxide removal system from an exhaust gas
US7727499B2 (en) * 2007-09-28 2010-06-01 Basf Catalysts Llc Ammonia oxidation catalyst for power utilities
WO2024048467A1 (en) * 2022-08-29 2024-03-07 三菱重工業株式会社 Ammonia decomposition catalyst and exhaust gas treatment method
CN115487807A (en) * 2022-09-30 2022-12-20 大连海事大学 A kind of preparation method and application of mixed catalyst for selective catalytic oxidation of NH3

Also Published As

Publication number Publication date
JPH08290062A (en) 1996-11-05

Similar Documents

Publication Publication Date Title
US5409681A (en) Catalyst for purifying exhaust gas
EP0686423B1 (en) Use of ammonia decomposition catalysts
JP4831801B2 (en) Method and apparatus for removing mercury from exhaust gas
KR100686381B1 (en) Vanadium / Titania-based catalysts containing natural manganese ores for removing nitrogen oxides and dioxins over a wide range of active temperatures and methods of using them
JPH064126B2 (en) Exhaust gas purification method
US5047378A (en) Exhaust gas-purifying catalyst and process for purifying exhaust gases
JP3321190B2 (en) Ammonia decomposition catalyst with denitration function and exhaust gas purification method
JP3745407B2 (en) Exhaust gas purification catalyst, production method thereof, and exhaust gas purification method
JP4118077B2 (en) Exhaust gas purification method
JP3793283B2 (en) Exhaust gas purification catalyst and exhaust gas purification apparatus using the same
EP1726565A1 (en) Carbon material and flue gas treatment apparatus
JP3321423B2 (en) Exhaust gas purification method
JP3512454B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP4994008B2 (en) Purification equipment for exhaust gas containing nitrogen oxides and metallic mercury
JP2916377B2 (en) Ammonia decomposition catalyst and method for decomposing ammonia using the catalyst
JP3833731B2 (en) Ammonia decomposition method
KR100382051B1 (en) Catalyst for Selective Catalytic Reduction of Nitrogen Oxides Including Sulfur Dioxide at Low Temperature
JPH08141398A (en) Catalyst for decomposing ammonia
KR100549777B1 (en) Vanadium / Titania-based catalysts containing nitrogen oxides and / or vanadium trioxide for dioxin removal with a wide active temperature range
JP2001252562A (en) Low temperature denitration catalyst and low temperature denitration method
JP3337498B2 (en) Method for producing catalyst for purifying exhaust gas and method for purifying exhaust gas
JPH09150039A (en) Apparatus and method for purifying exhaust gas
JP3066040B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP5285459B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JPH05329334A (en) Catalyst for purifying exhaust gas and method for purifying exhaust gas

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051117

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091202

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091202

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101202

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101202

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111202

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121202

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131202

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees