JPH01273253A - Optical pickup - Google Patents
Optical pickupInfo
- Publication number
- JPH01273253A JPH01273253A JP10306488A JP10306488A JPH01273253A JP H01273253 A JPH01273253 A JP H01273253A JP 10306488 A JP10306488 A JP 10306488A JP 10306488 A JP10306488 A JP 10306488A JP H01273253 A JPH01273253 A JP H01273253A
- Authority
- JP
- Japan
- Prior art keywords
- detector
- light
- receiving surface
- signal
- light receiving
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 13
- 238000000926 separation method Methods 0.000 claims description 13
- 238000002310 reflectometry Methods 0.000 abstract description 2
- 238000001514 detection method Methods 0.000 description 12
- 238000010586 diagram Methods 0.000 description 8
- 230000010287 polarization Effects 0.000 description 5
- 201000009310 astigmatism Diseases 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 230000005374 Kerr effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000005381 magnetic domain Effects 0.000 description 1
- 230000005415 magnetization Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B11/00—Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
- G11B11/10—Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
- G11B11/105—Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は記録、再生が可能な光磁気ディスク装置の光学
ピックアップに関する。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an optical pickup for a magneto-optical disk device capable of recording and reproducing.
従来の技術
はじめに光磁気ディスク装置の再生の原理にっいて説明
する。第3図において31は光磁気ディスクであり、1
″、0°の情報を磁界の向き(垂直磁界)に対応させて
記録しである。この微小な磁区に、例えばP偏光のみの
成分を持ったレーザ光33(平行光にしである)を対物
レンズ32によって微小なスポットに絞り込み照射する
。2. Description of the Related Art First, the principle of reproduction of a magneto-optical disk device will be explained. In FIG. 3, 31 is a magneto-optical disk, and 1
'', 0° information is recorded in correspondence with the direction of the magnetic field (perpendicular magnetic field).For example, a laser beam 33 (parallel beam) having only a P-polarized component is applied to this minute magnetic domain. The lens 32 focuses the irradiation onto a minute spot.
照射光はディスク記録膜面で反射され再び対物レンズ3
2を通して戻っそくるが、この時の反射光は第4図に示
すようにカー効果によって、磁化の向きに応じて±θ1
ζ(カー回転角)だけ偏光面がずれて出射してくる。こ
の偏光のずれを検出することで信号の読み取り(再生)
を行うものである。The irradiated light is reflected by the disk recording film surface and passes through the objective lens 3 again.
However, as shown in Figure 4, the reflected light at this time returns by ±θ1 depending on the direction of magnetization due to the Kerr effect.
The light beam is emitted with its plane of polarization shifted by ζ (Kerr rotation angle). Reading (reproducing) signals by detecting this polarization shift
This is what we do.
では次に、実際のピックアップの構成と検出方法につい
て説明する。第5図にピックアップの構成を示す。半導
体レーザ光源51から発せられた光はコリメータレンズ
52によって平行光に変換され、さらにアナモルフプリ
ズム53によって円形の光に整形される(半導体レーザ
の出射光は楕円ビームのため)。この光はプリズム54
を介して対物レンズ55に入射し、ディスク56上に微
小なスポット(1〜2μmφ)を形成する。ディスクか
らの変調反射光は再び55+ 54へ戻りλ7/2板5
7で45°偏光面を回転させられた後に偏光ビームスプ
リッタ58でP偏光成分とS偏光成分の光に分離される
。P偏光成分の光は非点収差レンズ群59を通り第1光
検出器1へ、S偏光成分の光はそのまま第2光検出器2
へ入射し光量検出される。ここで非点収差レンズ群59
と第1検出器1はディスクの目標トラックへ対物レンズ
55のスポット光を、フォーカス方向あるいはラジアル
方向へ−決め制御するためのサーボエラー検出系を構成
する要素である。ここでは一般によく知られている非点
収差法(フォーカス方向)とプッシュプル法(ラジアル
方向)が用いられており、第1検出器1は受光面が4分
割構成となっている。情報信号の検出に第1検出器1と
第2検出器2の2個の検出器を用いるのは、第6図に示
すようにP偏光成分とS偏光成分の光を差動検出するこ
とにより、ディスク面内の反射率ばらつき等による同相
成分ノイズ66を除去し変調情報信号の検出感度を高め
るためのものである(情報信号成分は、互いに逆位相)
。Next, the actual pickup configuration and detection method will be explained. FIG. 5 shows the configuration of the pickup. The light emitted from the semiconductor laser light source 51 is converted into parallel light by the collimator lens 52, and further shaped into circular light by the anamorph prism 53 (because the light emitted from the semiconductor laser is an elliptical beam). This light is prism 54
The light enters the objective lens 55 through the lens, and forms a minute spot (1 to 2 μmφ) on the disk 56. The modulated reflected light from the disk returns to 55+54 again and passes through the λ7/2 plate 5.
After the polarization plane is rotated by 45 degrees at step 7, the light is separated into P-polarized light component and S-polarized light component by polarization beam splitter 58. The P-polarized light component passes through the astigmatism lens group 59 to the first photodetector 1, and the S-polarized light component passes directly to the second photodetector 2.
The amount of light incident on the beam is detected. Here, astigmatism lens group 59
The first detector 1 is an element constituting a servo error detection system for determining and controlling the spot light of the objective lens 55 in the focus direction or radial direction to the target track of the disk. Here, the generally well-known astigmatism method (focus direction) and push-pull method (radial direction) are used, and the first detector 1 has a light-receiving surface divided into four parts. The reason why two detectors, the first detector 1 and the second detector 2, are used to detect the information signal is by differentially detecting the P-polarized light component and the S-polarized light component, as shown in FIG. This is to remove in-phase component noise 66 due to variations in reflectance within the disk surface, etc., and increase the detection sensitivity of the modulated information signal (the information signal components are in opposite phases to each other).
.
第7図に第1検出器1の受光面の構成を示す。FIG. 7 shows the configuration of the light receiving surface of the first detector 1.
81〜S4は各々有効受光面11であり、対物レンズが
目標トラックを正しく追従している時は破線で示すよう
な入射光像となる。81〜S4の各有効受光面の受光量
をそのまま81〜S4で表すと(S 1+84)−(S
2+33)がフォーカスエラーの検出、(S1+82)
−(S3+84)がトラッキング(ラジアル方向)エラ
ーの検出信号となり、情報信号P偏光成分の検出は和信
号(S 1 +S2+S3+S4)を用いる。第7図中
の12は4つの受光面を分離するための受光面分離帯で
あり、入射光に対しては不感帯となる。この受光面分離
帯12は検出器の製造上の条件で決まり、通常10〜2
0μm幅である。検出原理や光学部品の制約上、入射光
像径は通常50〜150μm程であり、受光面分離帯1
2による不感帯の占める割合は無視できない。81 to S4 are effective light-receiving surfaces 11, respectively, and when the objective lens correctly follows the target track, the incident light image becomes as shown by the broken line. If the amount of light received by each effective light receiving surface of 81 to S4 is directly expressed as 81 to S4, then (S 1 + 84) - (S
2+33) is the detection of focus error, (S1+82)
-(S3+84) becomes a tracking (radial direction) error detection signal, and the sum signal (S 1 +S2+S3+S4) is used to detect the information signal P polarization component. Reference numeral 12 in FIG. 7 is a light-receiving surface separation zone for separating the four light-receiving surfaces, and serves as a dead zone for incident light. The number of light-receiving surface separation bands 12 is determined by the manufacturing conditions of the detector, and is usually 10 to 2.
The width is 0 μm. Due to the detection principle and restrictions on optical components, the incident light image diameter is usually about 50 to 150 μm, and the light receiving surface separation zone 1
The proportion occupied by the dead zone due to 2 cannot be ignored.
第7図に示したように第1検出器への入射光が正しく入
射している場合は先述のように第2検出器2との差動信
号によりSN比のすぐれた信号検出が可能である。As shown in FIG. 7, if the incident light is correctly incident on the first detector, it is possible to detect a signal with an excellent signal-to-noise ratio using the differential signal with the second detector 2 as described above. .
発明が解決しようとする課題
しかし実際、装置の動作中にはサーボ制御の偏差やディ
スクの傾き、レーザ光スポット内の強度分布等により第
7図に示したような理想的な入射光像(位置)とはなら
ない。例えば第8図に示すような光像の場合、<a)と
(b)では受光面分離帯12の影響により全入射光量で
ある和信号(S l+32+33+34)が変わってし
まう。Problems to be Solved by the Invention However, in reality, during the operation of the device, the ideal incident light image (position ). For example, in the case of an optical image as shown in FIG. 8, the sum signal (S l+32+33+34), which is the total amount of incident light, changes due to the effect of the light-receiving surface separation band 12 in <a) and (b).
第5図に示した第2検出器2は受光面分離帯のない単一
受光面の検出器であるため入射光量は常に一定(読み出
し情報信号による変調分は除()であるため、第9図に
示すように差動検出による同相ノイズ除去が不十分とな
り、再生信号のSN比が低下するという問題を生じる。The second detector 2 shown in FIG. 5 is a detector with a single light-receiving surface without a light-receiving surface separation band, so the amount of incident light is always constant (minus the amount modulated by the readout information signal). As shown in the figure, common-mode noise removal by differential detection becomes insufficient, resulting in a problem that the S/N ratio of the reproduced signal decreases.
課題を解決するための手段
この課題を解決するために本発明は、第2検出器も多分
割構成とし第2検出器の入射光ビーム径と、第2検出器
の受光面分離帯の幅寸法との比を第1検出器のそれと同
じ程度にする。Means for Solving the Problem In order to solve this problem, the present invention provides that the second detector also has a multi-segment configuration, and the diameter of the incident light beam of the second detector and the width dimension of the light-receiving surface separation zone of the second detector are The ratio between the first and second detectors is set to be approximately the same as that of the first detector.
作 用
このように第2検出器を作ると、第1検出器と第2検出
器との入射光は、ビーム径は異なっても動き(入射位置
)や光量分布はほぼ同じになる。Operation When the second detector is constructed in this way, the movement (incidence position) and light intensity distribution of the incident light on the first detector and the second detector are almost the same even though the beam diameters are different.
実施例
以下、本発明の実施例を図面を参照して説明する。第1
図に第1検出器1と第2検出器2との受光面を示す。第
1図(a)は第1検出器で、第1図(b)は第2検出器
である。ここで11及び21は有効受光面で、12及び
22は受光面分離帯である。ここで、第1検出器1の入
射ビーム径及び受光面分離帯12の幅をそれぞれrl、
dlとし、第2検出器2の入射ビーム径及び受光面分離
帯22の幅をそれぞれr2.d2とするとほぼdl /
d 2 = r 1/ r 2となるように第2検出
器2は作る。第2図に第1検出器1と第2検出器2とか
らの信号で読み出し信号の出力する回路を示す。光学系
の構成は第5図に示したものと同一なので省略し、検出
部のみについて説明する。1.2は各々第1検出器、第
2検出器で、13.23は、各々第1増幅器、第2増幅
器、3は差動増幅器である。第1検出器1と第2検出器
2の各々の分割検出器の和信号は各々増幅器13.23
で増幅される。第1検出器lと第2検出器2の感度は一
般に異なるので、これらの信号を81 、a 2、増幅
器13.23のゲインをk 1 、K 2とするとal
・k 1 = 22・k2となるように増幅器13.2
3のゲインk 1、k 2を調整する。これらの出力b
1 % b 2は差動増幅器3に大刀される。Embodiments Hereinafter, embodiments of the present invention will be described with reference to the drawings. 1st
The figure shows the light receiving surfaces of the first detector 1 and the second detector 2. FIG. 1(a) shows the first detector, and FIG. 1(b) shows the second detector. Here, 11 and 21 are effective light-receiving surfaces, and 12 and 22 are light-receiving surface separation zones. Here, the incident beam diameter of the first detector 1 and the width of the light-receiving surface separation zone 12 are rl and
dl, and the incident beam diameter of the second detector 2 and the width of the light-receiving surface separation zone 22 are respectively r2. If d2 is approximately dl /
The second detector 2 is made so that d 2 = r 1/r 2 . FIG. 2 shows a circuit that outputs a readout signal using signals from the first detector 1 and the second detector 2. Since the configuration of the optical system is the same as that shown in FIG. 5, it will be omitted and only the detection section will be explained. 1.2 is a first detector and a second detector, respectively; 13.23 is a first amplifier and a second amplifier, respectively; and 3 is a differential amplifier. The sum signals of the divided detectors of each of the first detector 1 and the second detector 2 are transmitted to amplifiers 13 and 23, respectively.
is amplified. Since the sensitivities of the first detector l and the second detector 2 are generally different, if these signals are 81 and a2, and the gains of the amplifier 13.23 are k1 and K2, then al
・Amplifier 13.2 so that k 1 = 22・k2
Adjust the gains k 1 and k 2 of 3. These outputs b
1%b2 is applied to the differential amplifier 3.
この時、ディスクの反射率ばらつきゃ不感帯の影響によ
る入射光変動分は同相ノイズであるため差動増幅器3の
差動検出信号Cではキャンセルされ、第6図に示したデ
ィスクがらの変調信号成分が増幅出力される。At this time, the fluctuations in the incident light due to disc reflectivity variations and dead zones are common-mode noises, so they are canceled in the differential detection signal C of the differential amplifier 3, and the disc-specific modulation signal component shown in FIG. It is amplified and output.
発明の効果
本発明によれば、光学系や制御回路の構成を複雑にする
ことなしに光磁気変調信号の同相ノイズを除去でき、信
号のSN比向上をはかることができるため、光デイスク
装置の再生動作の信頼性を向上させることができる。Effects of the Invention According to the present invention, it is possible to remove the common mode noise of the magneto-optical modulation signal without complicating the configuration of the optical system or control circuit, and it is possible to improve the signal-to-noise ratio of the signal. Reliability of playback operation can be improved.
第1図は本発明の実施例による光検出器の受光面を示す
概略図、¥S2図は本発明の検出部の構成を示す回路図
、第3図及び第4図は光磁気ディスクの再生原理を示す
概略図、第5図は光ピツクアップ光学系の構成ブロック
図、第6図は差動検出の原理を示す波形図、第7図は第
1検出器の受光面を示す概略図、第8図は実際の検出器
入射光像を示す概略図、第9図は差動検出が不適切な場
合の波形を示す波形図である。
1・・・・第1検出器 2・・・・第2検出器3
・・・・差動増幅器
11.21・・・・有効受光面
12.22・・・・受光面分離帯
13.23・・・・増幅器
代理人の氏名 弁理士 中尾敏男 はか1活計−オ!襖
±4
第 2 図
第3図
第4図Figure 1 is a schematic diagram showing the light receiving surface of a photodetector according to an embodiment of the present invention, Figure S2 is a circuit diagram showing the configuration of the detection section of the present invention, Figures 3 and 4 are reproduction of a magneto-optical disk. A schematic diagram showing the principle; FIG. 5 is a block diagram of the configuration of the optical pickup optical system; FIG. 6 is a waveform diagram showing the principle of differential detection; FIG. 7 is a schematic diagram showing the light-receiving surface of the first detector; FIG. 8 is a schematic diagram showing an actual incident light image on the detector, and FIG. 9 is a waveform diagram showing waveforms when differential detection is inappropriate. 1...First detector 2...Second detector 3
... Differential amplifier 11.21 ... Effective light-receiving surface 12.22 ... Light-receiving surface separation band 13.23 ... Name of amplifier agent Patent attorney Toshio Nakao Haka1 Katsukei-O ! Fusuma ±4 Figure 2 Figure 3 Figure 4
Claims (1)
ィスクからの反射光のP偏光信号成分とS偏光信号成分
とをそれぞれ検出する第1検出器と第2検出器とを備え
、前記第1検出器及び前記第2検出器の受光面を受光面
分離帯による多分割構成とし、前記第1検出器の受光面
での光像径と前記受光面分離帯の幅との比と、前記第2
検出器の受光面での光像径と前記受光面分離帯の幅との
比がほぼ同一になるようにしたことを特徴とする光学ピ
ックアップ。An optical pickup for a magneto-optical disk device, comprising a first detector and a second detector that respectively detect a P-polarized signal component and an S-polarized signal component of reflected light from an optical disk, the first detector and The light-receiving surface of the second detector has a multi-divided configuration with a light-receiving surface separation band, and the ratio of the light image diameter on the light-receiving surface of the first detector to the width of the light-receiving surface separation band and the second
An optical pickup characterized in that the ratio of the optical image diameter on the light-receiving surface of a detector and the width of the light-receiving surface separation zone is approximately the same.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10306488A JPH01273253A (en) | 1988-04-26 | 1988-04-26 | Optical pickup |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10306488A JPH01273253A (en) | 1988-04-26 | 1988-04-26 | Optical pickup |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01273253A true JPH01273253A (en) | 1989-11-01 |
Family
ID=14344240
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10306488A Pending JPH01273253A (en) | 1988-04-26 | 1988-04-26 | Optical pickup |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01273253A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03203844A (en) * | 1989-12-29 | 1991-09-05 | Japan Steel Works Ltd:The | Automatic focus position adjusting method for magneto-optical disk |
-
1988
- 1988-04-26 JP JP10306488A patent/JPH01273253A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03203844A (en) * | 1989-12-29 | 1991-09-05 | Japan Steel Works Ltd:The | Automatic focus position adjusting method for magneto-optical disk |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5004326A (en) | Magneto-optical information reproducing apparatus having a polarizing beam splitter disposed with an inclination of 45 degrees | |
KR900008378B1 (en) | Optical recording apparatus | |
US5189651A (en) | Optical system in magneto-optical recording and reproducing device | |
JP3626003B2 (en) | Optical information storage device | |
JPS63161541A (en) | Optical pickup device | |
JPH07105084B2 (en) | Magneto-optical disk device | |
JPH01273253A (en) | Optical pickup | |
JPH0690817B2 (en) | Light pickup | |
US5701279A (en) | Optical information recording-reproducing apparatus including a light beam detector being divided by a division line extending in a direction perpendicular to an information track | |
JPH0327978B2 (en) | ||
JP2760833B2 (en) | Optical pickup | |
JP2574915B2 (en) | Optical device for reproducing magneto-optical recording media | |
JP2879601B2 (en) | Optical information recording / reproducing device | |
JP2903554B2 (en) | Multi-beam magneto-optical head device | |
JPH02192053A (en) | Magneto-optical disk device | |
JPS63138533A (en) | Playback method of magneto-optical disk device | |
JPH03104041A (en) | Magneto-optical disk device | |
JPH06187687A (en) | Light pickup | |
JP2795271B2 (en) | Optical disk drive | |
JPS6292246A (en) | Optical pickup | |
JPH04155640A (en) | Optical head | |
JPH04258814A (en) | Light reproducing device | |
JPH08102081A (en) | Optical disk drive | |
JPS63157341A (en) | Magneto-optical recording/reproducing head | |
JPS61148636A (en) | Tracking servo circuit of optical disc player |