[go: up one dir, main page]

JPS63151648A - Production of coated optical fiber - Google Patents

Production of coated optical fiber

Info

Publication number
JPS63151648A
JPS63151648A JP61298820A JP29882086A JPS63151648A JP S63151648 A JPS63151648 A JP S63151648A JP 61298820 A JP61298820 A JP 61298820A JP 29882086 A JP29882086 A JP 29882086A JP S63151648 A JPS63151648 A JP S63151648A
Authority
JP
Japan
Prior art keywords
coating
resin
optical fiber
coating layer
ultraviolet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61298820A
Other languages
Japanese (ja)
Other versions
JPH0776118B2 (en
Inventor
Shuji Okagawa
岡川 周司
Keigo Maeda
恵吾 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP61298820A priority Critical patent/JPH0776118B2/en
Publication of JPS63151648A publication Critical patent/JPS63151648A/en
Publication of JPH0776118B2 publication Critical patent/JPH0776118B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)

Abstract

PURPOSE:To obtain a coated optical fiber having plural coating layers and having excellent screening resistance and temperature characteristics, by using an ultraviolet-curable resin as a material for the inner coating layer, irradiating the resin with ultraviolet radiation in an atmosphere having a specific oxygen concentration and directly applying an outer coating layer to the cured resin layer. CONSTITUTION:In the production of a coated optical fiber having plural coating layers, the inner coating layer and the outer coating layer which are necessary to be mutually bonded are formed by the following method. An ultraviolet- curable resin is used as a material for the inner coating layer and the curing of the layer is carried out in an atmosphere having an oxygen concentration of >=5% to form the inner coating layer. The outer coating layer is directly formed on the inner coating layer. An ultraviolet-curable resin, a thermosetting resin or a thermoplastic resin may be used as a material for the outer coating layer and, above all, the use of an ultraviolet-curable resin is especially preferable to form a crosslinking between the inner and the outer layers and increase the bonding strength.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は、複数層の被覆を有する被覆光ファイバの製造
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a method of manufacturing a coated optical fiber having multiple layers of coating.

〔従来技術とその問題点〕[Prior art and its problems]

通信用石英系被覆光ファイバの代表的な構造は第1図に
示すように、コアとクラッドよりなる外径125μmの
光ファイバ1の外側に、緩衝層として軟質の紫外線硬化
型樹脂により外径200〜300μmの軟質被覆2を形
成し、その上に保護層として硬質の紫外線硬化型樹脂に
より外径250〜500μmの硬質被覆3を形成したも
のである。つまり被覆構造としては軟質被覆(ヤング率
I Kg/mm”以下)と硬質被覆(ヤング率10Kg
/ms1以上)の組合せよりなる二層構造が一般的であ
る。
As shown in Fig. 1, a typical structure of a silica-based coated optical fiber for communications is as follows: an optical fiber 1 with an outer diameter of 125 μm consisting of a core and a cladding has an outer diameter of 200 μm with a soft ultraviolet curing resin as a buffer layer. A soft coating 2 of ~300 .mu.m is formed, and a hard coating 3 of 250 to 500 .mu.m in outer diameter is formed thereon as a protective layer using a hard ultraviolet curable resin. In other words, the coating structure consists of a soft coating (Young's modulus I Kg/mm" or less) and a hard coating (Young's modulus 10 Kg/mm" or less).
/ms1 or more) is common.

軟質被覆は、その外側に硬質被覆を形成する際の成形の
バラツキを均一化すると共に、硬質被覆との組合せによ
り、側圧などの外力や温度変化による熱応力で光ファイ
バにマイクロベンドが起こるのを防止し、以て伝送損失
の増加を防止する働きをしている。また硬質被覆は、被
覆光ファイバのスクリーニング、特に1%以上の高歪ス
クリーニングにより光ファイバが劣化するのを防止する
働きをしている。
The soft coating equalizes the variations in molding when forming the hard coating on the outside, and in combination with the hard coating, it prevents micro-bends that occur in the optical fiber due to external forces such as lateral pressure and thermal stress due to temperature changes. This functions to prevent an increase in transmission loss. The hard coating also serves to prevent deterioration of the optical fiber due to screening of the coated optical fiber, particularly high strain screening of 1% or more.

このような二層被覆構造の光ファイバにおいて耐スクリ
ーニング性、温度特性などの向上を図るには、軟質被覆
と硬質被覆の界面の接着状態が重要なポイントとなる0
例えば耐スクリーニングに関しては、両者の界面が十分
に接着していることが必要であり、温度特性に関しては
、長手方向における界面の接着状態の均一性が重要であ
る。。
In order to improve the screening resistance, temperature characteristics, etc. of optical fibers with such a double-layer coating structure, the adhesion state at the interface between the soft coating and the hard coating is an important point.
For example, regarding screening resistance, it is necessary that the interface between the two be sufficiently adhered, and regarding temperature characteristics, uniformity of the adhesion state of the interface in the longitudinal direction is important. .

このほかにも被覆光ファイバにおいて被覆層間の接着状
態が問題となる場合がある。例えば第2図に示すように
、第1図のような被覆光ファイバ4の上に識別のため紫
外線硬化型インクや熱硬化型インクによる着色層5を形
成することがあるが、この場合には硬質被覆3と着色層
5をよく接着させることが要求される。さらに第3図に
示すように、第1図のような被覆光ファイバ4を複数本
ならべ、その上に軟質共通被覆6と硬質共通被覆7を順
次形成したテープ状多心型被覆光ファイバ8においては
、軟質共通被覆6と硬質共通被覆7間の接着状態が温度
特性や共通被覆の剥ぎ取り性に大きく影響する。
In addition to this, the state of adhesion between coating layers in coated optical fibers may pose a problem. For example, as shown in FIG. 2, a colored layer 5 made of ultraviolet curing ink or thermosetting ink may be formed on the coated optical fiber 4 as shown in FIG. 1 for identification purposes. Good adhesion between the hard coating 3 and the colored layer 5 is required. Furthermore, as shown in FIG. 3, a tape-shaped multicore coated optical fiber 8 is prepared by arranging a plurality of coated optical fibers 4 as shown in FIG. 1 and sequentially forming a soft common coating 6 and a hard common coating 7 thereon. The adhesion state between the soft common coating 6 and the hard common coating 7 greatly affects the temperature characteristics and the removability of the common coating.

このように被覆光ファイバにおいては、内層側被覆と外
層側被覆とを十分にかつ均一に接着させたいという要求
があるが、それらを接着させる実用的な手段がまだ見出
されてシ1ない。内層側被覆と外層側被覆を接着させる
のに接着剤を使用することは、製造工程が煩雑になるだ
けでなく、コスト的にも不利である。
As described above, in coated optical fibers, there is a demand for sufficient and uniform adhesion of the inner layer side coating and the outer layer side coating, but a practical means for adhering them has not yet been found. Using an adhesive to bond the inner and outer coatings not only complicates the manufacturing process but is also disadvantageous in terms of cost.

〔問題点の解決手段とその作用〕[Means for solving problems and their effects]

本発明は、上記のような従来技術の問題点を解決した被
覆光ファイバの製造方法を提供するもので、その方法は
、複数層の被覆を有する被覆光ファイバの製造方法にお
いて、上記複数層の被覆のうち相互に接着させる必要の
ある内層側被覆と外層側被覆を形成する際に、上記内層
側被覆の材料として紫外線硬化型樹脂を用い、それを被
覆して硬化させる際の紫外線照射を酸素濃度5%以上の
雰囲気下で行って内層側被覆を形成し、その上に直接上
記外層側被覆を形成することを特徴とするものである。
The present invention provides a method for manufacturing a coated optical fiber that solves the problems of the prior art as described above. When forming the inner and outer coatings that need to be bonded to each other, an ultraviolet curable resin is used as the material for the inner coating, and the ultraviolet rays used to coat and cure the resin are oxygen-free. The method is characterized in that the inner coating is formed in an atmosphere having a concentration of 5% or more, and the outer coating is directly formed thereon.

上記のように、紫外線硬化型樹脂を被覆し、それを硬化
させる際の紫外線照射を酸素濃度5%以上の雰囲気下で
行うと、内部は硬化しているが表面が未硬化状態の被覆
が得られる。これは紫外線により活性化された酸素が被
覆表面のラジカルをトラップして重合反応を停止させ、
表面のみ未反応になるためと考えられる。したがってこ
の層を内層側被覆とし、その上に外層側被覆を形成する
と、そのときに上記未反応部分が反応して外層側被覆と
結合し、良好な接着状態が得られるようになる。酸素濃
度を5%以上とする理由は、これより低いと表面まで硬
化してしまい、表面未反応の状態が得られないためであ
る。
As mentioned above, if UV curable resin is coated and cured by UV irradiation in an atmosphere with an oxygen concentration of 5% or more, a coating that is cured inside but has an uncured surface can be obtained. It will be done. This is because oxygen activated by ultraviolet rays traps radicals on the coated surface and stops the polymerization reaction.
This is thought to be because only the surface remains unreacted. Therefore, when this layer is used as an inner layer coating and an outer layer coating is formed thereon, the unreacted portions react and bond with the outer layer coating, resulting in a good adhesive state. The reason why the oxygen concentration is set to 5% or more is that if it is lower than this, the surface will be hardened and the surface will not be in an unreacted state.

内層側被覆の材料は、酸素を活性化する紫外線でラジカ
ル重合する樹脂(エチレン系不飽和化合物)であればよ
く、代表的なものとしては、紫外線硬化型ウレタンアク
リレート樹脂、エポキシアクリレート樹脂、シリコンア
クリレート樹脂、ポリブタジェンアクリレート樹脂など
があげられる。
The material for the inner layer side coating may be any resin (ethylenically unsaturated compound) that radically polymerizes with ultraviolet light that activates oxygen. Typical examples include ultraviolet curable urethane acrylate resin, epoxy acrylate resin, and silicone acrylate. resin, polybutadiene acrylate resin, etc.

また外層側被覆としては、紫外線硬化型樹脂、熱硬化性
樹脂、熱可塑性樹脂(ナイロン)などが使用できるが、
特に紫外線硬化型樹脂を使用することが好ましい、その
理由は、外層側被覆に紫外線硬化型樹脂を使用すると、
それを紫外線照射により硬化させるときに、内層側被覆
表面の未反応部分も同時にラジカル重合して内外層間に
架橋が形成され、接着が強固になるからである。
In addition, as the outer layer side coating, ultraviolet curable resin, thermosetting resin, thermoplastic resin (nylon), etc. can be used.
It is particularly preferable to use ultraviolet curable resin, because if ultraviolet curable resin is used for the outer layer coating,
This is because when it is cured by ultraviolet irradiation, the unreacted portion of the coating surface on the inner layer side undergoes radical polymerization at the same time, forming a crosslink between the inner and outer layers, thereby strengthening the adhesion.

〔実施例〕〔Example〕

第4図に示すように加熱炉1)内のプリフォームから外
径125μmの光ファイバ(コア径50μm、Δ−1%
、GI型) 1を線速100m/minで線引し、その
光ファイバ1を塗布袋N12に通して軟質の紫外線硬化
型ウレタンアクリレート樹脂(硬化後のヤング率が0.
1Kg/mm”)を外径が200μmになるように被覆
した後、それを120W/amのメタルハライドランプ
を備えた紫外線照射装置13に通して紫外線を照射する
と同時に、同装置13内の光フアイバ通過筒内に下から
上へ1517m1nの空気を流し、被覆した紫外線硬化
型ウレタンアクリレート樹脂を空気雰囲気下(酸素濃度
21%)で硬化させ、軟質被覆2を形成した。
As shown in Figure 4, an optical fiber with an outer diameter of 125 μm (core diameter 50 μm, Δ-1%
, GI type) 1 is drawn at a linear speed of 100 m/min, and the optical fiber 1 is passed through a coating bag N12 to coat a soft ultraviolet curable urethane acrylate resin (Young's modulus after curing is 0.
1Kg/mm") to have an outer diameter of 200 μm, it is passed through an ultraviolet irradiation device 13 equipped with a 120W/am metal halide lamp to irradiate it with ultraviolet light, and at the same time passes through an optical fiber inside the device 13. 1517 ml of air was flowed into the cylinder from the bottom to the top, and the coated ultraviolet curable urethane acrylate resin was cured in an air atmosphere (oxygen concentration 21%) to form a soft coating 2.

次いでそれを塗布装置14に通して硬質の紫外線硬化型
ウレタンアクリレート樹脂(硬化後のヤング率が50に
g/IIIIII)を外径が250μmになるように被
覆した後、それを上記と同じ120W/cmメタルハラ
イドランプを備えた紫外線照射装置15に通して紫外線
を照射すると同時に、同装置13内の光ファイバを通す
筒内に下から上へ1517w1nの窒素を流し、被覆し
た紫外線硬化型ウレタンアクリレート樹脂を硬化させ、
硬質被覆3を形成した。
Next, it was passed through the coating device 14 and coated with a hard ultraviolet curable urethane acrylate resin (Young's modulus after curing is 50 g/III) so that the outer diameter was 250 μm, and then coated with the same 120 W/III coating as above. Ultraviolet rays are irradiated through an ultraviolet irradiation device 15 equipped with a cm metal halide lamp, and at the same time, 1517w1n of nitrogen is flowed from bottom to top into the cylinder in which the optical fiber is passed in the device 13, and the coated ultraviolet curable urethane acrylate resin is coated with ultraviolet rays. harden,
A hard coating 3 was formed.

以上のようにして製造した被覆光ファイバ15Kmにつ
いて1%スクリーニングを行った結果、断線はなかった
。さらにIKmの束取りサンプルにつき温度特性をみる
なめ、−40℃での伝送損失を測定した結果では、0.
05dB/Km以下の損失増であった。
As a result of performing 1% screening on 15 km of the coated optical fiber manufactured as described above, there was no disconnection. Furthermore, to look at the temperature characteristics of IKm bundled samples, we measured the transmission loss at -40°C and found that it was 0.
The loss increased by 0.05 dB/Km or less.

以下、軟質被覆を形成するときの硬化雰囲気を変え、そ
れ以外の条件を同じにして、同様の実験を行った結果は
第1表のとおりである。
Table 1 below shows the results of similar experiments conducted by changing the curing atmosphere when forming the soft coating and keeping the other conditions the same.

第1表 酸素濃度4%の比較例1においては、軟質被覆と硬質被
覆は一応接着しており、1%スクリーニング時の断線は
1回715に−であったが、接着が不安定で、長手方向
に不均一なため、−40℃で0.3dB/Imの損失増
が認められた。また酸素濃度2%の比較例2においては
、軟質被覆と硬質被覆は接着しておらず、低温における
収縮応力が両被覆間のスベリにより均一化されるため、
−40℃での損失増は0.05dB/Ks以下と良好で
あった。しかし1%スクリーニングでは、両被覆間が接
着していないため9回/15Kmの断線が発生した。こ
れに対し酸素濃度5%以上の実施例1および2において
は軟質被覆と硬質被覆が十分にかつ均一に接着し、すぐ
れた耐スクリーニング性および温度特性が得られた。
In Comparative Example 1 with an oxygen concentration of 4% in Table 1, the soft coating and hard coating were adhered to some extent, and there was one disconnection at 715 during 1% screening, but the adhesion was unstable and the longitudinal Due to the non-uniformity in the direction, an increase in loss of 0.3 dB/Im was observed at -40°C. In addition, in Comparative Example 2 with an oxygen concentration of 2%, the soft coating and hard coating were not bonded, and the shrinkage stress at low temperatures was equalized by the sliding between the two coatings.
The loss increase at −40° C. was 0.05 dB/Ks or less, which was good. However, in the 1% screening, disconnections occurred 9 times/15 km because there was no adhesion between the two coatings. On the other hand, in Examples 1 and 2 where the oxygen concentration was 5% or more, the soft coating and the hard coating were sufficiently and uniformly bonded, and excellent screening resistance and temperature characteristics were obtained.

上記実施例では、二層被覆構造の被覆光ファイバを製造
する場合について説明したが、本発明はこれに限られる
ものではなく、例えば第2図のような被覆光ファイバを
製造する場合には、一層目の軟質被覆2を形成するとき
は上記実施例と同様とし、二層目の硬質被覆3を形成す
るときにも、紫外線硬化型樹脂を使用し、酸素濃度5%
以上の雰囲気で硬化させれば、硬質被覆3と着色層5と
の接着性を高めることができる。また第3図のようなテ
ープ状多心型被覆光ファイバを製造する場合には、軟質
共通被覆6を形成するときに、紫外線硬化型樹脂を使用
し、酸素濃度5%以上の雰囲気で硬化させれば、それと
硬質共通被覆7との接着性を高めることができる。
In the above embodiment, a case was explained in which a coated optical fiber having a two-layer coating structure was manufactured. However, the present invention is not limited to this. For example, when manufacturing a coated optical fiber as shown in FIG. The first layer of soft coating 2 was formed in the same manner as in the above example, and the second layer of hard coating 3 was also formed using ultraviolet curable resin with an oxygen concentration of 5%.
By curing in the above atmosphere, the adhesiveness between the hard coating 3 and the colored layer 5 can be improved. Further, when manufacturing a tape-shaped multi-core coated optical fiber as shown in Fig. 3, when forming the soft common coating 6, an ultraviolet curable resin is used and cured in an atmosphere with an oxygen concentration of 5% or more. If so, the adhesiveness between it and the hard common coating 7 can be improved.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、複数層の被覆を存
する被覆光ファイバの製造方法において、相互に接着さ
せる必要のある内層側被覆と外層側被覆とを、接着剤な
どを使用することなく、紫外線照射時の酸素濃度を調整
するという極めて簡単な手段で十分にかつ均一に接着さ
せることができるようになり、被覆光ファイバの性能向
上に寄与するところ極めて大である。
As explained above, according to the present invention, in a method for manufacturing a coated optical fiber having multiple layers of coating, the inner layer coating and the outer layer coating, which need to be bonded to each other, can be bonded together without using an adhesive or the like. This makes it possible to achieve sufficient and uniform adhesion by the extremely simple means of adjusting the oxygen concentration during ultraviolet irradiation, which greatly contributes to improving the performance of coated optical fibers.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第3図は各種の被覆光ファイバを示す断面
図、第4図は本発明の方法で第1図のような被覆光ファ
イバを製造する場合の実施例を示す説明図である。 1〜光フアイバ、2〜軟質被覆、3〜硬質被覆、4〜被
覆光フアイバ、1)〜加熱炉、12・14〜ダイス、1
3・15〜紫外線照射装置。 第1図 第2図 第3図 第4図
1 to 3 are cross-sectional views showing various types of coated optical fibers, and FIG. 4 is an explanatory view showing an embodiment in which a coated optical fiber as shown in FIG. 1 is manufactured by the method of the present invention. 1-Optical fiber, 2-Soft coating, 3-Hard coating, 4-Coated optical fiber, 1)-Heating furnace, 12/14-Dice, 1
3.15 ~ Ultraviolet irradiation equipment. Figure 1 Figure 2 Figure 3 Figure 4

Claims (4)

【特許請求の範囲】[Claims] (1)複数層の被覆を有する被覆光ファイバの製造方法
において、上記複数層の被覆のうち相互に接着させる必
要のある内層側被覆と外層側被覆を形成する際に、上記
内層側被覆の材料として紫外線硬化型樹脂を用い、それ
を被覆して硬化させる際の紫外線照射を酸素濃度5%以
上の雰囲気下で行って内層側被覆を形成し、その上に直
接上記外層側被覆を形成することを特徴とする被覆光フ
ァイバの製造方法。
(1) In a method for manufacturing a coated optical fiber having a plurality of coating layers, when forming an inner coating and an outer coating that need to be bonded to each other among the plurality of coating layers, the material of the inner coating is Using an ultraviolet curable resin, the inner layer coating is formed by irradiating ultraviolet rays when coating and curing it in an atmosphere with an oxygen concentration of 5% or more, and the outer layer coating is directly formed thereon. A method of manufacturing a coated optical fiber characterized by:
(2)特許請求の範囲第1項記載の製造方法であって、
内層側被覆および外層側被覆がともにラジカル重合反応
により硬化する樹脂よりなることを特徴とするもの。
(2) The manufacturing method according to claim 1, comprising:
Both the inner layer side coating and the outer layer side coating are made of a resin that is cured by a radical polymerization reaction.
(3)特許請求の範囲第2項記載の製造方法であって、
内層側被覆が紫外線硬化型ウレタンアクリレート樹脂よ
りなることを特徴とするもの。
(3) The manufacturing method according to claim 2, comprising:
The inner coating is made of ultraviolet curable urethane acrylate resin.
(4)特許請求の範囲第1項または第3項記載の製造方
法であって、外層側被覆が紫外線硬化型樹脂、熱硬化性
樹脂または熱可塑性樹脂よりなることを特徴とするもの
(4) The manufacturing method according to claim 1 or 3, characterized in that the outer layer coating is made of an ultraviolet curable resin, a thermosetting resin, or a thermoplastic resin.
JP61298820A 1986-12-17 1986-12-17 Manufacturing method of coated optical fiber Expired - Fee Related JPH0776118B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61298820A JPH0776118B2 (en) 1986-12-17 1986-12-17 Manufacturing method of coated optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61298820A JPH0776118B2 (en) 1986-12-17 1986-12-17 Manufacturing method of coated optical fiber

Publications (2)

Publication Number Publication Date
JPS63151648A true JPS63151648A (en) 1988-06-24
JPH0776118B2 JPH0776118B2 (en) 1995-08-16

Family

ID=17864638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61298820A Expired - Fee Related JPH0776118B2 (en) 1986-12-17 1986-12-17 Manufacturing method of coated optical fiber

Country Status (1)

Country Link
JP (1) JPH0776118B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04342445A (en) * 1991-05-16 1992-11-27 Fujikura Ltd Method for forming coating of optical fiber and apparatus for forming coating
WO1997019029A1 (en) * 1995-11-20 1997-05-29 Dsm N.V. Process for forming a cured coating with a color
JPH1048492A (en) * 1996-07-29 1998-02-20 Sumitomo Electric Ind Ltd Manufacturing method of ribbon type optical fiber
JP2007163954A (en) * 2005-12-15 2007-06-28 Furukawa Electric Co Ltd:The Optical fiber core and optical fiber ribbon
US20120288246A1 (en) * 2009-10-07 2012-11-15 Chalk Julie A Durable optical fiber ribbons and methods of making optical fiber ribbons
WO2014156420A1 (en) * 2013-03-29 2014-10-02 リンテック株式会社 Light diffusion film and light diffusion film manufacturing method
JP2020050550A (en) * 2018-09-27 2020-04-02 住友電気工業株式会社 Optical fiber and ultraviolet curable resin composition
CN110963698A (en) * 2018-09-27 2020-04-07 住友电气工业株式会社 Manufacturing method of optical fiber

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04342445A (en) * 1991-05-16 1992-11-27 Fujikura Ltd Method for forming coating of optical fiber and apparatus for forming coating
WO1997019029A1 (en) * 1995-11-20 1997-05-29 Dsm N.V. Process for forming a cured coating with a color
JPH1048492A (en) * 1996-07-29 1998-02-20 Sumitomo Electric Ind Ltd Manufacturing method of ribbon type optical fiber
JP2007163954A (en) * 2005-12-15 2007-06-28 Furukawa Electric Co Ltd:The Optical fiber core and optical fiber ribbon
US9442262B2 (en) 2009-10-07 2016-09-13 Corning Optical Communications LLC Durable optical fiber ribbons and methods of making optical fiber ribbons
US8948558B2 (en) * 2009-10-07 2015-02-03 Corning Cable Systems Llc Durable optical fiber ribbons and methods of making optical fiber ribbons
US20120288246A1 (en) * 2009-10-07 2012-11-15 Chalk Julie A Durable optical fiber ribbons and methods of making optical fiber ribbons
US9703064B2 (en) 2009-10-07 2017-07-11 Corning Optical Communications LLC Durable optical fiber ribbons and methods of making optical fiber ribbons
WO2014156420A1 (en) * 2013-03-29 2014-10-02 リンテック株式会社 Light diffusion film and light diffusion film manufacturing method
JP5855791B2 (en) * 2013-03-29 2016-02-09 リンテック株式会社 Light diffusing film and method for producing light diffusing film
US9753191B2 (en) 2013-03-29 2017-09-05 Lintec Corporation Light diffusion film and light diffusion film manufacturing method
US10288779B2 (en) 2013-03-29 2019-05-14 Lintec Corporation Light diffusion film and light diffusion film manufacturing method
JP2020050550A (en) * 2018-09-27 2020-04-02 住友電気工業株式会社 Optical fiber and ultraviolet curable resin composition
CN110954984A (en) * 2018-09-27 2020-04-03 住友电气工业株式会社 Optical fiber and ultraviolet curable resin composition
CN110963698A (en) * 2018-09-27 2020-04-07 住友电气工业株式会社 Manufacturing method of optical fiber
US11428866B2 (en) 2018-09-27 2022-08-30 Sumitomo Electric Industries, Ltd. Method for manufacturing optical fiber with oxygen-strengthened UV-resin coating

Also Published As

Publication number Publication date
JPH0776118B2 (en) 1995-08-16

Similar Documents

Publication Publication Date Title
US5621838A (en) Resins for coated optical fiber units
US6253013B1 (en) Optical fiber arrays
US5440660A (en) Fiber optic microcable produced with fiber reinforced ultraviolet light cured resin and method for manufacturing same
CA2256839A1 (en) Photoinitiator-tuned optical fiber and optical fiber ribbon and method of making the same
KR20000070290A (en) Coated optical fiber and its manufacturing method
KR20100097653A (en) Process for manufacturing an optical fiber and an optical fiber so obtained
JPH04268521A (en) Manufacturing method of colored optical fiber
JPS63151648A (en) Production of coated optical fiber
JPH10170787A (en) Manufacturing method of optical fiber ribbon
JPH0627887B2 (en) Fiber for optical transmission
JPS59228204A (en) Tapelike optical fiber and its manufacture
CN101971069A (en) Optical fiber core
JPH06148452A (en) Optical fiber fusion splicing device reinforcement device
JPH0248434A (en) Production of optical fiber
JP2928723B2 (en) Optical fiber manufacturing method
US5995693A (en) Method of making an optical fiber ribbon with improved planarity and an optical fiber ribbon with improved planarity
JPS60171246A (en) Manufacture of covered optical fiber
JPS5898704A (en) Optical fiber core
JPH03163505A (en) Coated optical fiber
JP2004317565A (en) High strength plastic optical fiber tape and method of manufacturing the same
JPS6110044A (en) Method of manufacturing optical transmission fiber
JPS60222808A (en) plastic optical fiber
JPH05241052A (en) Coated optical fiber
CN104950380B (en) A kind of optical fiber
US20140198318A1 (en) Method and apparatus for producing fiber optic gyroscope sensing coil using b-stage adhesive coated optical fiber

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees