JPH01268521A - Metallic vacuum double structure and manufacture thereof - Google Patents
Metallic vacuum double structure and manufacture thereofInfo
- Publication number
- JPH01268521A JPH01268521A JP63098855A JP9885588A JPH01268521A JP H01268521 A JPH01268521 A JP H01268521A JP 63098855 A JP63098855 A JP 63098855A JP 9885588 A JP9885588 A JP 9885588A JP H01268521 A JPH01268521 A JP H01268521A
- Authority
- JP
- Japan
- Prior art keywords
- vacuum
- wall
- copper foil
- titanium
- internal wall
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 31
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical class [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 81
- 239000011889 copper foil Substances 0.000 claims abstract description 67
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims abstract description 45
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims abstract description 22
- 229910052751 metal Inorganic materials 0.000 claims abstract description 21
- 239000002184 metal Substances 0.000 claims abstract description 21
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 20
- 239000010936 titanium Substances 0.000 claims abstract description 19
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 19
- 150000003608 titanium Chemical class 0.000 claims abstract description 4
- 238000000034 method Methods 0.000 claims description 53
- 238000010438 heat treatment Methods 0.000 claims description 26
- 238000007872 degassing Methods 0.000 claims description 15
- 239000011888 foil Substances 0.000 claims description 10
- 238000007789 sealing Methods 0.000 claims description 9
- 150000001879 copper Chemical class 0.000 claims 1
- 239000007789 gas Substances 0.000 abstract description 53
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 abstract description 29
- 238000009413 insulation Methods 0.000 abstract description 18
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 abstract description 11
- 229910052757 nitrogen Inorganic materials 0.000 abstract description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 37
- 239000001257 hydrogen Substances 0.000 description 22
- 229910052739 hydrogen Inorganic materials 0.000 description 22
- 239000000463 material Substances 0.000 description 20
- 150000002431 hydrogen Chemical class 0.000 description 19
- 229910001220 stainless steel Inorganic materials 0.000 description 18
- 239000010935 stainless steel Substances 0.000 description 18
- 238000005219 brazing Methods 0.000 description 13
- 230000009471 action Effects 0.000 description 11
- 238000012360 testing method Methods 0.000 description 11
- 239000010949 copper Substances 0.000 description 10
- 230000008569 process Effects 0.000 description 10
- 238000012546 transfer Methods 0.000 description 10
- 238000010521 absorption reaction Methods 0.000 description 9
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 8
- 229910052802 copper Inorganic materials 0.000 description 8
- 230000007423 decrease Effects 0.000 description 8
- 206010070834 Sensitisation Diseases 0.000 description 7
- 230000004913 activation Effects 0.000 description 7
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 7
- 238000012423 maintenance Methods 0.000 description 7
- 230000008313 sensitization Effects 0.000 description 7
- 229910052782 aluminium Inorganic materials 0.000 description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 6
- 238000007796 conventional method Methods 0.000 description 6
- 230000007797 corrosion Effects 0.000 description 6
- 238000005260 corrosion Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 230000006870 function Effects 0.000 description 6
- 230000005855 radiation Effects 0.000 description 6
- 238000001816 cooling Methods 0.000 description 5
- 230000003247 decreasing effect Effects 0.000 description 5
- 229910000963 austenitic stainless steel Inorganic materials 0.000 description 4
- 229910002092 carbon dioxide Inorganic materials 0.000 description 4
- 239000001569 carbon dioxide Substances 0.000 description 4
- 230000006866 deterioration Effects 0.000 description 4
- 239000000945 filler Substances 0.000 description 4
- 238000005476 soldering Methods 0.000 description 4
- 238000011144 upstream manufacturing Methods 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 238000007747 plating Methods 0.000 description 3
- 239000000565 sealant Substances 0.000 description 3
- 229910000679 solder Inorganic materials 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 230000003213 activating effect Effects 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000012790 confirmation Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000007710 freezing Methods 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 230000002528 anti-freeze Effects 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- POIUWJQBRNEFGX-XAMSXPGMSA-N cathelicidin Chemical compound C([C@@H](C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H]([C@@H](C)CC)C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C(C)C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CO)C(O)=O)NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CC(C)C)C1=CC=CC=C1 POIUWJQBRNEFGX-XAMSXPGMSA-N 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- BERDEBHAJNAUOM-UHFFFAOYSA-N copper(I) oxide Inorganic materials [Cu]O[Cu] BERDEBHAJNAUOM-UHFFFAOYSA-N 0.000 description 1
- KRFJLUBVMFXRPN-UHFFFAOYSA-N cuprous oxide Chemical compound [O-2].[Cu+].[Cu+] KRFJLUBVMFXRPN-UHFFFAOYSA-N 0.000 description 1
- 238000005238 degreasing Methods 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 230000004720 fertilization Effects 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-N hydrofluoric acid Substances F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
Landscapes
- Thermal Insulation (AREA)
- Thermally Insulated Containers For Foods (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は魔法瓶、真空二重パイプ等の金属製真空二重構
造体及びその製造方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a metal vacuum double structure such as a thermos flask or a double vacuum pipe, and a method for manufacturing the same.
(従来の技術)
金属製真空二重構造体、例えば魔法びん等の真空二重容
器の保温性を向上するには、内容器と外容器の間の真空
度を高くすることと、内容器から外容器へのふく射伝熱
を遮断することが重要である。(Prior art) In order to improve the heat retention of a double-walled vacuum container made of metal, such as a vacuum double-walled container such as a thermos bottle, it is necessary to increase the degree of vacuum between the inner container and the outer container, and to It is important to block radiant heat transfer to the container.
真空度を高めるには、真空排気処理能力を高めて高真空
に封止することはもちろんのこと、封止後の内容器外表
面又は外容器内表面からの吸蔵ガスの離脱を防止するこ
とが特に必要である。このため、従来、内容器外表面及
び外容器内表面を脱脂してさらに硝フッ酸等で酸洗いす
る方法、排気処理時に炉内で加熱して吸蔵ガスを空気と
ともに排出する方法、ゲッターを用いて金属表面から離
脱する吸蔵ガスを吸着させる方法があるが、通常これら
の方法をすべて使用することが行なわれている。In order to increase the degree of vacuum, it is necessary not only to increase the evacuation processing capacity and seal to a high vacuum, but also to prevent the escape of the occluded gas from the outer surface of the inner container or the inner surface of the outer container after sealing. Especially necessary. For this reason, conventional methods include degreasing the outer surface of the inner container and the inner surface of the outer container and then pickling with nitric-hydrofluoric acid, etc., heating in a furnace during exhaust treatment to exhaust the occluded gas along with air, and using a getter. There is a method of adsorbing the occluded gas that is released from the metal surface, but all of these methods are commonly used.
また、ふく射伝熱を防止する方法として、従来、少なく
とも内容器外表面に電解メツキあるいは銀鏡反応により
メツキ層を形成する方法、又は特開昭61−3111.
1号公報に示すように内容器外表面を銅又はアルミニウ
ムの薄板で覆う方法がある。In addition, as a method for preventing radiation heat transfer, conventional methods include forming a plating layer on at least the outer surface of the inner container by electrolytic plating or silver mirror reaction, or the method described in Japanese Patent Laid-Open No. 61-3111.
As shown in Publication No. 1, there is a method of covering the outer surface of the inner container with a thin plate of copper or aluminum.
一方、真空排気処理後の真空封じ込み方法としては、外
容器底面に形成した排気口に閉塞部材をろう接して閉塞
する方法(以下、ろう接法という。)と、外容器底面に
設けた排気用のチップ管を挟み切る方法(以下、チップ
管法という。)とがある。On the other hand, there are two methods for vacuum containment after vacuum evacuation: a method in which a closing member is soldered to the exhaust port formed on the bottom of the outer container to close it (hereinafter referred to as the "brazing method"); There is a method in which a tip tube for use is pinched off (hereinafter referred to as the tip tube method).
前肥ろう接法において、閉塞部材のろう接に7ラツクス
を使用すると、ガスが内外両容器の真空空間に流入して
真空度を低下させることから、フラックスを使用するこ
となくろう接する必要があこのため、例えばステンレス
鋼製真空二重容器では、高温でその表面を7ラツシユす
るとともに、ニッケルろう等の約900〜1070°C
の融点を有するろう材を使用しなければならない。しか
も、ステンレス鋼は高温に加熱する際、あるいは高温か
ら冷却する際に、ある温度域(一般には、約450〜8
50°C)で固溶炭素が炭化物となって析出し、鋭敏化
して粒界腐食が生じやすくなり、耐食性が低下する性質
を有するため、鋭敏化の危険温度域を避けて850°C
以上の温度で真空排気処理及びろう接を行ない、かつ高
温から冷却する際に真空加熱炉内に不活性ガスを供給し
て急冷しなければならない。In the pre-fertilization soldering method, if 7lux is used to solder the closing member, gas will flow into the vacuum space of both the inner and outer containers, reducing the degree of vacuum, so it is necessary to solder without using flux. For this reason, for example, in the case of a stainless steel vacuum double container, the surface is lathed at a high temperature of 7 degrees, and nickel solder etc.
A filler metal must be used that has a melting point of . Moreover, when stainless steel is heated to a high temperature or cooled from a high temperature, it must be heated within a certain temperature range (generally about 450 to 80°C).
Solute carbon precipitates as carbide at temperatures of 50°C) and becomes sensitized, making intergranular corrosion more likely to occur and reducing corrosion resistance.
Evacuation treatment and brazing are performed at the above temperature, and when cooling from a high temperature, an inert gas must be supplied into the vacuum heating furnace for rapid cooling.
これに対し、チップ管法ではろう材を使用しないため、
鋭敏化領域より低い温度、すなわち400〜450°C
で真空排気処理が行なわれている。On the other hand, since the chip tube method does not use brazing material,
Temperature below the sensitization zone, i.e. 400-450°C
A vacuum evacuation process is being performed.
ところで、真空排気処理時には、金属表面の清浄化と吸
蔵ガスの放出のために二重容器を加熱する必要があるが
、排気処理中に加熱するとメツキ面等が酸化するため、
従来加熱前にlXl0−”Torr(1,33Pa)よ
り高真空に予備排気しておいてから、ろう接法では85
0〜950℃に、チップ管法では400〜450°Cに
加熱するようになっている。By the way, during the vacuum evacuation process, it is necessary to heat the double container in order to clean the metal surface and release the occluded gas, but heating during the evacuation process oxidizes the plating surface, etc.
Conventionally, before heating, preliminary evacuation is performed to a higher vacuum than 1X10-'' Torr (1,33 Pa), and in the brazing method,
The temperature is 0 to 950°C, and the chip tube method is heated to 400 to 450°C.
以上の真空度を高める方法、ふく射伝熱を防止する方法
及び真空封じ込み方法は、凍結防止用の給水パイプ等に
用いられる真空二重パイプの製造にも適用されている。The above-described methods of increasing the degree of vacuum, preventing radiation heat transfer, and vacuum confinement methods are also applied to the manufacture of vacuum double pipes used for water supply pipes for freezing prevention and the like.
なお、一般に真空度については、圧力が、10−3To
rr以上を低真空、
10−” I 0−3Torrの範囲を高真空、10−
’−10−4Torrの範囲を超高真空、10−4To
rr以下を極超高真空、と称されているので本明細書に
おいてもこれに従う。In general, regarding the degree of vacuum, the pressure is 10-3To
rr or more is low vacuum, 10-"I 0-3Torr range is high vacuum, 10-"
'-10-4Torr range ultra-high vacuum, 10-4Torr
Since the vacuum below rr is called an ultra-ultra-high vacuum, this also applies in this specification.
(発明が解決しようとする課題)
しかしながら、前記従来のようにlXl0−”TOr「
より高真空に予備排気すると、対流伝熱媒体である空気
が希薄になり、外容器と内容器の間の伝熱性が極めて悪
くなっている。このため、予備排気後に加熱したとして
も内容器の昇温か炉熱を直接受ける外容器に比へて著し
く遅れる結果、真空排気処理時間が長くかかったり、内
容器外表面からの脱ガスが不十分となり、真空封じ込み
後に残留した吸蔵ガスが遊離して真空度が低下し、断熱
性が経時変化して保温性がしだいに低下してゆくことに
なる。(Problem to be solved by the invention) However, as in the prior art,
When preliminary evacuation is performed to a higher vacuum, air, which is a convective heat transfer medium, becomes diluted, and the heat transfer between the outer container and the inner container becomes extremely poor. For this reason, even if the inner container is heated after preliminary evacuation, there is a significant delay compared to the outer container, which directly receives the heating and furnace heat of the inner container, resulting in long evacuation processing times and insufficient degassing from the outer surface of the inner container. Therefore, the occluded gas remaining after vacuum confinement is liberated, the degree of vacuum decreases, the heat insulation properties change over time, and the heat retention properties gradually decrease.
そこで、従来、ゲッターを用いて真空封じ込み後に遊離
する吸蔵ガスを吸着するようにしている。Therefore, conventionally, a getter has been used to adsorb the occluded gas liberated after vacuum confinement.
かかるゲッターの使用は、保温性の完全化を図るうえで
必要不可欠であるが、その反面、本来のゲッターやゲッ
ター保持金具等の材料費が増大するという問題点を有し
ていた。The use of such a getter is essential for perfecting heat retention, but on the other hand, it has the problem of increasing the cost of materials such as the original getter and getter holding fittings.
本発明は斯かる問題点に鑑みてなされたもので、断熱性
に優れ、かつ、安価な金属製真空二重構造体を提供する
こと、及び短い真空排気処理時間で内容器からの脱ガス
が十分に行なわれるととともに、本来のゲッターやゲッ
ター保持金具を不要とすることができる金属製真空二重
構造体の製造方法を提供することを目的とする。The present invention has been made in view of the above problems, and it is an object of the present invention to provide a metal vacuum double structure that has excellent heat insulation properties and is inexpensive, and that degasses from the inner container in a short evacuation process time. It is an object of the present invention to provide a method for manufacturing a metal vacuum double structure that can be carried out satisfactorily and eliminates the need for an original getter and getter holding fittings.
(課題を解決するだめの手段)
ところで、真空二重構造体の内壁又は外壁から遊離する
ガスは多量の水素のほか少量の窒素が含まれている。従
って、真空二重構造体の真空度を高めるには、水素はも
ちろんのこと窒素も吸収する必要がある。(Another Means to Solve the Problem) By the way, the gas liberated from the inner or outer wall of the vacuum double structure contains not only a large amount of hydrogen but also a small amount of nitrogen. Therefore, in order to increase the vacuum degree of the vacuum double structure, it is necessary to absorb not only hydrogen but also nitrogen.
そこで、本発明は、まず、真空度と断熱性の関係におい
て、l X l O−4Torr以下の高真空下では極
めて優れた断熱性が得られることは従来周知のことであ
るが、この断熱性の変化は真空度がlO−” 10−”
Torrのオーダー(7)間で、tJに変化する(日本
機械学会編伝熱工学資料参照)ことに着目し、断熱性が
顕著に現われず、伝熱性がある程度良好な真空下すなわ
ちI O−”Torrのオーダー以上の低真空において
加熱脱ガスを行なうこととしたものである。Therefore, the present invention first focuses on the relationship between the degree of vacuum and the heat insulation property.It is well known that an extremely excellent heat insulation property can be obtained under a high vacuum of 1 X 1 O-4 Torr or less. The change in the degree of vacuum is lO-"10-"
Focusing on the fact that Torr changes to tJ between order (7) (see Thermal Engineering Materials edited by the Japan Society of Mechanical Engineers), we focused on the fact that under vacuum, where thermal insulation does not appear significantly and heat conductivity is good to some extent, that is, IO-” It was decided that heating and degassing would be performed in a low vacuum of the order of Torr or higher.
さらに、内容器外表面に被覆した銅箔に、本来のふく射
伝熱防止作用以外にガス吸収作用、すなわちゲッター作
用を有効に発揮させるために、真空排気処理時に当該銅
箔を活性化させてその脱ガスを効果的に行なうとともに
、銅箔では吸収できないガスをチタン又はジルコニウム
で吸収するようにしたものである。Furthermore, in order to have the copper foil coated on the outer surface of the inner container effectively exhibit a gas absorption function, that is, a getter function, in addition to its original radiation heat transfer prevention function, the copper foil is activated during the vacuum evacuation process. In addition to effectively degassing, titanium or zirconium absorbs gases that cannot be absorbed by copper foil.
一般に、金属と特定のガスが室温状態で化学吸着するな
らば、その金属の特定ガスの吸収量は、−活性時の放出
ガス量に依存する。従って、例えば銅箔が特定のガスを
化学吸着でき、かつ、活性時の放出ガス量が一般のゲッ
ター材と同等であれば、銅箔にゲッター材並のゲッター
作用を期待することができる。Generally, if a metal and a specific gas chemically adsorb at room temperature, the amount of absorption of the specific gas by the metal depends on the amount of released gas when activated. Therefore, for example, if the copper foil can chemically adsorb a specific gas and the amount of released gas when activated is equivalent to that of a general getter material, the copper foil can be expected to have a getter action comparable to that of a getter material.
そこで、本発明者らは、銅と水素が化学吸着することを
考慮し、銅箔の活性時の放出ガス分析を行ない、次の結
果を得た。Therefore, the present inventors conducted an analysis of the gases released when the copper foil is activated, taking into account that copper and hydrogen are chemically adsorbed, and obtained the following results.
ステンレス鋼製チャンバ内に銅箔を収容し、加熱排気し
つつ銅箔を活性化させると、銅箔から主に水蒸気(H2
O)、二酸化炭素(COz)、−酸化炭素(CO)が放
出され、水素(N7)がわずかに放出された。ここで、
放出される水蒸気(H2O)は、120°0.240°
C及び370℃の3つのピークがみられ、120℃のピ
ークは銅箔の表面に物理的に吸着していたものであり、
240℃及び370℃のピークは銅(Cu)とCuO又
はCu2Oの形で結合していた酸素(0)と拡散してき
た水素(H)とが結合したものであると考えられる。二
酸化炭素(CO2)及び−酸化炭素(CO)は、240
℃と400℃の2つのピークがみられ、銅(Cu)と結
合していた酸素(0)と拡散したきた炭素(C)が表面
で結合したものであると考えられる。また、水素(N2
)は、水蒸気(H2O)の形で放出されずに残ったもの
がそのまま放出されたものであると考えられる。When a copper foil is housed in a stainless steel chamber and activated while heating and exhausting, mainly water vapor (H2) is released from the copper foil.
O), carbon dioxide (COz), -carbon oxide (CO) were released, and hydrogen (N7) was slightly released. here,
The water vapor (H2O) released is 120°0.240°
Three peaks were observed at C and 370°C, and the peak at 120°C was physically adsorbed on the surface of the copper foil.
The peaks at 240° C. and 370° C. are considered to be caused by a combination of oxygen (0) that was bonded to copper (Cu) in the form of CuO or Cu2O and diffused hydrogen (H). Carbon dioxide (CO2) and -carbon oxide (CO) are 240
Two peaks at 400° C. and 400° C. were observed, and it is thought that oxygen (0) bonded to copper (Cu) and diffused carbon (C) bonded on the surface. In addition, hydrogen (N2
) is considered to be what remained in the form of water vapor (H2O) and was released as is.
また、この銅箔(約12g)の活性化により放出される
水素(N2X水蒸気(N20)の形で放出されるものを
含む)は、一般のゲッター材(5AESGETTERS
S、P、A、製5t−707相当、約0.5g)の活
性時に放出される水素(Hりと同等以上であっIこ。In addition, the hydrogen released by activation of this copper foil (approximately 12 g) (including that released in the form of N2
Hydrogen (equivalent to 5t-707 made by S, P, A, about 0.5 g) is released when activated.
さらに、空気中で強制酸化させた銅箔は、活性化時にそ
の表面で水素(H)と酸素(0)の衝突確率が増えるた
め、水素(N2)が水蒸気(N20)の形で放出されや
すく、酸化によりダメージも残らないことが確認されて
いる。Furthermore, when copper foil is forcibly oxidized in air, the probability of collision between hydrogen (H) and oxygen (0) on its surface increases when it is activated, so hydrogen (N2) is more likely to be released in the form of water vapor (N20). It has been confirmed that no damage remains due to oxidation.
また、本発明者らは、銅と物理吸着しても化学吸着しな
い窒素は、チタン又はジルコニウムとなら化学吸着する
ことを考慮し、チタン箔の活性時の放出ガス分析を行な
った結果、水素(Hりのピークは約700°C1窒素(
N、)のピークは約400℃であった。また、ジルコニ
ウム箔の活性時の放出ガス分析を行なった結果、水素(
N2)及び窒素(N2)のピークはいずれも約300°
Cであった。さらに、チタン箔(約0.8g)の窒素(
N2)吸収能力は、前記一般のゲッター材(約0.5g
)の窒素(N、)に対する吸収能力と同等であることも
確認されている。なお、従来市販されているチタン製の
ゲッターは、窒素(N、)よりも水素(N2)を有効に
吸収するために700°C以上で活性化させ、高温用ゲ
ッターとして使用されている。In addition, the present inventors took into account that nitrogen, which is not chemically adsorbed even when physically adsorbed with copper, is chemically adsorbed with titanium or zirconium, and as a result of analyzing the released gas when titanium foil is activated, we found that hydrogen ( The peak of hydrogen is about 700°C1 nitrogen (
The peak of N,) was about 400°C. In addition, as a result of analyzing the gas released during activation of zirconium foil, we found that hydrogen (
N2) and nitrogen (N2) peaks are both approximately 300°
It was C. Furthermore, nitrogen (approximately 0.8 g) of titanium foil (
N2) absorption capacity is the same as that of the general getter material (approximately 0.5g
It has also been confirmed that the absorption capacity for nitrogen (N, ) is equivalent to that of In addition, conventionally commercially available titanium getters are activated at 700° C. or higher to absorb hydrogen (N2) more effectively than nitrogen (N), and are used as high-temperature getters.
本第1発明は、以上の見識に基づいてなされたもので、
内壁と外壁とで二重壁構造を形成し、内壁と外壁の間の
空間を排気処理して真空封じ込みした金属製真空二重構
造体において、
内壁の表面を活性化された銅箔で覆うとともに、内壁表
面と銅箔の間に活性化されたチタン又はジルコニウムを
介装したものである。The first invention was made based on the above knowledge, and
In a metal vacuum double structure where an inner wall and an outer wall form a double wall structure, and the space between the inner and outer walls is evacuated and sealed in a vacuum, the surface of the inner wall is covered with activated copper foil. Additionally, activated titanium or zirconium is interposed between the inner wall surface and the copper foil.
また、第2発明は、内壁ど外壁とで二重壁構造を形成し
、内壁と外壁の間の空間を排気処理して真空封じ込みす
る金属製真空二重構造体の製造方法において、
内壁の表面を銅箔で覆うとともに、内壁表面と銅箔の間
にチタン又はジルコニウムを介装して、第6図に示すよ
うに、第1工程Iでl O−”Torrのオーダー以上
の低真空に予備排気し、第2工程■で略400°C以上
の温度で所定時間加熱して脱ガスを行なった後、第3工
程■で当該加熱温度を維持したままlO−Torrのオ
ーダー以下の高真空に排気処理して、第4工程■で真空
封じ込みするものである。Further, a second invention is a method for manufacturing a metal vacuum double structure, in which a double wall structure is formed by an inner wall and an outer wall, and the space between the inner wall and the outer wall is evacuated and sealed in vacuum. The surface is covered with copper foil, and titanium or zirconium is interposed between the inner wall surface and the copper foil, and as shown in Figure 6, in the first step I, a low vacuum of the order of 1 O-'' Torr or higher is applied. After preliminary evacuation and degassing by heating at a temperature of approximately 400°C or higher for a predetermined time in the second step (2), a high vacuum of less than the order of lO-Torr is produced while maintaining the heating temperature in the third step (2). This is followed by evacuation treatment, followed by vacuum sealing in the fourth step (2).
前記チタン材又はジルコニウム材としては、例えばチタ
ン材ならチタン箔、チタンベレット又は市販のチタンゲ
ッター等を使用することができるが、ゲッター保持部が
不要で、かつ、表面積をできるだけ確保する点から、チ
タン箔又はジルコニウム箔を使用するのが好ましい。ま
た、内壁又は外壁の材質がSU3304等のオーステナ
イト系ステンレス鋼の場合は、当該ステンレス鋼の鋭敏
化領域より低い温度又は当該領域を越える温度で加熱脱
ガスを行なうのが好ましい。As the titanium material or zirconium material, for example, titanium foil, titanium pellet, commercially available titanium getter, etc. can be used. Preference is given to using foil or zirconium foil. Further, when the material of the inner wall or the outer wall is austenitic stainless steel such as SU3304, it is preferable to carry out heating degassing at a temperature lower than or exceeding the sensitized region of the stainless steel.
なお、真空封じ込み方法としては、従来のチップ管法又
はろう接法いずれでも可能であるが、内壁又は外壁の材
質がオーステナイト系ステンレス鋼の場合は、チップ管
法では当該ステンレス鋼の鋭敏化領域より低い温度で加
熱脱ガスを行ない、ろう接法では当該鋭敏化領域を越え
る温度で加熱脱ガスを行なうべきである。As for the vacuum confinement method, either the conventional chip tube method or the soldering method can be used, but if the material of the inner or outer wall is austenitic stainless steel, the chip tube method is used because the sensitized region of the stainless steel Thermal degassing should be carried out at a lower temperature, and in brazing processes, the heating degassing should be carried out at a temperature above the sensitization region.
また、内壁と外壁の間の空間には、空気のほか窒素(N
2)、アルゴン(Ar)等の不活性ガスを封入しておく
ことができる。ただ、空気の場合は、空気中の酸素(0
□)により銅箔が酸化されるが、酸素(02)と脱ガス
の主成分である水素(H2)との衝突確率が増えること
により、酸素と水素とが結合して水蒸気(H20)とな
って放出されやすく、活性化の観点からみると、経済的
であるという利点を有している。In addition to air, the space between the inner and outer walls contains nitrogen (N
2) An inert gas such as argon (Ar) can be sealed. However, in the case of air, oxygen in the air (0
□), the copper foil is oxidized, but as the probability of collision between oxygen (02) and hydrogen (H2), which is the main component of degassing, increases, oxygen and hydrogen combine to become water vapor (H20). It has the advantage of being easily released and being economical from the viewpoint of activation.
(作用)
前記第1発明の構成によれば、内壁と外壁の間の真空空
間に残留するガス又は内壁若しくは外壁から遊離するガ
スのうち、水素(H8)は内壁の表面を覆う活性化され
た銅箔に吸収され、窒素(N2)は内壁表面と銅箔の間
に介装されたチタン又はジルコニウムに吸収されるため
、当該真空空間は高真空に保たれて断熱性が維持される
。また、チタン又はジルコニウムは内壁表面と銅箔の間
に介装されているため、何等保持部材を必要としない。(Function) According to the configuration of the first invention, among the gas remaining in the vacuum space between the inner wall and the outer wall or the gas liberated from the inner wall or the outer wall, hydrogen (H8) is activated to cover the surface of the inner wall. Since nitrogen (N2) is absorbed by the copper foil and absorbed by the titanium or zirconium interposed between the inner wall surface and the copper foil, the vacuum space is kept at a high vacuum and its insulation properties are maintained. Further, since titanium or zirconium is interposed between the inner wall surface and the copper foil, no holding member is required.
一方、面記第2発明によれば、第1工程Iで1O−2T
orrのオーダー以上の低真空に予備排気すると、内壁
と外壁の間の伝熱性が低下し断熱性が生じてくるが、l
O−”Torrのオーダー程度では、伝熱性はさほど
損なわれない。On the other hand, according to the second aspect of the invention, 1O-2T in the first step I
Preliminary evacuation to a low vacuum of the order of
On the order of O-'' Torr, the heat conductivity is not significantly impaired.
このため、第2工程■で略400°C以上に加熱する、
炉熱を直接受ける外壁の熱はふく射、伝導。For this reason, in the second step (2), heating to approximately 400°C or higher
The heat of the outer wall that directly receives the furnace heat is radiation and conduction.
対流によりすみやかに内壁に伝わり、内壁は短時間で昇
温する。従って、外壁はもちろん内壁の壁面より吸蔵ガ
スが遊離して脱ガスが十分に、しかも短時間に行なわれ
る。また、内壁が加熱されるに伴い、銅箔及びチタン又
はジルコニウムも加熱されて吸蔵ガスが放出され、活性
化する。It is quickly transmitted to the inner wall by convection, and the temperature of the inner wall rises in a short time. Therefore, the stored gas is liberated from the wall surfaces of the inner wall as well as the outer wall, and degassing is carried out sufficiently and in a short time. Further, as the inner wall is heated, the copper foil and titanium or zirconium are also heated, and the occluded gas is released and activated.
そして、さらに第3工程■で10−4Torrのオーダ
ー以下に排気処理すると、前記内壁又は外壁からの遊離
ガス及び銅箔、チタン又はジルコニウムからの放出ガス
は残留空気とともに外部に排出される。Then, in the third step (3), when exhaust treatment is carried out to a pressure below the order of 10 -4 Torr, the free gas from the inner wall or the outer wall and the gas released from the copper foil, titanium or zirconium are discharged to the outside together with the residual air.
この排気処理を終えた後、第4工程■でチップ管法又は
ろう接法により真空封じ込みを行なうと、高真空の真空
二重構造体が得られるとともに、銅箔およびチタン又は
ジルコニウムがゲッターとして作用し、内壁と外壁の間
の真空空間に残留するガス、又は内壁若しくは外壁から
遊離するガスのうち、水素(H2)は銅箔に吸収され、
窒素(N2)はチタン又はジルコニウムに吸収されて断
熱性が維持される。After completing this evacuation process, vacuum confinement is carried out using the chip tube method or soldering method in the fourth step (2), and a high vacuum vacuum double structure is obtained, and copper foil and titanium or zirconium are used as getters. Among the gases that act and remain in the vacuum space between the inner and outer walls, or the gases liberated from the inner or outer walls, hydrogen (H2) is absorbed by the copper foil,
Nitrogen (N2) is absorbed by titanium or zirconium to maintain thermal insulation.
内壁又は外壁がSUS 304等のオーステナイト系ス
テンレス鋼であり、チップ管法により真空封じ込みを行
なう場合は、第2工程■で当該ステンレス鋼の鋭敏化領
域より低い温度で加熱脱ガスを行なうことにより、鋭敏
化による耐食性の低下の虞れがなくなる。If the inner or outer wall is made of austenitic stainless steel such as SUS 304 and vacuum confinement is performed using the chip tube method, in the second step , there is no risk of deterioration in corrosion resistance due to sensitization.
また、内壁又は外壁がオーステナイト系ステンレス鋼で
あり、ろう接法により真空封じ込みを行なう場合は、第
2工程■で当該ステンレス鋼の鋭敏化領域を越える温度
で加熱脱ガスを行なうことにより、前記チップ管法と同
様耐食性の低下の虞れがなくなる。In addition, if the inner wall or outer wall is made of austenitic stainless steel and vacuum confinement is performed by the brazing method, in the second step As with the chip tube method, there is no risk of deterioration in corrosion resistance.
(実施例) 次に、本発明の実施例を添付図面に従って説明する。(Example) Next, embodiments of the present invention will be described with reference to the accompanying drawings.
i)第1発明の実施例
■第1実施例
第1図は、本発明に係る魔法瓶用の真空二重容器lで、
上部2aと下部2bの2分割に形成しておいたステンレ
ス鋼製の外容器2に、外表面を厚さ16.5μ2重量1
2gの銅箔3aで覆うとともに、厚さ25μ1重量0.
8gのチタン箔3bを巻き込んだステンレス鋼製の内容
器3を挿入して、内容器3と外容器2の上部2aを口部
Yで接合し、さらに、外容器2の上部2aと下部2bf
tX部で接合して、二重壁構造に形成するとともに、外
容器2の底部に排気用のチップ管4を設けたものである
。i) First embodiment of the invention ■First embodiment Fig. 1 shows a vacuum double container l for a thermos flask according to the present invention.
A stainless steel outer container 2 is formed into two parts, an upper part 2a and a lower part 2b, and the outer surface has a thickness of 16.5μ2 and a weight of 1
It is covered with a 2g copper foil 3a, and the thickness is 25μ1 and the weight is 0.
Insert the stainless steel inner container 3 wrapped with 8g of titanium foil 3b, join the inner container 3 and the upper part 2a of the outer container 2 at the mouth Y, and then connect the upper part 2a and the lower part 2bf of the outer container 2.
They are joined at the tX portion to form a double wall structure, and a chip pipe 4 for exhaust is provided at the bottom of the outer container 2.
なお、チップ管4と対抗する内容器3の底外面の中央部
は銅箔3aで覆われないで露出されてい、る。Note that the central part of the bottom outer surface of the inner container 3, which faces the chip tube 4, is not covered with the copper foil 3a and is exposed.
そして、外容器2と内容器3の間の空間部は、チップ管
4を介して加熱排気処理するとともに、銅箔3a及びチ
タン箔3bを活性化させた後、チップ管4を挟み切るこ
とにより真空封じ込みされている。Then, the space between the outer container 2 and the inner container 3 is heated and exhausted through the chip tube 4, and after activating the copper foil 3a and the titanium foil 3b, the chip tube 4 is sandwiched. Contained in vacuum.
以上の構成からなる真空二重容器lにおいて、製造時に
チップ管4より排気されないで外容器2と内容器3の間
の真空空間5に残留するガス、又は真空封じ込み後に外
容器2若しくは内容器3から遊離するガスのうち、水素
(H2)は活性化された銅箔3aのゲッター作用により
銅箔3aに吸収される。また、窒素(N、)は活性化さ
れたチタン箔3bのゲッター作用によりチタン箔3bに
吸収される。このため、外容器2と内容器3の間の真空
空間5は高真空に保たれ、断熱性が維持される。In the vacuum double container l having the above configuration, gas that is not exhausted from the chip tube 4 during manufacturing and remains in the vacuum space 5 between the outer container 2 and the inner container 3, or gas that remains in the vacuum space 5 between the outer container 2 and the inner container 3 after vacuum sealing. Among the gases liberated from the copper foil 3a, hydrogen (H2) is absorbed by the copper foil 3a due to the getter action of the activated copper foil 3a. Further, nitrogen (N, ) is absorbed into the titanium foil 3b by the getter action of the activated titanium foil 3b. For this reason, the vacuum space 5 between the outer container 2 and the inner container 3 is kept at a high vacuum, and its insulation properties are maintained.
■第2実施例
第2図、第3図は、本発明の他の実施例に係る魔法瓶用
の二重容器1aで、前記二重容器lの外容器2のチップ
管4の替わりに、開口部4aを形成して、該開口部4a
に中央に排気口6を有する排気口縁部材7を嵌合して接
合し、当該排気口6に排気口閉塞部材8をろう材9を介
して設置し、外容器2と内容器3の間の空間部は開口部
4aを介して加熱排気処理した後、ろう材9を溶融させ
て開口部4aを排気口閉塞部材8で閉塞することにより
真空封じ込みした以外は実質的に同一であり、対応する
部分には同一番号を付して説明を省略する。■Second Embodiment FIGS. 2 and 3 show a double container 1a for a thermos flask according to another embodiment of the present invention, in which the tip tube 4 of the outer container 2 of the double container 1 is replaced with an opening. The opening 4a is formed by forming a portion 4a.
An exhaust port edge member 7 having an exhaust port 6 in the center is fitted and joined to the exhaust port 6, and an exhaust port closing member 8 is installed on the exhaust port 6 with a brazing material 9 interposed between the outer container 2 and the inner container 3. The space is substantially the same except that after heating and exhausting through the opening 4a, the brazing material 9 is melted and the opening 4a is closed with an exhaust port closing member 8 to seal it in vacuum. Corresponding parts are given the same numbers and explanations are omitted.
以上の構成からなる真空二重容器1aにおいて、銅箔3
a及びチタン箔3bは、前記第1実施例と同様、ゲッタ
ーとして作用するため、外容器2と内容器3の間の真空
空間5は高真空に保たれ、断熱性が維持される。In the vacuum double container 1a having the above configuration, the copper foil 3
As in the first embodiment, the titanium foil 3b acts as a getter, so the vacuum space 5 between the outer container 2 and the inner container 3 is kept at a high vacuum and the heat insulation properties are maintained.
■第3実施例
第4図は凍結防止用の給水パイプ等に用いられる真空二
重パイプを示し、概略、給水パイプlOと、外筒11と
、連結部材13.14とで構成されている。(3) Third Embodiment FIG. 4 shows a vacuum double pipe used as a water supply pipe for anti-freezing purposes, and is generally composed of a water supply pipe 10, an outer cylinder 11, and connecting members 13 and 14.
給水パイプlOは内径22mm、厚さl+a+++のス
テンレスパイプで、外筒11が外装される部分は銅m
l Oaにより被覆されるとともに、給水パイプlOと
銅箔10aめ間にチタン箔10bが巻き込まれている。The water supply pipe IO is a stainless steel pipe with an inner diameter of 22 mm and a thickness of l+a+++, and the part where the outer cylinder 11 is sheathed is made of copper.
A titanium foil 10b is wrapped between the water supply pipe lO and the copper foil 10a.
なお、外筒11とのギャップを一定に保持するとともに
、外筒11と給水パイプ10との熱接触をできるだけ防
止するようにした適宜スペーサを設けてもよい。外筒1
1は内径42mm。Note that an appropriate spacer may be provided to maintain a constant gap with the outer cylinder 11 and to prevent thermal contact between the outer cylinder 11 and the water supply pipe 10 as much as possible. Outer cylinder 1
1 has an inner diameter of 42mm.
厚さ1.2mmのステンレスパイプで、給水パイプlO
に外装されるようになっており、上流側の外周部には銅
製のチップ管12が取り付けである。Water supply pipe lO with 1.2mm thick stainless steel pipe
A copper tip tube 12 is attached to the outer periphery on the upstream side.
連結部材13.14はステンレス材で形成された断面コ
字状のリング部材で、給水パイプlOに挿通されて給水
パイプ10の外面と外筒llの端部に全周溶接され、給
水パイプ10と外筒11の間の空間部を蓋するようにな
っている。The connecting members 13 and 14 are ring members made of stainless steel and having a U-shaped cross section, and are inserted into the water supply pipe 1O and welded all around to the outer surface of the water supply pipe 10 and the end of the outer cylinder 11, and are connected to the water supply pipe 10. The space between the outer cylinders 11 is covered.
そして、この空間部はチップ管12を介して加熱排気処
理するとともに、銅箔10a及びチタン箔10bを活性
化させた後、チップ管12を挟み切ることにより真空封
じ込みされている。Then, this space is heated and evacuated through the chip tube 12, and after activating the copper foil 10a and the titanium foil 10b, the chip tube 12 is sandwiched and sealed in a vacuum.
また、外筒11の両端及び連結部材13.14の外側に
ステンレス材からなるキャップ15.16が夫々装着さ
れ、該キャップ15.16と連結部材13.14との間
にシール剤17.17が夫々注入されるとともに、キャ
ップ16の下流側と別のキャップ18とで前記チップ管
12を覆い、適宜シール剤等で封止されている。なお、
図示するように、チップ管12をキャップ19で覆い、
その内部にシール剤17を充填してもよい。Further, caps 15.16 made of stainless steel are attached to both ends of the outer cylinder 11 and the outside of the connecting member 13.14, and a sealant 17.17 is applied between the caps 15.16 and the connecting member 13.14. While being injected, the tip tube 12 is covered with the downstream side of the cap 16 and another cap 18, and is appropriately sealed with a sealant or the like. In addition,
As shown, the tip tube 12 is covered with a cap 19,
A sealant 17 may be filled inside it.
以上の構成からなる真空二重パイプにおいて、銅′f3
10 a及びチタン箔lObは前記第1実施例と同様、
ゲッターとして作用するため、給水パイプlOと外筒1
1の間の真空空間20は高真空に保たれ、断熱性が維持
される。In the vacuum double pipe with the above configuration, copper 'f3
10a and titanium foil lOb are the same as in the first embodiment,
In order to act as a getter, the water supply pipe lO and the outer cylinder 1
The vacuum space 20 between the parts 1 and 1 is kept at a high vacuum and maintains heat insulation.
■第4実施例
前記第3実施例に係る真空二重パイプにおいて、チップ
管12を挟み切って真空封じ込みする替わりに、前記第
2実施例のように開口部を形成し、該開口部を閉塞部材
で閉塞してろう接した。■Fourth Embodiment In the vacuum double pipe according to the third embodiment, instead of sandwiching the chip tube 12 and sealing it in vacuum, an opening is formed as in the second embodiment, and the opening is closed. It was closed with a closing member and soldered.
この場合においても、銅箔10a及びチタン箔10bの
ゲッター作用により給水パイプ10と外筒11の間の真
空空間20は高真空に保たれ、断熱性が維持される。Even in this case, the vacuum space 20 between the water supply pipe 10 and the outer cylinder 11 is kept at a high vacuum due to the getter action of the copper foil 10a and the titanium foil 10b, and the insulation is maintained.
ii)第2発明の実施例
■第1実施例
前記第1図に示すような真空二重容器lを製造するには
、まず、外容器2と、外表面を銅箔3aで覆うとともに
チタン箔3bを巻き込んだ内容器3とで二重壁構造に形
成し、この二重容器lを加熱炉に入れてチップ管4を真
空ポンプに接続する。ii) Second Embodiment of the Invention First Embodiment In order to manufacture the vacuum double container l as shown in FIG. 3b is formed into a double-walled structure with the inner container 3, and the double-walled container 1 is placed in a heating furnace and the chip tube 4 is connected to a vacuum pump.
そして、第7図に示すように、第1工程21で、内容器
3と外容器2の間の空間5を予備排気してl X l
O−”I”orrの低真空にする。このとき、チップ管
4と対向する内容器3の底外面は銅箔3aで覆われてい
ないので、排気処理中当該銅箔3aが吸い上げられるこ
とはない。Then, as shown in FIG. 7, in a first step 21, the space 5 between the inner container 3 and the outer container 2 is preliminarily evacuated to
Create a low vacuum of O-"I"orr. At this time, since the bottom outer surface of the inner container 3 facing the chip tube 4 is not covered with the copper foil 3a, the copper foil 3a is not sucked up during the exhaust process.
この低真空状態のまま第2工程22で、400〜450
°Cに加熱する。このとき、炉熱を直接受けて加熱され
た外容器2の熱は、ふく射熱と、口部Yの熱伝導と、空
間5内の残留ガスを介して行なわれる対流伝熱とにより
内容器3に伝わる。第1工程21でl X l O−2
Torrの低真空に排気されてはいるが、この程度の真
空度では空間5内の残留ガスによる対流伝熱が支配的と
なり、外容器2から内容器3への伝熱性はさほど損なわ
れない。In the second step 22 in this low vacuum state, 400 to 450
Heat to °C. At this time, the heat of the outer container 2 heated by directly receiving the furnace heat is transferred to the inner container 3 by radiation heat, heat conduction through the mouth Y, and convective heat transfer via the residual gas in the space 5. Conveyed. In the first step 21 l X l O-2
Although the space is evacuated to a low vacuum of Torr, convective heat transfer by the residual gas in the space 5 becomes dominant at this level of vacuum, and the heat transfer from the outer container 2 to the inner container 3 is not significantly impaired.
このため、外容器2の熱はすみやかに内容器3に伝わり
、内容器3はlO〜20分程度で昇温する。Therefore, the heat of the outer container 2 is quickly transferred to the inner container 3, and the temperature of the inner container 3 rises in about 10 to 20 minutes.
従って、外容器2はもちろん内容器3の外表面より、吸
蔵ガスが空間5内に遊離して脱ガスが十分に、しかも短
時間に行なわれる。また、この内容器3か加熱されると
同時に銅箔3a及びチタン箔3bも加熱されて活性化し
、水蒸気(HzO)、窒素(N2)、二酸化炭素(CO
z)、−酸化炭素(CO)等が銅箔3a及びチタン箔3
bの表面より放出される。Therefore, the stored gas is liberated into the space 5 from the outer surface of the inner container 3 as well as the outer container 2, and degassing is carried out sufficiently and in a short time. Furthermore, at the same time as this inner container 3 is heated, the copper foil 3a and titanium foil 3b are also heated and activated, producing water vapor (HzO), nitrogen (N2), carbon dioxide (CO
z), -carbon oxide (CO), etc. are present in the copper foil 3a and titanium foil 3
emitted from the surface of b.
なお、この第2工程22における加熱はステンレス鋼の
鋭敏化領域より低い温度で行なわれるため、鋭敏化によ
る耐食性の低下の虞れはない。Note that since the heating in this second step 22 is performed at a temperature lower than the sensitized region of the stainless steel, there is no risk of deterioration in corrosion resistance due to sensitization.
そして、この第2工程22の温度を維持したまま、第3
工程23でさらに排気してlXl0−’TO「「の高真
空にする。このとき、空間5内の残留ガス、内容器3又
は外容器2からの遊離ガス及び銅箔3a若しくはチタン
箔3bからの放出ガスは、チップ管4を通って外部に排
出される。Then, while maintaining the temperature of this second step 22, the third step
In step 23, the gas is further evacuated to create a high vacuum of lXl0-'TO. The released gas is exhausted to the outside through the tip tube 4.
次に、この高真空状態を維持したまま第4工程24で冷
却し、第5工程25でチップ管4をピンチオフして真空
封じ込みを行なう。Next, while maintaining this high vacuum state, it is cooled in a fourth step 24, and in a fifth step 25, the chip tube 4 is pinched off to perform vacuum confinement.
以上の工程により製造された真空二重容器は、第2工程
22で外容器2はもちろん内容器3からも十分に脱ガス
か行なわれているため、真空封じ込み後の吸蔵ガスの遊
離が少なく、断熱性が安定化する。In the vacuum double container manufactured by the above process, gas is sufficiently degassed not only from the outer container 2 but also from the inner container 3 in the second step 22, so that there is little release of occluded gas after vacuum sealing. , the insulation is stabilized.
また、第2工程22で、銅箔3aの活性化により水蒸気
0tzo)の形で水素(N3)等が放出され、またチタ
ン箔3bの活性化により窒素(N2)が放出されている
ため、真空封じ込み後の銅箔3a及びチタン箔3bはガ
ス吸収作用すなわちゲッター作用を有する。従って、真
空封じ込み後に空間5内に残留するガス、又は内容器3
若しくは外容器2から遊離するガスのうち、水素(N7
)は銅箔3aに吸収され、窒素(N2)はチタン箔3b
に吸収されるため、断熱性が低下することはない。In addition, in the second step 22, hydrogen (N3) etc. are released in the form of water vapor by activation of the copper foil 3a, and nitrogen (N2) is released by activation of the titanium foil 3b, so the vacuum The copper foil 3a and titanium foil 3b after being sealed have a gas absorption function, that is, a getter function. Therefore, the gas remaining in the space 5 after vacuum confinement or the inner container 3
Or out of the gas liberated from the outer container 2, hydrogen (N7
) is absorbed by the copper foil 3a, and nitrogen (N2) is absorbed by the titanium foil 3b.
Since it is absorbed by
なお、この銅箔3aは内容器3aからのふく射伝熱を防
止する作用を奏することは言うまでもない。It goes without saying that this copper foil 3a has the effect of preventing radiation heat transfer from the inner container 3a.
また、チタン箔3bは銅箔3aにより内容器3の外表面
に巻き込まれているため、脱落することはなく、何等保
持部材を必要としない。Further, since the titanium foil 3b is wrapped around the outer surface of the inner container 3 by the copper foil 3a, it will not fall off and no holding member is required.
■第2実施例
前記第2図に示すような真空二重容器1aを製造するに
は、まず二重容器1aを倒立させて、第3図に示すよう
に、排気口6の外周縁に環状波形のろう材9を設置し、
このろう材9の上に排気口閉塞部材8を載せた後、真空
加熱炉中にセットする。■Second Embodiment To manufacture the double vacuum container 1a as shown in FIG. Install the corrugated brazing material 9,
After the exhaust port closing member 8 is placed on the brazing filler metal 9, it is set in a vacuum heating furnace.
そして、第8図に示すように、第1工程31で前記第1
実施例に係る製造方法の第1工程21と同様、I X
I O−”Torrの低真空に予備排気し、第2工程3
2で850〜950°Cに加熱して銅箔3a及びチタン
箔3bを活性化するとともに脱ガスを行なった後、第3
工程33でl X l O−’Tor「の高真空に排気
する。次に、この高真空状態を保ったまま第4工程34
でtooo℃前後に加熱すると、ろう材9が溶融して排
気口閉塞部材8が重力の作用により排気口縁部材7の上
に降下して排気口6を閉塞する。続いて、第5工程35
で急冷するとろう材9が急激に凝固し、内外内容器間の
空間5を高真空に維持したまま排気口縁部材7と排気口
閉塞部材8の間が、第5図に示すように完全に封止され
る。Then, as shown in FIG. 8, in a first step 31, the first
Similar to the first step 21 of the manufacturing method according to the example, I
Preliminarily evacuate to a low vacuum of I O-” Torr, and perform the second step 3.
After heating the copper foil 3a and the titanium foil 3b to 850 to 950°C in step 2 and degassing them,
In step 33, the vacuum is evacuated to a high vacuum of lXlO-'Tor.Next, while maintaining this high vacuum state, a fourth step 34 is carried out.
When heated to around 10.degree. C., the brazing filler metal 9 melts and the exhaust port closing member 8 descends onto the exhaust port edge member 7 due to the action of gravity to close the exhaust port 6. Next, the fifth step 35
When rapidly cooled, the brazing filler metal 9 rapidly solidifies, and the gap between the exhaust port edge member 7 and the exhaust port closing member 8 is completely closed, as shown in FIG. 5, while maintaining the space 5 between the inner and outer containers at a high vacuum. sealed.
この第2実施例に係る製造方法では、第1工程31でl
X l O−”Torrの低真空に予備排気されてい
るため1.前記第1実施例に係る製造方法ど同様、第2
工程32における加熱脱ガスが十分に、しかも短時間に
行なわれるとともに、第3工程33における真空排気処
理時間も短くて済む。In the manufacturing method according to this second embodiment, in the first step 31, l
1. As in the manufacturing method according to the first embodiment, the second
The heating and degassing in step 32 can be carried out sufficiently and in a short time, and the evacuation treatment time in third step 33 can also be shortened.
また、第2工程32における加熱により銅箔3a及びチ
タン箔3bが活性化して前記第1実施例に係る製造方法
と同様、水蒸気(H2O)、窒素(N、)等が放出され
るため、銅箔3a及びチタン箔3bは真空封じ込み後に
ゲッターとして作用し、空間5内の残留ガス及び内容器
3又は外容器2から遊離するガスが吸収され、断熱性が
低下することはない。Further, the heating in the second step 32 activates the copper foil 3a and the titanium foil 3b, and as in the manufacturing method according to the first embodiment, water vapor (H2O), nitrogen (N, ), etc. are released. The foil 3a and the titanium foil 3b act as a getter after vacuum sealing, and the residual gas in the space 5 and the gas released from the inner container 3 or the outer container 2 are absorbed, so that the heat insulation properties do not deteriorate.
さらに、第2工程32でステンレス鋼の鋭敏化領域を越
える温度で加熱して第5工程35で急冷するため、ステ
ンレス鋼が鋭敏化領域にさらされる時間が著しく短く、
鋭敏化して耐食性が低下する虞れはない。Furthermore, since the stainless steel is heated at a temperature exceeding the sensitization region in the second step 32 and rapidly cooled in the fifth step 35, the time that the stainless steel is exposed to the sensitization region is significantly shortened.
There is no risk of deterioration of corrosion resistance due to sensitization.
なお、前記第1.第2実施例では、第1工程21.31
においてl X l O−”Torrに予備排気したが
、この数値に限定されるものではなく、10−”Tor
rのオーダーからl 00 Torr程度の低真空に排
気すればよい。また、第3工程23.33における真空
度も、l X 10−4Torrに限定されるものでは
なく、I O−4Torrのオーダーあるいはそれ以下
の高真空領域であればよい。In addition, the above-mentioned No. 1. In the second embodiment, the first step 21.31
Although the pre-evacuation was carried out to l X l O-" Torr, it is not limited to this value.
It is sufficient to evacuate to a low vacuum of the order of r to l 00 Torr. Further, the degree of vacuum in the third step 23.33 is not limited to l x 10-4 Torr, but may be in a high vacuum region of the order of I O-4 Torr or lower.
■第3実施例
前記第4図に示すような真空二重パイプを製造するには
、まず第5図に示すように、給水パイプlOの下流側に
連結部材13をそのコ字状内面を下流側に向けて外装し
、矢印Aで指し示す点を全周溶接し、外筒11の上流側
端部に連結部材14をそのコ字状内面を上流側に向けて
内装し、矢印Bで指し示す点を全周溶接する。■Third Embodiment To manufacture a vacuum double pipe as shown in FIG. 4, first, as shown in FIG. The connecting member 14 is attached to the upstream end of the outer cylinder 11 with its U-shaped inner surface facing upstream, and the point indicated by arrow A is welded all around. Weld the entire circumference.
そして、給水パイプlOの外表面を銅箔10aで覆い、
この銅箔tOaと給水パイプ10の間にチタン箔10b
を巻き込んでおく。次に、吸水パイプIOの上流側から
外筒11を外装し、矢印C1Dで指し示す点を全周溶接
し、給水パイプlOの外側に、外筒11と連結部材13
.14で囲まれた空間部を形成する。なお、給水パイプ
IOに外筒11を外装する際、最終位置近くまで給水バ
イブlO1外筒llの先端は夫々連結部材14.13と
接触しないため、無理なく容易に行なうことができる。Then, cover the outer surface of the water supply pipe 1O with a copper foil 10a,
Titanium foil 10b is placed between this copper foil tOa and the water supply pipe 10.
Involve them. Next, the outer cylinder 11 is sheathed from the upstream side of the water suction pipe IO, and the point indicated by the arrow C1D is welded all around, and the outer cylinder 11 and the connecting member 13 are attached to the outside of the water supply pipe IO.
.. A space surrounded by 14 is formed. It should be noted that when mounting the outer cylinder 11 on the water supply pipe IO, the tip of the water supply vibrator 1O1 and the outer cylinder 11 do not come into contact with the connecting members 14, 13, respectively, until near the final position, so this can be done easily and without difficulty.
また、給水パイプIOの外面に設けた銅箔10aを損傷
することもない。Further, the copper foil 10a provided on the outer surface of the water supply pipe IO will not be damaged.
次に、給水パイプIOと外筒11の間の空間部の加熱排
気処理及び真空封じ込み処理を行なうが、その方法は前
記第1実施例における方法と同一であり、その作用、効
果も同一であるため、説明を省略する。Next, the space between the water supply pipe IO and the outer cylinder 11 is subjected to heating exhaust treatment and vacuum sealing treatment, but the method is the same as the method in the first embodiment, and the operation and effect are also the same. Therefore, the explanation will be omitted.
この製造過程において、常温状態から炉内に入れて加熱
すると、まず、外筒11の温度が上がり、その後給水パ
イプlOの温度が後を追って上昇していくため、加熱時
にあっては、外筒11の膨張量が大きく、連結部材13
.14の外側、内側は第4図中夫々矢印a、b方向に力
を受けて変形する。In this manufacturing process, when the outer cylinder 11 is placed in a furnace from room temperature and heated, the temperature of the outer cylinder 11 rises, and then the temperature of the water supply pipe 1O rises. 11 has a large expansion amount, and the connecting member 13
.. The outside and inside of 14 are deformed by receiving forces in the directions of arrows a and b in FIG. 4, respectively.
逆に冷却Jこ移ると、外筒11の方が給水パイプ■0よ
りも♀く冷却されるため、冷却時にあっては、外筒11
の収縮量が大きく、前記加熱時とは逆に、連結部材13
.14は夫々矢印a’、b″方向に力を受けて変形する
。On the other hand, when the cooling is transferred, the outer cylinder 11 is cooled more than the water supply pipe ♀, so when cooling, the outer cylinder 11
The amount of shrinkage of the connecting member 13 is large, and contrary to the heating, the connecting member 13
.. 14 are deformed by receiving forces in the directions of arrows a' and b'', respectively.
このように、連結部材13.14は加熱時と冷却時どで
は全く逆方向に力を受けることになるが、連結部材13
.14は、その内リング部及び外り:/グ部に対して中
間の連結部が略直角を為し、両方向に自由度を有するた
め、変形時に無理な応力がかからず破損するようなこと
はない。In this way, the connecting members 13 and 14 receive forces in completely opposite directions during heating and cooling.
.. 14, the intermediate connecting part is approximately perpendicular to the inner ring part and the outer ring part, and has a degree of freedom in both directions, so that it will not be damaged when it is deformed without being subjected to excessive stress. There isn't.
1ii)確認テスト
本発明者らは、本第2発明に係る方法により製造したス
テンレス鋼製真空二重容器の保温性を確認するためのテ
ストを行なった。1ii) Confirmation Test The present inventors conducted a test to confirm the heat retention property of the stainless steel vacuum double container manufactured by the method according to the second invention.
この保温性テストにおいては、表1に示す条件で、本発
明に係る方法により製造したステンレス鋼製真空二重容
器で、内容器を異なる肉厚を有する銅箔で覆うとともに
チタン箔を巻き込んだものを各々5本づつテスト試料と
した。In this heat retention test, under the conditions shown in Table 1, stainless steel vacuum double containers manufactured by the method according to the present invention were used, the inner container was covered with copper foil having different wall thicknesses, and titanium foil was wrapped around the inner container. Five pieces of each were used as test samples.
表1.テスト試料
また、これと比較するため、従来の方法により製造した
ステンレス鋼製真空二重容器の試料として、表2−11
表2−2に示すものを用意した。Table 1. Test sample In addition, for comparison, a sample of a stainless steel vacuum double container manufactured by a conventional method was prepared as shown in Table 2-11.
The materials shown in Table 2-2 were prepared.
表2−2.比較試料(2) なお、いずれの試料もゲッターは使用されていない。Table 2-2. Comparative sample (2) Note that no getter was used in any of the samples.
そして、各試料について、
■ 初期:製造直後、
■ 製造後1週間95°C雰囲気下に置いた後、■ 製
造後2週間(■よりさらに1週間)95°C雰囲気下に
置いた後、
■ 製造後4週間(■よりさらに2週間)95°C雰囲
気下に置いた後、
■ 製造i&3月(■よりさらに2月)95°C雰囲気
下に置いた後、
■ 製造(隻4月(■よりさらに1月)95°C雰囲気
下においた後、
の6段階において、95°Cの熱湯を内容器1に入れて
20℃雰囲気中での24時間後のその湯の温度を測定す
ることにより、保温性をテストした。For each sample, ■ Initial stage: Immediately after production, ■ After being placed in a 95°C atmosphere for one week after production, ■ After being placed in a 95°C atmosphere for two weeks after production (an additional week from ■), ■ After being placed in a 95°C atmosphere for 4 weeks after manufacture (an additional 2 weeks from ■), ■ After being placed in a 95°C atmosphere in Manufacturing I & March (further February from ■), ■ Manufacturing (in April (■ Furthermore, after placing it in a 95°C atmosphere (January 1), in the 6 steps of , 95°C hot water was put into the inner container 1 and the temperature of the water was measured after 24 hours in a 20°C atmosphere. , tested for heat retention.
このテスト結果のうち、本発明のテスト試料のものを表
3に、従来の比較試料のものを第9a図〜第9d図及び
第10a図〜第10d図に示す。第9a図〜第9d図、
第10a図〜第10d図において、温度曲線の上下によ
って95°Cの熱湯の24時間保温後の温度降下、すな
わち24時間保温力の大小を知ることができ、温度曲線
の減少勾配によってエージングによる真空度の低下、す
なわち真空維持力の大小を知ることができる。また、同
一種類の材料、例えばA!、A3.A、について各図を
比較することによって製造時の排気時間の長短の影響を
知ることができる。Among the test results, those of the test sample of the present invention are shown in Table 3, and those of the conventional comparative sample are shown in FIGS. 9a to 9d and 10a to 10d. Figures 9a to 9d,
In Figures 10a to 10d, the temperature drop after keeping hot water at 95°C for 24 hours, that is, the magnitude of the heat retention ability for 24 hours, can be determined by the top and bottom of the temperature curve, and the decreasing slope of the temperature curve indicates the vacuum due to aging. It is possible to know the decrease in the degree of vacuum maintenance, that is, the magnitude of the vacuum maintenance force. Also, the same type of material, for example A! , A3. By comparing each figure for A, it is possible to know the influence of the evacuation time during manufacturing.
(以下、余白)
表3.テスト結果
本テスト結果により保温性及び排気時間に関する次の事
項が確認された。(Hereafter, blank space) Table 3. Test Results Based on the test results, the following items regarding heat retention and exhaust time were confirmed.
■ 表3中の各試料I、■の平均値マから明らかなよう
に、真空維持力は、試料Iでは1週間後に1°C低下し
、試料■では1週間後に0.8℃低下、2週間後にさら
に0.2℃低下するだけで、その後は上昇傾向にある。■ As is clear from the average value of each sample I and ■ in Table 3, the vacuum maintaining force decreased by 1°C after one week for sample I, decreased by 0.8°C after one week for sample ■, and decreased by 0.8°C after one week for sample I. After a week, the temperature decreases by only 0.2°C, and thereafter it tends to rise.
従って、本発明に係る方法によれば、真空葬持力は横這
いで、はとんど低下することはない。Therefore, according to the method according to the present invention, the vacuum holding power remains constant and does not decrease at all.
また、試料■は試料Iより温度が若干高いことから、銅
箔が薄いほど初期においては24時間保温力がよいこと
を示している。これは、両者の排気時間が同一であるこ
とからすると、銅箔が薄いほど内容器3との密着度が高
くて熱の吸収が早く、真空排気処理時の活性化によるガ
スの放出が十分に行なわれ、真空封じ込み後のガス吸収
能力が高くなっているものと推測される。In addition, since the temperature of sample ① was slightly higher than that of sample I, this indicates that the thinner the copper foil, the better the heat retention ability for 24 hours in the initial stage. This is because, considering that the evacuation time for both is the same, the thinner the copper foil is, the higher the adhesion to the inner container 3, the faster the heat absorption, and the more gas is released due to activation during the evacuation process. It is presumed that the gas absorption capacity after vacuum confinement is increased.
■ 表3中試料■と排気方式及びチタン箔を除き、同条
件である第9c図の試料B、とを比較すると明らかなよ
うに、試料■の真空維持力の低下はl′C程度であるの
に対し、試料B、の真空維持力は2週間後に約3°C低
下している。従って、本発明に係る方法によれば、従来
の方法と比べて真空維持力が向上している。■ Comparing sample ■ in Table 3 with sample B in Figure 9c, which is under the same conditions except for the exhaust system and titanium foil, it is clear that the decrease in vacuum maintaining power of sample ■ is about 1'C. On the other hand, the vacuum maintaining power of sample B decreased by about 3°C after two weeks. Therefore, according to the method according to the present invention, the vacuum maintaining ability is improved compared to the conventional method.
また、試料Iでは曲線の底のピークが1週間後にあるの
に対し、試料A、では2週間後である。Further, in Sample I, the bottom peak of the curve is after one week, whereas in Sample A, it is after two weeks.
このように、早期にピークが来るのは、吸蔵ガスの遊離
が少ないこと及び/又は銅箔及びチタン箔のゲッター作
用が大であることを示している。In this way, the early peak indicates that the release of the stored gas is small and/or that the getter action of the copper foil and titanium foil is large.
■ 表゛3中試料■と第9a図の試料B1との比較する
と明らかなように、両者は同程度の24時間保温力を有
し、かつ、真空維持力も横這い傾向にあるが、試料Iの
排気時間が50(lo+40)分であるのに対し、試料
B1の排気時間は100分である。従って、本発明に係
る方法によれば、従来の方法に比べて50分の排気時間
の短縮が可能である。■ As is clear from the comparison between sample ■ in Table 3 and sample B1 in Figure 9a, both have the same 24-hour heat retention ability, and the vacuum maintenance ability tends to remain the same, but sample I While the evacuation time is 50 (lo+40) minutes, the evacuation time of sample B1 is 100 minutes. Therefore, according to the method according to the present invention, the evacuation time can be reduced by 50 minutes compared to the conventional method.
■ 第9a図〜第9d図は、本発明とは異なる製造方法
により製造した試料のものではあるが、内容器を銅箔で
覆った試料A2〜A、、B、〜B4があるため、銅箔の
ゲッター作用による効果を知ることができる。すなわち
、
イ、内容器を銅箔で覆ったものは、その他のものに比べ
て24時間保温力、真空維持力共に格段に優れている。■ Figures 9a to 9d are samples manufactured by a manufacturing method different from that of the present invention, but since there are samples A2 to A, , B, and B4 whose inner containers were covered with copper foil, You can see the effect of the getter action of the foil. That is, (a) those whose inner containers are covered with copper foil have much better heat retention ability for 24 hours and vacuum maintenance ability than other types.
口、排気時間が長いと真空維持力は横這いとなり、低下
の度合が少ない。また、排気時間が短いと、真空維持力
は不安定となり、製造後2週間までは低下し、その後は
向上する傾向にある。これは、排気時間が短いときは内
容器又は外容器及び銅箔の壁面の脱ガスが不十分である
ため、真空封じ込み直後に吸蔵ガスの遊離量がゲッター
としての銅箔のガス吸収量より大きく、ゲッター作用が
追い付かないからであり、その後吸蔵ガスが離脱してし
まうと銅箔のゲッター作用が優位どなりガス吸収が加速
されるからである。However, if the evacuation time is long, the vacuum maintenance power remains flat and the degree of decrease is small. Furthermore, if the evacuation time is short, the vacuum maintenance power becomes unstable, tends to decrease for up to two weeks after manufacture, and then improves thereafter. This is because when the evacuation time is short, degassing of the inner or outer container and the walls of the copper foil is insufficient, so the amount of released gas released immediately after vacuum confinement is greater than the amount of gas absorbed by the copper foil as a getter. This is because the getter action cannot catch up with the large amount of gas, and if the occluded gas is subsequently released, the getter action of the copper foil becomes dominant and gas absorption is accelerated.
■ 第10a図〜第10d図は、本発明とは異なる製造
方法により製造した試料のものではあるが、この試料F
、〜F、、G、〜G、は内容器をアルミ箔で覆ったもの
であるため、第9a図〜第9d図に示す内容器を銅箔で
覆った試料A2〜A、、B、−B4と比較することによ
り、銅箔のゲッター作用による効果を知ることができる
。すなわち、イ、同じ排気時間のもの、例えば第9a図
中の試料B、と第10a図中の試料B、とを比べると、
明らかなように、内容器を銅箔で覆ったものはアルミ箔
で覆ったものより24時間保温力が良く、また真空維持
力も安定している。■ Figures 10a to 10d are samples manufactured by a manufacturing method different from the present invention, but this sample F
, ~F, ,G, ~G are inner containers covered with aluminum foil, so samples A2-A, , B, -, in which the inner containers shown in FIGS. 9a to 9d are covered with copper foil, are By comparing with B4, it is possible to know the effect of the getter action of the copper foil. That is, a. Comparing samples with the same evacuation time, for example, sample B in FIG. 9a and sample B in FIG. 10a,
As is clear, the inner container covered with copper foil has better heat retention for 24 hours than the inner container covered with aluminum foil, and has a more stable vacuum maintenance ability.
口、第9a図〜第9d図の試料C2−C,、D、〜D、
はブランク品(メツキも箔もない)を示すものでこれら
の1ケ月以降の復帰傾向は、内容器3からの遊離ガスの
量に対し、外容器2のガス吸収能力か逆転したことを示
唆し、その後の傾きの大きさは、その量の大きさを示唆
している。Mouth, Samples C2-C, D, ~D in Figures 9a to 9d,
indicates a blank product (no plating or foil), and the recovery trend after one month suggests that the gas absorption capacity of the outer container 2 has reversed with respect to the amount of free gas from the inner container 3. , then the magnitude of the slope suggests the magnitude of that quantity.
そこで、第10a図〜第10d図のアルミ箔における逆
転のポイントと傾きの大きさを見ると、前記試料C2〜
C4,D2〜D、と大差ないので、この条件でのアルミ
箔の活性化は、はとんどないと言える。アルミ箔のゲッ
ター作用は期待できない。Therefore, if we look at the point of reversal and the magnitude of the inclination in the aluminum foils shown in Figures 10a to 10d, we can see that the samples C2 to
Since there is not much difference between C4 and D2 to D, it can be said that activation of the aluminum foil under these conditions is unlikely. The getter effect of aluminum foil cannot be expected.
一方、本発明者らは、さらに真空二重パイプについても
確認テストを行なったが、その結果、凍結防止パイプの
上部及び下部を摂氏5°Cの雰囲気に保ち、それらの間
を摂氏−30°Cの低温状態にさらしても、内部の水は
約80時間凍結しないという結果を得た。On the other hand, the inventors further conducted confirmation tests on vacuum double pipes, and as a result, the upper and lower parts of the antifreeze pipe were kept in an atmosphere of 5 degrees Celsius, and the space between them was maintained at -30 degrees Celsius. The results showed that even when exposed to low temperature conditions of C., the water inside did not freeze for about 80 hours.
(発明の効果)
以上の説明から明わかなように、本第1発明によれば、
活性化された銅箔及びチタン又はジルコニウムのゲッタ
ー作用により内壁と外壁の間の真空空間は高真空に保た
れ、断熱性を維持することができる。まl;、チタン材
又はジルコニウム材は銅箔と内壁との間に介装されてい
るため、脱落することはなく、何等保持部材等を必要と
しない。(Effect of the invention) As is clear from the above explanation, according to the first invention,
Due to the getter action of the activated copper foil and titanium or zirconium, the vacuum space between the inner wall and the outer wall is kept at a high vacuum and the insulation properties can be maintained. Also, since the titanium material or zirconium material is interposed between the copper foil and the inner wall, it will not fall off and no holding member or the like is required.
一方、第2発明によれば、高真空に排気する前に、伝熱
性の損なわれない低真空下で加熱して内壁をすみやかに
昇温さ仕るものであるから、特に内壁からの脱ガスが十
分に、しかも短時間に行なわれ、全体的な加熱排気処理
時間が短縮されて製造工程の短縮化が図れるとともに、
断熱性が安定化する。On the other hand, according to the second invention, the temperature of the inner wall is quickly raised by heating it in a low vacuum without impairing heat conductivity before evacuation to a high vacuum. is carried out sufficiently and in a short time, reducing the overall heating and exhaust treatment time and shortening the manufacturing process.
Stabilizes insulation.
また、加熱脱ガス時に内壁の外表面を覆う銅箔及びチタ
ン又はジルコニウムが活性化して吸蔵ガスを放出し、真
空封じ込み後にそれぞれ水素、窒素を吸収するゲッター
として作用するため、高度の断熱性が維持されるととも
に、本来のゲッター材やゲッター材を保持する金具を不
要とすることができ、材料費の低減を図ることができる
。In addition, the copper foil and titanium or zirconium that cover the outer surface of the inner wall are activated during heat degassing and release the stored gas, and after vacuum sealing, they act as getters to absorb hydrogen and nitrogen, respectively, resulting in a high degree of heat insulation. In addition, it is possible to eliminate the need for the original getter material and the metal fittings for holding the getter material, and it is possible to reduce material costs.
第1図はチップ管法で製造される本第1発明に係る二重
容器の断面図、第2図はろう接法で製造される本第1発
明に係る二重容器の断面図、第3図は第2図の部分拡大
断面図、第4図はチップ管法で製造される本第1発明に
係る真空二重パイプの半断面図、第5図は真空二重パイ
プの製造途中の状態を示す半断面図、第6図は本第2発
明に係る金属製真空二重構造体の製造方法による製造工
程を示す図、第7図、第8図は本第2発明のそれぞれチ
ップ管法、ろう接法によるステンレス鋼製真空二重容器
の製造工程を示す図、第9a図〜第9d図、第10a図
〜第10d図は従来の方法により製造された真空二重容
器の保温性に関するテスト結果を示す図である。
l・・・二重容器、 2・・・外容器、 3a・・・
銅箔、3b・・・チタン箔、3・・・内容器、 5・
・・空間。
特 許 出 願 人 象印マホービン株式会社代 理
人 弁理士 青白 葆 はか1名襄9Q図
W9cご
Δ3
ニーうンクブ・イクlし
喰9bC!1
Δり
范9d口
工−ジングフイクル
第100図
工−ジンヅ゛す′イクlし
第10c図
エージ゛ンクブ4クル
范job図
エージ゛〉グサイクル
第10d図
工一ブングサイクルFIG. 1 is a sectional view of the double container according to the first invention manufactured by the chip tube method, FIG. 2 is a sectional view of the double container according to the first invention manufactured by the soldering method, and FIG. The figure is a partially enlarged sectional view of Figure 2, Figure 4 is a half-sectional view of the vacuum double pipe according to the first invention manufactured by the chip tube method, and Figure 5 is a state in the middle of manufacturing the vacuum double pipe. , FIG. 6 is a diagram showing the manufacturing process by the method for manufacturing a metal vacuum double structure according to the second invention, and FIGS. 7 and 8 are the chip tube method of the second invention, respectively. , Figures 9a to 9d, and 10a to 10d show the manufacturing process of a vacuum double container made of stainless steel by the brazing method, and relate to the heat retention of the vacuum double container manufactured by the conventional method. It is a figure showing a test result. l...Double container, 2...Outer container, 3a...
Copper foil, 3b...Titanium foil, 3...Inner container, 5.
··space. Patent applicant Zojirushi Mahobin Co., Ltd. Agent
People Patent Attorney Blue White 葆 Haka 1 Name 9 Q Diagram W 9 C Go Δ 3 Niunkubu Iku l Shikui 9bC! 1 ∆ range 9d machining - job cycle 100th drawing - Jindusu' 100th drawing cycle
Claims (2)
の間の空間を排気処理して真空封じ込みした金属製真空
二重構造体において、 内壁の表面を活性化された銅箔で覆うとともに、内壁表
面と銅箔の間に活性化されたチタン又はジルコニウムを
介装したことを特徴とする金属製真空二重構造体。(1) In a metal vacuum double structure in which an inner wall and an outer wall form a double wall structure, and the space between the inner and outer walls is evacuated and sealed in a vacuum, the surface of the inner wall is made of activated copper. A metal vacuum double structure characterized by being covered with foil and having activated titanium or zirconium interposed between the inner wall surface and the copper foil.
の間の空間を排気処理して真空封じ込みする金属製真空
二重構造体の製造方法において、内壁の表面を銅箔で覆
うとともに、内壁表面と銅箔の間にチタン又はジルコニ
ウムを介装して、内壁と外壁との間の空間を10^−^
2Torrのオーダー以上の低真空に予備排気し、略4
00℃以上の温度で所定時間加熱して脱ガスを行なった
後、当該加熱温度を維持したまま10^−^4Torr
のオーダー以下の高真空に排気処理して真空封じ込みす
ることを特徴とする金属製真空二重構造体の製造方法。(2) In a method for manufacturing a metal vacuum double structure in which an inner wall and an outer wall form a double wall structure, and the space between the inner wall and the outer wall is evacuated and sealed in a vacuum, the surface of the inner wall is coated with copper foil. At the same time, titanium or zirconium is interposed between the inner wall surface and the copper foil to reduce the space between the inner wall and the outer wall by 10^-^
Preliminarily evacuate to a low vacuum of the order of 2 Torr or more, and
After degassing by heating at a temperature of 00℃ or higher for a predetermined period of time, the heating temperature is maintained at 10^-^4Torr.
1. A method for manufacturing a metal vacuum double structure, characterized by evacuation treatment to a high vacuum of the order of magnitude or less and vacuum sealing.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63098855A JPH0698108B2 (en) | 1988-04-20 | 1988-04-20 | Metal vacuum double structure and manufacturing method thereof |
US07/340,644 US4997124A (en) | 1988-04-20 | 1989-04-20 | Vacuum-insulated, double-walled metal structure and method for its production |
KR1019890005198A KR920009830B1 (en) | 1988-04-20 | 1989-04-20 | Vacuum-insulated, double walled metal structure and method for its production |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63098855A JPH0698108B2 (en) | 1988-04-20 | 1988-04-20 | Metal vacuum double structure and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01268521A true JPH01268521A (en) | 1989-10-26 |
JPH0698108B2 JPH0698108B2 (en) | 1994-12-07 |
Family
ID=14230847
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63098855A Expired - Fee Related JPH0698108B2 (en) | 1988-04-20 | 1988-04-20 | Metal vacuum double structure and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0698108B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04108047U (en) * | 1991-02-26 | 1992-09-18 | 象印マホービン株式会社 | Metal vacuum insulated double wall structure |
JP2003502395A (en) * | 1999-06-23 | 2003-01-21 | エリエミ マテリアイス レフラターリオス リミタダ | Biohydrolysis apparatus and method for biomass |
JP2003065490A (en) * | 2001-08-29 | 2003-03-05 | Zojirushi Corp | Method of manufacturing heat insulator |
CN113996929A (en) * | 2021-11-30 | 2022-02-01 | 天津渤化工程有限公司 | Large-diameter high-pressure zirconium coating pressure vessel and manufacturing method and application thereof |
JP2022513172A (en) * | 2018-11-30 | 2022-02-07 | コンセプト グループ エルエルシー | Fitting structure |
-
1988
- 1988-04-20 JP JP63098855A patent/JPH0698108B2/en not_active Expired - Fee Related
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04108047U (en) * | 1991-02-26 | 1992-09-18 | 象印マホービン株式会社 | Metal vacuum insulated double wall structure |
JP2003502395A (en) * | 1999-06-23 | 2003-01-21 | エリエミ マテリアイス レフラターリオス リミタダ | Biohydrolysis apparatus and method for biomass |
JP4870297B2 (en) * | 1999-06-23 | 2012-02-08 | エリエミ マテリアイス レフラターリオス リミタダ | Biohydrolysis apparatus and method for biomass |
JP2003065490A (en) * | 2001-08-29 | 2003-03-05 | Zojirushi Corp | Method of manufacturing heat insulator |
JP2022513172A (en) * | 2018-11-30 | 2022-02-07 | コンセプト グループ エルエルシー | Fitting structure |
CN113996929A (en) * | 2021-11-30 | 2022-02-01 | 天津渤化工程有限公司 | Large-diameter high-pressure zirconium coating pressure vessel and manufacturing method and application thereof |
CN113996929B (en) * | 2021-11-30 | 2022-07-22 | 天津渤化工程有限公司 | Large-diameter high-pressure zirconium coating pressure vessel and manufacturing method and application thereof |
Also Published As
Publication number | Publication date |
---|---|
JPH0698108B2 (en) | 1994-12-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4997124A (en) | Vacuum-insulated, double-walled metal structure and method for its production | |
CN109396631B (en) | A hot isostatic pressing diffusion bonding method of tungsten/transition layer/stainless steel | |
CA2152833A1 (en) | Vacuum insulation panel and method for manufacturing | |
JP5120582B2 (en) | Insulated container | |
FR2504044A1 (en) | METHOD FOR MANUFACTURING A COMPOSITE TUBULAR FITTING TO SUPPORT NON-WELDING METAL TUBES BETWEEN THEM AND A COUPLING THUS OBTAINED | |
JPH01268521A (en) | Metallic vacuum double structure and manufacture thereof | |
JPH11285775A (en) | Sealing body composed of aluminum or aluminum alloy member and substrate holder in semiconductor manufacturing equipment or thin display manufacturing equipment and manufacture thereof | |
JP4629843B2 (en) | Semiconductor laser module and manufacturing method and system thereof | |
JPH01297022A (en) | Metallic vacuum double structure body and manufacture | |
JP5049468B2 (en) | Insulated container and manufacturing method thereof | |
JP3345852B2 (en) | Base holder for semiconductor manufacturing apparatus and method of manufacturing the same | |
JPH01303112A (en) | Manufacture of metallic vacuum double structure | |
CN100453957C (en) | Flat-plate heat pipe and manufacturing method and packaging unit thereof | |
JP2818430B2 (en) | Manufacturing method of metal thermos | |
JP4185690B2 (en) | Metal vacuum structure | |
JPS61106120A (en) | Production of vacuum double container made of stainless steel | |
JPH01317413A (en) | Vacuum heat insulating double vessel and manufacture | |
JP2002280152A (en) | Method of manufacturing metal structure body for heating and/or cooling | |
JPH0517001Y2 (en) | ||
JPH0314112Y2 (en) | ||
JP4746899B2 (en) | Method for manufacturing an insulated container | |
JP2002126851A (en) | Manufacturing method for heat plate stuck with metal member | |
JP3520180B2 (en) | Manufacturing method of vacuum structure | |
KR820000649B1 (en) | Process for producing a metall vacuum bottle | |
WO2025060585A1 (en) | Solder receiving type soldering method for anode assembly |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |