[go: up one dir, main page]

JPH01273017A - Liquid crystal display element - Google Patents

Liquid crystal display element

Info

Publication number
JPH01273017A
JPH01273017A JP63102988A JP10298888A JPH01273017A JP H01273017 A JPH01273017 A JP H01273017A JP 63102988 A JP63102988 A JP 63102988A JP 10298888 A JP10298888 A JP 10298888A JP H01273017 A JPH01273017 A JP H01273017A
Authority
JP
Japan
Prior art keywords
liquid crystal
crystal cell
crystal display
thin film
type liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63102988A
Other languages
Japanese (ja)
Inventor
Yoko Abe
容子 阿部
Yasuhiro Otsuka
康弘 大塚
Shigeki Hamaguchi
浜口 茂樹
Yasunori Taga
康訓 多賀
Tomomi Motohiro
友美 元廣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP63102988A priority Critical patent/JPH01273017A/en
Publication of JPH01273017A publication Critical patent/JPH01273017A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2413/00Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
    • G02F2413/01Number of plates being 1

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)

Abstract

PURPOSE:To always obtain stable display quality by forming an inorganic thin film for optical compensation on a light transmitting substrate forming a super-twist nematic liquid crystal cell. CONSTITUTION:Incident light passes through a polarizer 1 and a driving STN liquid crystal cell 10 in that order. Since said cell 10 has birefringence, linear polarization is colored, and turns into elliptical polarization. It passes through the inorganic thin film 6 for optical compensation formed on the light transmitting substrate. However, the film 6 is set to possess birefringence opposite from the STN liquid crystal cell 10, the elliptical polarization returns to its original linear polarization, and its coloring is eliminated. The original linear polarization has the same vibrating direction regardless of color, and therefore it passes through a photodetector. As a result, a stable black and white display appears on an STN liquid crystal display device.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はスーパーツイストネマティック型液晶表示装置
の構造を簡略化し、高コントラストでかつ電気光学特性
に優れ、薄型て軽量な液晶カラー表示装置として有用な
液晶表示素子に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention simplifies the structure of a super twisted nematic liquid crystal display device, and is useful as a thin and lightweight liquid crystal color display device that has high contrast and excellent electro-optic properties. This invention relates to a liquid crystal display element.

[従来の技術] 液晶表示装置は電気光学効果、すなわち電場を印加した
時に生ずる液晶分子の光学的性質の変化を利用するもグ
)であり、この電気光学的効果の内、ねじれネマティッ
ク(TN)効果を利用したツイスl〜ネマティック(以
下TNという。)型液晶表示装置か多く用いられてきた
。しかし、このTNモードを利用した液晶表示装置ては
、XY71ヘリックス電極構造による大容量表示に対し
、その特有の比較的なだらかな電気光学特性のため、高
い表示コン1−ラストや十分な視覚範囲が得られなかっ
た。
[Prior Art] A liquid crystal display device uses an electro-optic effect, that is, a change in the optical properties of liquid crystal molecules that occurs when an electric field is applied. Among these electro-optic effects, twisted nematic (TN) Twisted nematic (hereinafter referred to as TN) type liquid crystal display devices that utilize this effect have been widely used. However, in liquid crystal display devices using this TN mode, high display contrast and sufficient visual range cannot be achieved due to the relatively smooth electro-optic characteristics peculiar to the large-capacity display using the XY71 helix electrode structure. I couldn't get it.

そこで登場したのがスーパーツイストネマティック(以
下STNという。)型液晶表示装置である。
This led to the emergence of super twisted nematic (hereinafter referred to as STN) type liquid crystal display devices.

TN型液晶表示装置においては、基板に垂直に入射した
直線偏光の偏光方向は、セルを通過中に液晶分子内ねじ
れに沿って90°たけ回転するか、STN型液晶表示装
置においては]80°〜・270°の範囲て旋光するよ
うに設定されている。その結果、急峻な電気光学特性か
得られるようになり、表示装置に対する大容量化の要求
にも対応し得るものである。
In a TN type liquid crystal display device, the polarization direction of linearly polarized light incident perpendicularly to the substrate is rotated by 90° along the internal twist of the liquid crystal molecules while passing through the cell, or by 80° in an STN type liquid crystal display device. It is set so that the light rotates within a range of ~270°. As a result, steep electro-optical characteristics can be obtained, which can meet the demand for larger capacity display devices.

一方、液晶素子を用いた液晶防眩ミラーにおいて、位相
制御素子と反射鏡とが液晶素子の透明基板への蒸着によ
り一体的に形成された発明が開示されている(特開昭6
1−84.625号公報)。この発明では位相制御素子
および反射鏡の薄膜化により構造か簡素(ヒし、二重写
りかないなど視認性かJ(好である。
On the other hand, an invention has been disclosed in which a phase control element and a reflecting mirror are integrally formed by vapor deposition on a transparent substrate of a liquid crystal element in a liquid crystal anti-glare mirror using a liquid crystal element.
1-84.625). In this invention, the phase control element and the reflecting mirror are made thinner, so that the structure is simple and the visibility is good, such as no double images.

「発明か解決しようとする課題] しかしなから、このSTN型液晶表示装置ではS T 
N型液晶表示装置ては、液晶の複屈折を用いた干渉現象
による急変化効果を表示に用いているため必然的に表示
が着色する表示の着色という問題かある。すなわち、一
般にSTN型では偏光板の貼り方によって、イエローモ
ートとブルーモートの2つの表示色に分かれるか、偏光
板をとういう角度で貼っても着色して見えることになる
“Invention or problem to be solved” However, for this STN type liquid crystal display device, S T
Since the N-type liquid crystal display device uses a sudden change effect due to an interference phenomenon using the birefringence of liquid crystal for display, there is a problem that the display is inevitably colored. That is, in general, in the STN type, depending on how the polarizing plate is attached, there are two display colors, yellow moat and blue moat, or even if the polarizing plate is attached at such an angle, it will appear colored.

表示装置の色調に関しては、白/黒表示か出来ればコン
トラストも良くなり、文書、図表なとあらゆる表示装置
に適用てき、さらに多色またはフルカラー表示が可能と
なる。そのため、STN型液晶表示装置の白/黒表示化
に対して種々の方式が開発されているか、2層型方式か
最も優れている(日経マイクロチハイス、1987年1
0月、84〜87頁)。この方式は表示の着色を解消す
るなめ電極構造の無い光学的な補償板としてのS]゛N
型液晶セルを重畳した2W型パネル構造から成っている
。この2WI型の模式図を第4図に示す。
Regarding the color tone of the display device, if possible, white/black display will have good contrast, and it can be applied to all kinds of display devices such as documents and charts, and furthermore, multi-color or full-color display is possible. For this reason, various methods have been developed for converting STN type liquid crystal display devices into black/white displays, and the two-layer method is the most superior (Nikkei Microchihs, 1987, 1).
(October, pp. 84-87). This method uses S]゛N as an optical compensation plate without a diagonal electrode structure to eliminate display coloration.
It consists of a 2W type panel structure with overlapping type liquid crystal cells. A schematic diagram of this 2WI type is shown in FIG.

第4図において電極構造を持−)(駆動用) S TN
型液晶セル10に電極構造を持たすく作動しない)液晶
分子のねしり方向以外は全く同し仕様の1111慣用の
STN型液晶セル12を重ね、その入射光側と透過光側
に偏光板14.16を配したものである。入射光が偏光
子(入射側の偏光板)14を通ると、との色も直線偏光
になる。次に駆動用STN型液晶セル10を通るとき、
複屈折性かあるため、直線偏光は楕円偏光に変わる。楕
円偏光は次に補償用のSTN型液晶セル12を通る。こ
こで楕円偏光は元の直線偏光に戻る。元の直線偏光は色
に関係なく振動方向か揃っているため、検光子(透過光
側の偏光板)16か偏光子14と互いに直行していれは
光りは全く通れない。つまり黒色表示か得られることに
なる。
In Fig. 4, it has an electrode structure (for driving) S TN
A 1111 conventional STN type liquid crystal cell 12 with exactly the same specifications except for the twisting direction of the liquid crystal molecules (which does not operate due to the electrode structure) is stacked on top of the 1111 conventional STN type liquid crystal cell 12, and polarizing plates 14. 16. When the incident light passes through the polarizer (polarizing plate on the incident side) 14, the colors of and also become linearly polarized light. Next, when passing through the driving STN type liquid crystal cell 10,
Due to birefringence, linearly polarized light changes to elliptically polarized light. The elliptically polarized light then passes through an STN type liquid crystal cell 12 for compensation. Here, the elliptically polarized light returns to its original linearly polarized light. Since the original linearly polarized light vibrates in the same direction regardless of color, if it is perpendicular to the analyzer (polarizing plate on the transmitted light side) 16 or the polarizer 14, no light can pass through it. In other words, a black display will be obtained.

しかし、この2層形のSTN形液晶表示装置は補償用の
STN型液晶セル12の厚み分たげ従来のSTN型液晶
表示装置より厚くなり重量か増加〜4− し、また完全な白色を得るためには駆動用のSTN型液
晶セル10と補償用のSTN型液晶セル]2のリタテー
ション(直(dΔ11、ここてdはン夜晶層厚であり、
△■]は液晶の複屈折値である。)を等しい値に調節す
るため、1吏用する液晶材料、セルギャップの微妙なコ
ントロールか必要てあった。
However, this two-layer STN type liquid crystal display device is thicker and heavier than the conventional STN type liquid crystal display device due to the thickness of the STN type liquid crystal cell 12 for compensation, and it is difficult to obtain perfect white color. The retardation (direct (dΔ11, where d is the night crystal layer thickness,
Δ■] is the birefringence value of the liquid crystal. ), it was necessary to delicately control the liquid crystal material used and the cell gap.

本発明は2層型のSTN型液晶表示装置の前記のごとき
問題点に鑑みてなされたもので、構造を簡略化して厚め
を減らずことにより重量を軽減し、リタテージョン値の
調節か容易にてきるSTN型液晶表示素子を提供するこ
とを目的とする。
The present invention was made in view of the above-mentioned problems of the two-layer STN liquid crystal display device, and it simplifies the structure and reduces the weight without reducing the thickness, and makes it easy to adjust the retardation value. An object of the present invention is to provide an STN type liquid crystal display element.

1課題を解決ずろための手段] 本発明は無8%物質の斜め蒸着膜か複屈折性を有するこ
とから着想を得て完成されかものてあって、本発明の液
晶表示素子は、スーパーツイストネマティック型液晶セ
ルを形成する透過光側の基板に光学tHIi M川の無
機薄膜を形成したことを要旨とする。
Means for Solving Problem 1] The present invention was completed based on the idea that an 8% substance-free obliquely deposited film has birefringence, and the liquid crystal display element of the present invention The gist is that an inorganic thin film of optical tHIiM was formed on the substrate on the transmitted light side forming a nematic liquid crystal cell.

基板に蒸着される無機物質としては可視光線に対して透
明なものでり、かつ斜め蒸着により複屈折を示すものあ
れは特に材料を限定しない。蒸着に用いられる無機物質
としては、例えばSiC2、WO3、T a x Os
などの酸化物である。斜め蒸着の方法は公知の方法が用
いられ、例えは電子ビーム蒸着法や、斜め横方向からス
パッタ蒸着する方法なとが用いられる。斜め蒸着膜は直
接液晶セルのカラス基板上の外側あるいは内側に形成し
ても良いし、別組のカラス基板の上に形成したのち、組
みきわせても良い。
The inorganic material deposited on the substrate is not particularly limited as long as it is transparent to visible light and exhibits birefringence when deposited obliquely. Examples of inorganic substances used for vapor deposition include SiC2, WO3, T a x Os
and other oxides. A known method is used for the oblique vapor deposition, such as an electron beam vapor deposition method or a method of sputter vapor deposition from an oblique lateral direction. The obliquely deposited film may be directly formed on the outside or inside of the glass substrate of the liquid crystal cell, or may be formed on another set of glass substrates and then combined.

蒸着膜は蒸着方向を変化させた多層構造とすることが望
ましく、これにより複屈折異方性の入射光の方向依存性
が緩和される。蒸着膜は2層に限らず交互に何層重ねて
も良い。たたし、各層て十分な柱状構造が成長すること
か必要であり、このため各層の厚さは500Å以上は必
要である。蒸着膜各層グ)膜厚および蒸着角度は所望の
d△11値に応じて適宜の値が選択される。
It is desirable that the deposited film has a multilayer structure in which the deposition direction is varied, thereby alleviating the direction dependence of the birefringent anisotropy of incident light. The vapor deposited film is not limited to two layers, but may be alternately stacked in any number of layers. However, it is necessary that a sufficient columnar structure be grown in each layer, and therefore the thickness of each layer is required to be 500 Å or more. Appropriate values are selected for the film thickness and vapor deposition angle of each layer of the vapor deposited film depending on the desired dΔ11 value.

[作用] 入射光は偏光子を通って直線偏光になって、駆動用ST
N型液晶セルを通る。STN型液晶セルは複屈折性かあ
るため、直線偏光は着色されると共に楕円偏光に変わる
。楕円偏光は次に透過光側の基板に形成した補償用の無
機薄膜を通る力板無機薄膜はSTN型液晶セルと逆の複
屈折性を有するように設定しであるのて、ここて楕円偏
光は元の直線偏光に戻り着色か解消される。元の直線偏
光は色に関係なく振動方向が揃っているため検光子を通
ずことによりSTN型液晶表示装置には白//黒表示か
される。
[Function] The incident light passes through a polarizer and becomes linearly polarized light, and the driving ST
Passes through an N-type liquid crystal cell. Since the STN liquid crystal cell has birefringence, linearly polarized light is colored and turns into elliptically polarized light. The elliptically polarized light then passes through a compensating inorganic thin film formed on the substrate on the transmitted light side.The inorganic thin film on the force plate is set to have birefringence opposite to that of the STN liquid crystal cell. returns to its original linearly polarized light and is either colored or eliminated. Since the original linearly polarized light has the same vibration direction regardless of color, it is displayed as white/black on the STN type liquid crystal display device by passing it through an analyzer.

[実施例] 本発明の好適な一実施例を以下図面に従って説明する。[Example] A preferred embodiment of the present invention will be described below with reference to the drawings.

なお、本発明は以下に述べる実施例の記載によって何等
限定的に解釈されるものではない。
It should be noted that the present invention is not to be construed as being limited in any way by the description of the examples described below.

第1図は本発明の一実施例の断面図である。STN型液
晶セル]0の入射光側および透過光側には偏光板14お
よび16か配置され、入射光側の偏光板(偏光子という
。)14と透過光側の偏光板〈検光子という。)16の
偏光方向は直交している。
FIG. 1 is a sectional view of an embodiment of the present invention. Polarizing plates 14 and 16 are arranged on the incident light side and the transmitted light side of the STN type liquid crystal cell]0, and the polarizing plate (referred to as a polarizer) 14 on the incident light side and the polarizing plate (referred to as an analyzer) on the transmitted light side. )16 polarization directions are orthogonal.

次にSTN型液晶セル10の構造について説明する。一
対のカラス基板2aおよび21〕は薄板ンーダライムガ
ラスからなり、相対向するように配置され、対向する面
にはそれぞれITO1酸化インジウム等からなる透明電
極層4aおよび41〕が形成され、さらにその上には配
向膜3aおよび31〕が形成されている。配向膜3はポ
リイミドなどの配向剤を用い、基板面に溶液塗布して加
熱乾燥後配向処理を施したものであって、入射光側の配
向膜3aの配向方向は偏光子14の偏光方向と平行てあ
り、透過光側の配向膜3 bは、入射光側の配向膜3a
の配向方向を180〜270°の範囲て左まわりまたは
右まわりにねじった方向に設定しである。
Next, the structure of the STN liquid crystal cell 10 will be explained. A pair of glass substrates 2a and 21] are made of thin plate lime glass and are arranged to face each other, and transparent electrode layers 4a and 41] made of ITO, indium oxide, etc. are formed on the opposing surfaces, respectively. Alignment films 3a and 31] are formed thereon. The alignment film 3 is made by using an alignment agent such as polyimide, applying a solution to the substrate surface, heating and drying, and then performing an alignment treatment, and the alignment direction of the alignment film 3a on the incident light side is the same as the polarization direction of the polarizer 14. The alignment film 3b on the transmitted light side is parallel to the alignment film 3a on the incident light side.
The orientation direction is set to be twisted counterclockwise or clockwise within a range of 180 to 270°.

2枚のカラス基板2aおよび2 +1は図示しないスペ
ーサにより所望のセルギャプを形成するように保持され
、周縁部はエポキシ樹脂などのシール材5か封着されて
いる。このカラス基板2aおよび21)によって形成さ
れる空間には、ZLI−1694、ZLI−1565、
ZLI−3201等の液晶材料7が充填されて、STN
型液晶セル1゜が構成される。
The two glass substrates 2a and 2+1 are held by spacers (not shown) so as to form a desired cell gap, and their peripheral edges are sealed with a sealing material 5 such as epoxy resin. In the space formed by the glass substrates 2a and 21), ZLI-1694, ZLI-1565,
The liquid crystal material 7 such as ZLI-3201 is filled and the STN
A 1° type liquid crystal cell is constructed.

まな、透過光側のカラス基板2 +1の外側表面には無
機薄膜6が形成されており、この無機薄膜6は補償板の
役割をなすものであって、可視光線に対して透明なもの
てがっ斜め蒸着により複屈折を示ずWO2、S i 0
2等の酸化物からなる。この無機薄膜6は、第3図の無
機薄膜6を形成したガラス基板21〕の部分拡大断面図
に示したように、これら酸化物を何層にも分けて蒸着角
度を変えて斜め蒸着により形成されており、各蒸着膜の
膜厚および蒸着角度はSTN型液晶セル1oとd△11
が等しく符号か逆の複屈折をなすように設定されている
An inorganic thin film 6 is formed on the outer surface of the glass substrate 2+1 on the transmitted light side, and this inorganic thin film 6 serves as a compensator and is transparent to visible light. Due to oblique deposition, it shows no birefringence and WO2, S i 0
Consisting of oxides of grade 2. This inorganic thin film 6 is formed by diagonal vapor deposition by dividing these oxides into many layers and changing the vapor deposition angle, as shown in the partially enlarged sectional view of the glass substrate 21 on which the inorganic thin film 6 is formed in FIG. The film thickness and deposition angle of each deposited film are STN type liquid crystal cell 1o and d△11.
are set so that they have birefringence of equal or opposite sign.

次に本実施例のSTN型液晶表示装置の作動について、
第2図の模式図に従って説明する。入射光■−か偏光子
14を通ると、との色の光も直線偏光となる。S ′F
N型液晶セル1oにおいては、ずl\ての液晶分子か基
板面2に対して平行に配列しているか、入射光側の配向
軸3Aは偏光子の偏光軸1.4 Aと平行であるのに対
し透過光側の配向軸3Bは180〜270°の範囲て右
まわりまたは一8= 左まわりにずれているので、液晶分子の配列方位は両基
板間で連続的に変化し、出射側のセル界面では180〜
27o°の範囲でねしれている。そのなめ入射光はST
N型液晶セル1oを通るとき、その範囲の角度の旋光を
受け、直線偏光は楕円偏光に変わるか、その楕円の長軸
の方位や離心率は波長により異なる。
Next, regarding the operation of the STN type liquid crystal display device of this example,
This will be explained according to the schematic diagram in FIG. When the incident light (1) passes through the polarizer 14, the light of color (2) also becomes linearly polarized light. S'F
In the N-type liquid crystal cell 1o, all liquid crystal molecules are arranged parallel to the substrate surface 2, or the alignment axis 3A on the incident light side is parallel to the polarization axis 1.4A of the polarizer. On the other hand, the alignment axis 3B on the transmitted light side is shifted clockwise or counterclockwise in the range of 180 to 270°, so the alignment direction of the liquid crystal molecules changes continuously between both substrates, and 180~ at the cell interface of
It is twisted in the range of 27o°. The incident light is ST
When passing through the N-type liquid crystal cell 1o, the light undergoes optical rotation within the range of angles, and the linearly polarized light changes to elliptically polarized light, and the orientation and eccentricity of the long axis of the ellipse vary depending on the wavelength.

次いて楕円偏光は無機薄膜6を通るが、無機薄膜6の光
学軸6Aは検光子16の偏光軸1.6 Aに対して所定
の角度(例えは45°)をなす。この結果無機薄M6は
STN型液晶セルのdΔnと大きさか等しく符号が逆の
複屈折を示すのて、ここで波長にかかわりなく楕円偏光
は元の直線偏光に戻り、検光子の偏光軸16Aと直交す
るなめ、光が全く通れず黒色表示が得らる。信号電圧が
印加されるときは各波長の光が多少の透過光量の差をも
って検光子16を通過するが、肉眼てはほとんと白色と
区別できない表示が得られる。
Next, the elliptically polarized light passes through the inorganic thin film 6, and the optical axis 6A of the inorganic thin film 6 forms a predetermined angle (for example, 45°) with respect to the polarization axis 1.6 A of the analyzer 16. As a result, the inorganic thin M6 exhibits birefringence with a magnitude equal to or opposite to dΔn of the STN liquid crystal cell, and the elliptically polarized light returns to its original linear polarization irrespective of the wavelength, and the polarization axis 16A of the analyzer Since they are perpendicular to each other, no light can pass through them, resulting in a black display. When a signal voltage is applied, light of each wavelength passes through the analyzer 16 with some difference in the amount of transmitted light, but a display that is almost indistinguishable from white to the naked eye is obtained.

なお、本実施例ては無機薄膜6はカラス基板21〕の外
側表面に形成しなが、STN型液晶セル]0の内側に形
成しても良いし、また別組のガラス基板上に形成したの
ち、組みきわぜても良い。
Although the inorganic thin film 6 is not formed on the outer surface of the glass substrate 21 in this embodiment, it may be formed on the inside of the STN liquid crystal cell 0, or it may be formed on a separate set of glass substrates. You can assemble it later.

[発明の効果コ 本発明のSTN型液晶表示素子は以上説明したように、
STN型液晶表示装置において着色を解消するのに、駆
動用のSTN型液晶セルの基板に光学補償用の無機薄膜
を形成するものであって、補償用のSTN型液晶セルを
使用することなく着色を解消できるので、液晶表示装置
の厚さを減じ重量の軽減を可能とするものである。この
ため、高い表示コントラスと急峻な電気光学特性を有す
るSTN型液晶表示装置の白/黒表示が可能となるので
、表示装置の大容量化に対応てきると共に、文書、図表
なとあらゆる表示装置に適用できる。
[Effects of the Invention] As explained above, the STN type liquid crystal display element of the present invention has the following effects:
In order to eliminate coloring in STN type liquid crystal display devices, an inorganic thin film for optical compensation is formed on the substrate of the STN type liquid crystal cell for driving, and coloring can be achieved without using an STN type liquid crystal cell for compensation. This makes it possible to reduce the thickness and weight of the liquid crystal display device. This makes it possible to display black and white with STN type liquid crystal display devices, which have high display contrast and steep electro-optic characteristics, making it possible to respond to larger capacity display devices and to be able to display documents, charts, and other types of display devices. Applicable to

さらに、カラーフィルタ等を用いればカラー表示が可能
になるグ)で、薄型、軽量、高品質の液晶カラー表示装
置の製造が可能である。また、本発明では液晶セルに直
接位相差補償板としての無機薄膜を形成するため、構造
が極めて簡略化され、製造コスl−か安くなり、形成す
る膜厚の制御により、dΔ11の調節が容易にできるた
め、個々の液晶セルに最適な補償膜を設定することがで
き、常に安定した表示品質を得ることができる。
Furthermore, if a color filter or the like is used, color display becomes possible (g), making it possible to manufacture a thin, lightweight, and high-quality liquid crystal color display device. In addition, in the present invention, since an inorganic thin film is directly formed as a retardation compensation plate on the liquid crystal cell, the structure is extremely simplified, the manufacturing cost is low, and dΔ11 can be easily adjusted by controlling the thickness of the formed film. Therefore, the optimum compensation film can be set for each individual liquid crystal cell, and stable display quality can always be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の断面口、第2図は第1図の
実施例の作動を説明するための模式図、第3図は無機薄
膜を形成した状!ぷのガラス基板の部分拡大断面図、第
4図は従来のSTN型液晶表示装置の作動を説明するた
めの模式図である。 2a、21〕  ・ カラス基板 3a、3b ・・配向膜 4a、4)〕   透明電極 6  ・・・ 無機薄膜 7 ・ ・・ 液晶 10・   ・駆動用STN型液晶セル12 ・ ・ 
補償用STN型液晶セル14・・・・ 偏光子 16・・ ・ 検光子 (O
Fig. 1 is a cross-sectional view of an embodiment of the present invention, Fig. 2 is a schematic diagram for explaining the operation of the embodiment of Fig. 1, and Fig. 3 is a diagram showing an inorganic thin film formed thereon. FIG. 4 is a partially enlarged sectional view of the glass substrate, and is a schematic diagram for explaining the operation of a conventional STN type liquid crystal display device. 2a, 21] - Glass substrates 3a, 3b - Alignment film 4a, 4) - Transparent electrode 6 - Inorganic thin film 7 - Liquid crystal 10 - Driving STN type liquid crystal cell 12 -
Compensation STN type liquid crystal cell 14... Polarizer 16... Analyzer (O

Claims (1)

【特許請求の範囲】[Claims] (1)スーパーツイストネマティック型液晶セルを形成
する透過光側の基板に光学補償用の無機薄膜を形成した
ことを特徴とする液晶表示素子。
(1) A liquid crystal display element characterized in that an inorganic thin film for optical compensation is formed on a substrate on the transmitted light side forming a super twisted nematic liquid crystal cell.
JP63102988A 1988-04-26 1988-04-26 Liquid crystal display element Pending JPH01273017A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63102988A JPH01273017A (en) 1988-04-26 1988-04-26 Liquid crystal display element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63102988A JPH01273017A (en) 1988-04-26 1988-04-26 Liquid crystal display element

Publications (1)

Publication Number Publication Date
JPH01273017A true JPH01273017A (en) 1989-10-31

Family

ID=14342085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63102988A Pending JPH01273017A (en) 1988-04-26 1988-04-26 Liquid crystal display element

Country Status (1)

Country Link
JP (1) JPH01273017A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5220447A (en) * 1989-03-18 1993-06-15 Hitachi, Ltd. Liquid crystal display device and phase plate therefor
KR100326440B1 (en) * 1994-11-22 2002-06-24 김순택 Liquid crystal display having film type compensation cell and method for fabricating the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5220447A (en) * 1989-03-18 1993-06-15 Hitachi, Ltd. Liquid crystal display device and phase plate therefor
KR100326440B1 (en) * 1994-11-22 2002-06-24 김순택 Liquid crystal display having film type compensation cell and method for fabricating the same

Similar Documents

Publication Publication Date Title
US5016988A (en) Liquid crystal display device with a birefringent compensator
JP4080245B2 (en) Liquid crystal display
US5699137A (en) Liquid crystal display device having compensator with particular retardation in the inclined direction
JPH10161110A (en) Reflection type liquid crystal display element
JP2721284B2 (en) Liquid crystal display element and optically anisotropic element
JPH02124529A (en) Two-layer type liquid crystal display device
JP2002122866A (en) Color liquid crystal display panel, reflection type color liquid crystal display panel, and semitransmission type color liquid crystal display panel
JPH01273017A (en) Liquid crystal display element
JP2881214B2 (en) Liquid crystal display device
JP2605064B2 (en) Liquid crystal display device
ITTO940520A1 (en) TWISTED NEMATIC LIQUID CRYSTAL DISPLAY DROGED WITH WIDE ANGLE OF VIEWING PIGMENTS WITH DELAY SHEETS.
JP2649389B2 (en) Phase compensator
JP3000374B2 (en) Liquid crystal display device
JP3643439B2 (en) Liquid crystal display element
JPH03111823A (en) Two-layer type stn liquid crystal display element
JPH01147430A (en) Liquid crystal display element
JP3896135B2 (en) Liquid crystal display element and optical anisotropic element
JP2662672B2 (en) Liquid crystal display device
JP2825902B2 (en) Liquid crystal display device
JPH0228618A (en) Liquid crystal display element
JPH0279018A (en) Liquid crystal display element
JPH03226713A (en) Liquid crystal display device
JP4181261B2 (en) Reflective liquid crystal display
JPH1039296A (en) Reflection type liquid crystal display device
JP2825903B2 (en) Liquid crystal display device