[go: up one dir, main page]

JPH01276105A - optical fiber - Google Patents

optical fiber

Info

Publication number
JPH01276105A
JPH01276105A JP63104260A JP10426088A JPH01276105A JP H01276105 A JPH01276105 A JP H01276105A JP 63104260 A JP63104260 A JP 63104260A JP 10426088 A JP10426088 A JP 10426088A JP H01276105 A JPH01276105 A JP H01276105A
Authority
JP
Japan
Prior art keywords
layer
resin
coating
curing
inner layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63104260A
Other languages
Japanese (ja)
Inventor
Hiroo Matsuda
松田 裕男
Toshiaki Saigo
雑喉 利明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP63104260A priority Critical patent/JPH01276105A/en
Publication of JPH01276105A publication Critical patent/JPH01276105A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明/i元ファイバに関し、特に高速線引く適した樹
脂被81.元ファイバの新規な構造に関するものである
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] Regarding the present invention/i-element fiber, resin coating 81. is particularly suitable for high-speed drawing. It concerns a new structure of the original fiber.

〔従来の技術〕[Conventional technology]

ガラス元ファイバはガラス母材から線引きされたままで
は細径で機械的強度も小さいため、一般には線引き工程
においてその外RK被被覆施こして元ファイバ素線とす
る。第1図に本発明の対象となる元ファイバ素線(以下
光7アイパと云う。)1の一例の断面構造を示すが、コ
アとクラッドを有してなるガラスファイバ2を中心とし
てその外周に緩衝被覆層として内層樹脂被覆5と保護被
覆層として外層樹脂被覆4が設けられている。緩衝被覆
層の内層樹脂被覆3は一次コートを兼ねると同時にクツ
ション効果を奏するもので、弾性率1kP/lI冨2以
下といった比較的軟質な樹脂からなり、保護被覆層の外
層樹脂被覆4は殻としてガラス元ファイバに高い機械的
強度を付与し、光伝送損失増加を抑える効果を奏するも
ので、弾性率10k)/龍2以上といった比較的硬質な
樹脂が用いられる。
Since the original glass fiber has a small diameter and low mechanical strength as it is drawn from the glass base material, it is generally coated with RK during the drawing process to obtain the original fiber. FIG. 1 shows a cross-sectional structure of an example of the original fiber strand (hereinafter referred to as Hikari 7-IPA) 1, which is the subject of the present invention. An inner resin coating 5 is provided as a buffer coating layer, and an outer resin coating 4 is provided as a protective coating layer. The inner resin coating 3 of the buffer coating layer serves as a primary coat and also has a cushioning effect, and is made of a relatively soft resin with an elastic modulus of 1 kP/lI or less, and the outer resin coating 4 of the protective coating layer acts as a shell. It imparts high mechanical strength to the glass base fiber and has the effect of suppressing an increase in optical transmission loss, and uses a relatively hard resin with an elastic modulus of 10 k)/Ryu 2 or more.

これ等の被覆用樹脂としては、生産性の観点から硬化速
度の速い光硬化性樹脂が用いられることが多い。光硬化
性樹脂は、樹脂中に含有する光開始剤が紫外線領域の波
長の光音吸収して開裂しラジカル反応を起して硬化する
。したがつて、光硬化性樹脂の硬化有効波長域は主とし
て光開始剤の有効励起波長域で決まジ、光開始剤の光吸
収特性と一致するので、この波長域の光音照射して硬化
させる。
As these coating resins, photocurable resins having a fast curing speed are often used from the viewpoint of productivity. A photocurable resin is cured by a photoinitiator contained in the resin that absorbs light sound having a wavelength in the ultraviolet region, cleaves it, and causes a radical reaction. Therefore, the effective curing wavelength range of the photocurable resin is mainly determined by the effective excitation wavelength range of the photoinitiator, and it matches the light absorption characteristics of the photoinitiator, so it is cured by irradiation with photo-sound in this wavelength range. .

上記の構造の元ファイバ1の製造性としては、線引きガ
ラス元ファイバに被覆用樹脂?塗布および硬化する工程
を各層毎に順次行なういわゆるタンデム方式の製法と、
二層の被覆用樹脂を同時に塗布し硬化させる二層同時被
覆法が知られている。
Regarding the manufacturability of the original fiber 1 with the above structure, is it possible to coat the drawn glass original fiber with a coating resin? The so-called tandem manufacturing method, in which the coating and curing steps are performed sequentially for each layer,
A two-layer simultaneous coating method is known in which two layers of coating resin are simultaneously applied and cured.

第2図にタンデム方式によシー層ごと被覆用樹脂を塗布
する二層被α元ファイバ製造装置の概要を示す。母材送
夕装置517il:よp母材8全線引炉6に送り込む。
FIG. 2 shows an outline of a two-layer alpha-fiber manufacturing apparatus that applies a coating resin together with the sheath layer in tandem. Base material sending device 517il: sends all of the base material 8 to the wire drawing furnace 6.

母材送p装置5と線引炉6により線引装f7を構成する
。線引きされたガラスファイバ2は塗布装置15により
内層被覆を形成する光硬化性樹脂が塗布され、紫外線照
射装置15で硬化される。内層樹脂被覆音節した後、塗
布装置16により外層被覆を形成する光硬化性樹脂が内
層樹脂被覆の外周に塗布され、紫外線照射装置14で硬
化され二層被覆を箔した元ファイバ1が形成され、引取
フキャプスタン11によp引き取ジながら巻取装置12
して巻き取られる。
The base material feeding device 5 and the drawing furnace 6 constitute a drawing equipment f7. The drawn glass fiber 2 is coated with a photocurable resin forming an inner layer coating by a coating device 15, and cured by an ultraviolet irradiation device 15. After the inner layer is coated with the resin, a photocurable resin forming the outer layer is coated on the outer periphery of the inner layer by the coating device 16, and cured by the ultraviolet irradiation device 14 to form the original fiber 1 with the two-layer coating. While the winding device 12 is being picked up by the take-up capstan 11
It is then wound up.

第3□□□は、二層樹脂被覆を形成する内層被覆および
外1rI被覆の樹脂を同時に塗布し硬化させる二層同時
被覆法による二層被覆光ファイバ製造装置の概要図であ
る。W、2図と同じ符号は同じ部分を示す。第2図に示
したタンデム方式と異るところは、線引炉6により母材
8を線引きしたガラスファイバ2に、二層同時塗布装置
9により、同時に二層被覆を形成する内層樹脂と外層樹
脂を塗布し、紫外線照射装置i110iCより、塗布し
た内層および外層樹脂全硬化して二層被覆の元ファイバ
1を形成することである。
3rd □□□ is a schematic diagram of a two-layer coated optical fiber manufacturing apparatus using a two-layer simultaneous coating method in which resins for the inner layer coating and the outer 1rI coating forming the two-layer resin coating are simultaneously applied and cured. W. The same symbols as in Figure 2 indicate the same parts. The difference from the tandem method shown in FIG. 2 is that a two-layer coating device 9 simultaneously forms a two-layer coating on the glass fiber 2 with a base material 8 drawn in a drawing furnace 6, an inner layer resin and an outer layer resin. The coated inner and outer layer resins are completely cured using an ultraviolet irradiation device i110iC to form a two-layer coated original fiber 1.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

この樵の元ファイバに施す被覆材料として用いられる光
硬化性樹脂においては一般に内jWI被覆に用いる比較
的軟質のものの方が外層被覆に用いる比較的硬質のもの
よp硬化速度が遅い。
Regarding the photocurable resin used as the coating material applied to the original fiber, the relatively soft one used for the inner layer coating generally has a slower curing speed than the relatively hard one used for the outer layer coating.

そこで、第2図に示したタンデム方式においては内層被
覆の樹脂を硬化させる紫外線照射装置13の内層硬化用
ランプを、また第3図に示した二層同時被覆におめては
紫外線照射装置10の二層同時硬化用ランプを非常に強
力にする、又は多数の硬化用ランプを直列もしくは並列
に配置する等の手段金とって対処している。。しかし、
タンデム方式、二層同時被覆法のいずれにおいても、や
はり内層の緩衝被覆層全形成している比較的軟質なi硬
化性樹脂の硬化速度が遅く、これが線引速度を向上する
上での障害になるという問題がある。
Therefore, in the tandem system shown in FIG. 2, the inner layer curing lamp of the ultraviolet ray irradiation device 13 for curing the resin of the inner layer coating is used, and in the simultaneous two-layer coating shown in FIG. Measures have been taken to make the double-layer simultaneous curing lamp extremely powerful, or to arrange a large number of curing lamps in series or parallel. . but,
In both the tandem method and the two-layer simultaneous coating method, the relatively soft i-curing resin that forms the entire inner buffer coating layer has a slow curing speed, which is an obstacle to increasing the drawing speed. There is a problem with becoming.

本発明はこのような二層被覆構造のファイバにおける内
外層の光硬化速度の差、特に比較的軟質の内層被覆樹脂
の硬化速度全向上できて、高速線引に適した被覆構造の
元ファイバを提供すること全目的とするものである。
The present invention addresses the difference in the light curing speed between the inner and outer layers in a fiber with such a two-layer coating structure, and in particular improves the curing speed of the relatively soft inner layer coating resin, thereby creating an original fiber with a coating structure suitable for high-speed drawing. The entire purpose is to provide.

〔課題を解決するだめの手段〕[Failure to solve the problem]

本発明はガラスファイバの外周に二層の光硬化性樹脂被
覆層に!してなる元ファイバにおいて、各層を形成する
光硬化性樹脂の硬化有効波長域が異なること全特徴とす
る元ファイバである。本発明の特に好ましい実施態様と
して、各層上形成する光硬化性樹脂は添加されている開
始剤が異なることKより硬化有効波長域が異なる上記元
ファイバが挙げられる。
The present invention uses a two-layer photocurable resin coating layer on the outer periphery of the glass fiber! This original fiber is characterized in that the effective curing wavelength range of the photocurable resin forming each layer is different. A particularly preferred embodiment of the present invention is that the photocurable resins formed on each layer have different initiators added, and the above-mentioned source fibers have different effective wavelength ranges for curing.

本発明は第1図の元ファイバ1において、外層40元硬
化性樹脂の硬化有効波長域と内rt!I3の樹脂のそれ
とが異なるものである。
The present invention is based on the effective curing wavelength range of the outer layer 40-element curable resin and the inner rt! This resin is different from that of resin I3.

〔作用〕[Effect]

一般に″に、ファイバに施す被覆の厚さは、−層につい
て約10μm乃至100μm程度であるが、この程度の
厚さになると、元の吸収による減衰を無視することがで
きなくなる。第3図に示した二層同時塗布法の場合のよ
うに1外層樹脂金通して内層樹脂を硬化させるときは勿
論であるが、第2図に示したタンデム方式の一層ごとの
塗布法の場合においても、外層樹脂硬化時に外層樹脂を
透過する元による内層樹脂の硬化も重要となってくる。
In general, the thickness of the coating applied to the fiber is approximately 10 to 100 μm for the -layer, but at this thickness, the attenuation due to the original absorption cannot be ignored. Of course, when the inner layer resin is cured by passing through one outer layer resin as shown in the two-layer simultaneous coating method, but also in the case of the tandem layer-by-layer coating method shown in Fig. It is also important that the inner layer resin is cured by a source that passes through the outer layer resin when the resin is cured.

本発明は外層樹脂、内層樹脂としてその硬化有効波長域
が異なるものを用いておくことによフ、外層樹脂層で外
層樹脂硬化有効波長域の光が吸収されこの波長域の強度
が減衰してはいるが、内層樹脂硬化有効波長域の光は吸
収されていない透過光で、内層樹脂をも硬化できるよう
にした元ファイバである。このAtさらに詳しく第6図
で説明すると、第6図は元の波長を横軸に、光強度又は
吸光度全縦軸にして、同図上方から下方にランプ元強度
波長特性a、外層吸光波長特性b、外層透過光強度(内
層照射強鵬波長特性01内層吸光波長特性dの関係を示
した図である。本発明では外層吸光波長特性すと内層吸
光波長特性dすなわち、外層と内層の硬化有効波長域が
異なっている。従って内層、外層両方の硬化有効波長域
をカバーできる光強度波長特性aのランプで照射すると
、まず外層により吸光されて外層吸光波長特性すに対応
して減衰し、内層?照射する透過光波長特性はCのよう
になるが、dに示した内層硬化有効波長域では減衰して
いないので、内層樹脂はこの透過光全有効に吸収して迅
速な硬化が実現できる。
In the present invention, by using resins having different effective curing wavelength ranges as the outer layer resin and the inner layer resin, the light in the effective wavelength range for curing the outer layer resin is absorbed by the outer resin layer, and the intensity in this wavelength range is attenuated. However, the light in the wavelength range that is effective for curing the inner layer resin is transmitted light that is not absorbed, and is an original fiber that can also cure the inner layer resin. To explain this At in more detail in Figure 6, Figure 6 shows the original wavelength as the horizontal axis and the total light intensity or absorbance as the vertical axis. b is a diagram showing the relationship between the outer layer transmitted light intensity (inner layer irradiation intensity wavelength characteristic 01 and inner layer absorption wavelength characteristic d). In the present invention, the outer layer absorption wavelength characteristic and the inner layer absorption wavelength characteristic d, that is, the curing effectiveness of the outer layer and inner layer Therefore, when irradiated with a lamp with a light intensity wavelength characteristic a that can cover the effective curing wavelength range of both the inner layer and the outer layer, the light is first absorbed by the outer layer and attenuated in accordance with the outer layer absorption wavelength characteristic. ?The wavelength characteristics of the irradiated transmitted light are as shown in C, but since it is not attenuated in the inner layer curing effective wavelength range shown in d, the inner layer resin can effectively absorb all of this transmitted light and achieve rapid curing.

本発明において内、外層樹脂の硬化有効波長特性を!4
なるようにするには、いずれの手段によってもよいが、
前述のように光硬化性樹脂の硬化有効波長域は主として
光開始剤の有効励起波長域で決まり、光開始剤の光吸収
特性と一致するので、内外層樹脂に添加する光開始剤を
適当に選択することで簡単に実現できる。光開始剤の添
加檜は本発明者らの実験では0.5〜10重量%重量%
一般的であった。
In the present invention, the curing effective wavelength characteristics of the inner and outer layer resins! 4
Any method can be used to achieve this, but
As mentioned above, the effective curing wavelength range of the photocurable resin is mainly determined by the effective excitation wavelength range of the photoinitiator, and it matches the light absorption characteristics of the photoinitiator. This can be achieved easily by selecting. In our experiments, the amount of photoinitiator added was 0.5 to 10% by weight.
It was common.

本発明における光硬化性樹脂としては、例えばポリウレ
タンアクリレート、エポキシアクリレート、ポリエステ
ルアクリレート、ポリエーテルアクリレート、メラミン
アクリレート、シリコンアクリレート等の種々の樹脂を
用いることができる。
As the photocurable resin in the present invention, various resins such as polyurethane acrylate, epoxy acrylate, polyester acrylate, polyether acrylate, melamine acrylate, and silicon acrylate can be used.

表1に主な光開始剤の有効励起波長を示す。Table 1 shows the effective excitation wavelengths of main photoinitiators.

表  1 また、第5図(イ)と(ロ)に下記に化学名および化学
構造式を示す代表的な元開始剤囚と(Bl 、 (C1
の光吸収波長特性を示す。
Table 1 Also, in Figure 5 (a) and (b), typical initiator particles (Bl, (C1) whose chemical names and chemical structural formulas are shown below
shows the optical absorption wavelength characteristics of

囚 2−メチル−(41メチルチオ)フェニルツー2−
モルフォリノ−1−プロノくノンH3 (Bl  1−ヒドロキシシクロへキシルフェニルケト
ン (Cl  2,2−ジメトキシ−2−フェニルアセトフ
ェノン −CH3 また、本発明の元ファイバの硬化には、外層及び内層硬
化有効波長域全照射できる出力特性の照射ラングを用い
ることが好ましい。第4図+a+乃至(C)に代表的な
樹脂硬化用ランプの出力波長特性を示す。
2-Methyl-(41methylthio)phenyl2-
Morpholino-1-pronocnonone H3 (Bl 1-hydroxycyclohexylphenyl ketone (Cl 2,2-dimethoxy-2-phenylacetophenone-CH3 It is preferable to use an irradiation rung with output characteristics capable of irradiating the entire area. Figures 4+a+ to (C) show the output wavelength characteristics of typical resin curing lamps.

〔実施例〕〔Example〕

実施例1 第3図に示した二層同時塗布による二層被覆光ファイバ
全試作した。試作した二層被覆光ファイバは、外径12
5μmφのガラスファイノくの外周に1内層厚200μ
m1外層厚250μmの二層の光硬化性樹脂を線速20
0m/分で被覆した構造で、内層の光硬化性樹脂の硬化
度を溶剤抽出法によりゲル分率で評価し念。被覆樹脂と
して、内層用には比較的軟質の、また外層用には比較的
硬質のウレタンアクリレート系樹脂を適用し、添加する
光開始剤(前記A、B、C)の種類と添加量を変化させ
て比較した。表2の!に試作した5種類の試料1乃至5
の構成および評価結果を示す。42 、3 、5が本発
明品、A1,4が比較品である。なお樹脂硬化用ランプ
としては、第4図すに示した出力波長特性を有するラン
プを適用した。
Example 1 All the double-layer coated optical fibers shown in FIG. 3 were fabricated by simultaneous coating of two layers. The prototype double-layer coated optical fiber has an outer diameter of 12
1 inner layer thickness 200μ on the outer periphery of 5μmφ glass fiber
Two layers of photocurable resin with an outer layer thickness of 250 μm were heated at a linear speed of 20
With a structure coated at 0 m/min, the degree of curing of the photocurable resin in the inner layer was evaluated using the gel fraction using a solvent extraction method. As the coating resin, a relatively soft urethane acrylate resin is used for the inner layer and a relatively hard urethane acrylate resin for the outer layer, and the type and amount of the photoinitiator (A, B, C) added is varied. I made a comparison. Table 2! Five types of samples 1 to 5 prototyped in
The structure and evaluation results are shown. 42, 3, and 5 are products of the present invention, and A1 and 4 are comparative products. As the resin curing lamp, a lamp having the output wavelength characteristics shown in FIG. 4 was used.

表2の!から次のことが解る。41と屋4は、内層樹脂
および外層樹脂に、ともに同一の光開始剤人又はCを同
量添加した従来の構造の光ファイバで、内層樹脂ゲル分
率がそれぞれ69Xおよび72%で、ともに内層樹脂の
硬化は不十分であった。
Table 2! From this, we understand the following. 41 and Ya4 are optical fibers with a conventional structure in which the same amount of the same photoinitiator or C is added to both the inner layer resin and the outer layer resin, and the inner layer resin gel fraction is 69X and 72%, respectively. Curing of the resin was insufficient.

一方、内層樹脂、外層樹脂にそれぞれ異なる光開始剤を
添加した本発明ファイバ42.43および扁5では、内
層樹脂のゲル分率がそれぞ91%、88X、75%とい
ずれも対応する従来品よシ硬化度が上昇している。
On the other hand, in the fibers 42, 43 and 5 of the present invention in which different photoinitiators were added to the inner layer resin and the outer layer resin, the gel fraction of the inner layer resin was 91%, 88X, and 75%, respectively, which correspond to the conventional products. The degree of hardness is increasing.

したがって、本発明ファイバ42.43 、A5は、外
層樹脂を透過したランプからの照射光を有効に利用し、
硬化速度が上昇することから高速線引に有利となる。
Therefore, the fibers 42, 43 and A5 of the present invention effectively utilize the irradiated light from the lamp that has passed through the outer layer resin,
Since the curing speed increases, it is advantageous for high-speed wire drawing.

実施例2 第2図に示したタンデム方式の一層ごとの塗布による二
層被覆光7アイパを試作した。試作した二層被覆光ファ
イバは、外径125μmφのガラスファイバの外周に内
層厚200μm1外層厚250μm の二層の光硬化樹
脂全線速300m/分で被覆した構造で、実施例1と同
じように内層の光硬化性樹脂の硬化度を溶剤抽出法によ
りゲル分率で評価した。被覆樹脂は、内層および外!−
ともにシリコンアクリレート系の材質を用いた。表2の
菖に試作した2徨類のA6およびJ167の構成を示す
。なお樹脂硬化用ラングは、実施例1と同様、94図す
に示した出力波長特性を有するランプを適用した。
Example 2 A two-layer coated Hikari 7 Eyeper was fabricated by applying the tandem coating layer by layer as shown in FIG. 2. The prototype double-layer coated optical fiber had a structure in which the outer periphery of a glass fiber with an outer diameter of 125 μmφ was coated with two layers of photocuring resin, each with an inner layer thickness of 200 μm and an outer layer thickness of 250 μm, at a total linear speed of 300 m/min. The degree of curing of the photocurable resin was evaluated in terms of gel fraction using a solvent extraction method. The coating resin is the inner layer and the outer layer! −
Both materials were made from silicone acrylate. Table 2 shows the configurations of two prototypes, A6 and J167. As in Example 1, a lamp having the output wavelength characteristics shown in FIG. 94 was used as the resin curing rung.

表2の丘から次のことが解る。The following can be understood from the hills in Table 2.

A6は、内層樹脂および外層樹脂に、ともに同一の光開
始剤を同量添加した従来の構造の光ファイバで、内層樹
脂ゲル分率が71%で内層樹脂の硬化度はなお低く硬化
は不十分であった。
A6 is an optical fiber with a conventional structure in which the same amount of the same photoinitiator is added to both the inner layer resin and the outer layer resin, and the inner layer resin gel fraction is 71%, and the degree of curing of the inner layer resin is still low and curing is insufficient. Met.

これに比して本発明ファイバのA7は、内層樹脂のゲル
分率が85%と高く、硬化度が上昇していた。したがっ
て本発明のA7は、外層樹脂全透過したランプからの照
射光を有効に利用し硬化速度が上昇することから高速線
引に有利となる。
In contrast, the fiber of the present invention, A7, had a high gel fraction of 85% in the inner layer resin, and had an increased degree of curing. Therefore, A7 of the present invention is advantageous for high-speed drawing because the curing speed is increased by effectively utilizing the irradiation light from the lamp that completely passes through the outer layer resin.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明の二層被覆光ファイバは、
各層の被覆を形成する光硬化性樹脂の硬化有効波長域が
異なるから、外層を通過する紫外線によυ内層樹脂を有
効に硬化させることができ、硬化時間も短かくなるので
、高速線引に適した元ファイバである。
As explained above, the double-layer coated optical fiber of the present invention has
Since the effective curing wavelength range of the photocurable resin that forms the coating of each layer is different, the inner layer resin can be effectively cured by the ultraviolet rays that pass through the outer layer, and the curing time is shortened, making it suitable for high-speed wire drawing. It is a suitable source fiber.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る元ファイバの断面図、第2図はタ
ンデム方式によシー層ごと塗布する二層被覆光ファイバ
製造装置概要図、第3図は二層同時塗布による二層被覆
光ファイバ製造装置概要図、第4図(al乃至ICIは
種類の異なる代表的樹脂硬化用ランプの出力波長特性図
、第5図(イ)及び(ロ)は本発明の実施例に用いた代
表的元開始剤囚及び(Bl l (C1の光吸収波長特
性図、第6図は本発明の詳細な説明する囚である。 1・・・元ファイバ、2・・・ガラスファイバ、3・・
・内層樹脂被覆、4・・・外層樹脂被覆、5・・・母材
送り装置、6・・・線引炉、7・・・線引装置、8・・
・母材、9・・・二層同時塗布装置、10・・・紫外線
照射装置、11・・・引取シキャプスタン、12・・・
巻取装置、15.14・・・紫外線照射装置、15.1
6・・・塗布装置。
Figure 1 is a cross-sectional view of the original fiber according to the present invention, Figure 2 is a schematic diagram of a device for manufacturing a double-layer coated optical fiber that coats the entire sheath layer in tandem, and Figure 3 is a double-layer coated optical fiber coated with two layers simultaneously. A schematic diagram of fiber manufacturing equipment, Figure 4 (al to ICI are output wavelength characteristics diagrams of typical resin curing lamps of different types, Figures 5 (a) and (b) are typical diagrams used in the embodiments of the present invention. The light absorption wavelength characteristic diagram of the original initiator and (Bl l (C1), FIG. 6 is a diagram for explaining the present invention in detail. 1...Original fiber, 2...Glass fiber, 3...
- Inner layer resin coating, 4... Outer layer resin coating, 5... Base material feeding device, 6... Wire drawing furnace, 7... Wire drawing device, 8...
- Base material, 9... Two-layer simultaneous coating device, 10... Ultraviolet irradiation device, 11... Pick-up Sicapstan, 12...
Winding device, 15.14... Ultraviolet irradiation device, 15.1
6... Coating device.

Claims (2)

【特許請求の範囲】[Claims] (1)ガラスファイバの外周に二層の光硬化性樹脂被覆
層を有してなる光ファイバにおいて、各層を形成する光
硬化性樹脂の硬化有効波長域が異なることを特徴とする
光ファイバ。
(1) An optical fiber comprising two photocurable resin coating layers around the outer periphery of a glass fiber, wherein the photocurable resins forming each layer have different effective curing wavelength ranges.
(2)各層を形成する光硬化性樹脂は添加されている開
始剤が異なることにより硬化有効波長域が異なることを
特徴とする特許請求の範囲第1項に記載の光ファイバ。
(2) The optical fiber according to claim 1, wherein the photocurable resin forming each layer has different effective curing wavelength ranges due to different initiators added.
JP63104260A 1988-04-28 1988-04-28 optical fiber Pending JPH01276105A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63104260A JPH01276105A (en) 1988-04-28 1988-04-28 optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63104260A JPH01276105A (en) 1988-04-28 1988-04-28 optical fiber

Publications (1)

Publication Number Publication Date
JPH01276105A true JPH01276105A (en) 1989-11-06

Family

ID=14375963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63104260A Pending JPH01276105A (en) 1988-04-28 1988-04-28 optical fiber

Country Status (1)

Country Link
JP (1) JPH01276105A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH055818A (en) * 1990-02-15 1993-01-14 American Teleph & Telegr Co <Att> Coated optical fiber and manufacturing method thereof
US6173102B1 (en) 1997-01-20 2001-01-09 Sumitomo Electric Industries, Ltd. Coated optical fiber and its manufacturing method
KR100334813B1 (en) * 1999-07-29 2002-05-02 윤종용 Long period fiber grating recoating equipment and method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS615211A (en) * 1984-06-19 1986-01-11 Furukawa Electric Co Ltd:The Production for optical tape-type unit
JPS6198305A (en) * 1984-10-18 1986-05-16 エヌ・ベー・フイリツプス・フルーイランペンフアブリケン Manufacture of optical fiber having synthetic resin coating and optical fiber having synthetic resin coating produced thereby
JPH01166011A (en) * 1987-12-22 1989-06-29 Sumitomo Electric Ind Ltd Optical fiber

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS615211A (en) * 1984-06-19 1986-01-11 Furukawa Electric Co Ltd:The Production for optical tape-type unit
JPS6198305A (en) * 1984-10-18 1986-05-16 エヌ・ベー・フイリツプス・フルーイランペンフアブリケン Manufacture of optical fiber having synthetic resin coating and optical fiber having synthetic resin coating produced thereby
JPH01166011A (en) * 1987-12-22 1989-06-29 Sumitomo Electric Ind Ltd Optical fiber

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH055818A (en) * 1990-02-15 1993-01-14 American Teleph & Telegr Co <Att> Coated optical fiber and manufacturing method thereof
US6173102B1 (en) 1997-01-20 2001-01-09 Sumitomo Electric Industries, Ltd. Coated optical fiber and its manufacturing method
KR100334813B1 (en) * 1999-07-29 2002-05-02 윤종용 Long period fiber grating recoating equipment and method thereof

Similar Documents

Publication Publication Date Title
JP3952620B2 (en) Photoinitiator-adjustable optical fiber, optical fiber ribbon, and manufacturing method thereof
KR100460366B1 (en) Coated optical fiber and its manufacturing method
JP3733000B2 (en) Fiber optic array
JP7536670B2 (en) Optical fiber core wire manufacturing method
JPH01276105A (en) optical fiber
JPH0933773A (en) Coated optical fiber tape
JPH01166011A (en) Optical fiber
JPS63151648A (en) Production of coated optical fiber
JP3084702B2 (en) Glass fiber for optical transmission
JP2004170982A (en) Method of manufacturing coated optical fiber ribbon and coated optical fiber ribbon
JPS60171246A (en) Manufacture of covered optical fiber
JP3321930B2 (en) Glass fiber for optical transmission and method of manufacturing the same
JPS615211A (en) Production for optical tape-type unit
JP2925099B2 (en) Optical fiber core and tape type optical fiber core
JP7508437B2 (en) Colored optical fiber and method for producing the same
JP7640440B2 (en) Optical fiber ribbon and method for manufacturing the same
JPH07318770A (en) Coated optical fiber unit
WO2022092089A1 (en) Colored optical fiber core wire, optical fiber ribbon, single-core fiber assembly cable, ribbon cable, and method for producing same
JPH01167264A (en) Optical fiber coating method
JPH04240136A (en) Production of optical fiber
JPS61166505A (en) Optical fiber core
JPH04240137A (en) Production of optical fiber
JPS63256160A (en) Photosensitive resin curing method and curing device
JPS63156042A (en) Ultraviolet ray irradiation device for optical fiber
JPH0227297B2 (en)