JPH01267945A - Focusing system of electron microscope - Google Patents
Focusing system of electron microscopeInfo
- Publication number
- JPH01267945A JPH01267945A JP63096082A JP9608288A JPH01267945A JP H01267945 A JPH01267945 A JP H01267945A JP 63096082 A JP63096082 A JP 63096082A JP 9608288 A JP9608288 A JP 9608288A JP H01267945 A JPH01267945 A JP H01267945A
- Authority
- JP
- Japan
- Prior art keywords
- objective
- lens
- diffraction image
- image
- view field
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000003384 imaging method Methods 0.000 claims description 9
- 238000000034 method Methods 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000005284 excitation Effects 0.000 description 3
- 238000001000 micrograph Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000004626 scanning electron microscopy Methods 0.000 description 1
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野コ
本発明は、電子顕微鏡に係り、特に、所望の回折パター
ンを得るための結像系に関するものであ[従来の技術]
透過電子顕微鏡(以下、TEMと称す。)では電子顕微
鏡像ばかりでなく回折像も得られるので、結晶構造等を
同定するために回折像を観察することが広く行われてい
る。暗視野像(回折像)を得るための手法としては、画
像処理による方法、あるいは走査電子顕微鏡の手法を使
った走査透過法等種々の方法があるが、TEMにおいて
は、対物絞りによる方法が一般的である。その例を第2
図に示す。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to an electron microscope, and in particular to an imaging system for obtaining a desired diffraction pattern [Prior Art] Transmission electron microscope (hereinafter referred to as , TEM) allows not only electron microscopic images but also diffraction images to be obtained, so it is widely practiced to observe diffraction images in order to identify crystal structures and the like. There are various methods for obtaining dark-field images (diffraction images), such as image processing methods and scanning transmission methods using scanning electron microscopy techniques, but in TEM, the method using objective aperture is generally used. It is true. The second example is
As shown in the figure.
第2図で、1は試料、2は対物レンズ(以下、対物レン
ズをOLと称す。)、3は後焦点面、4は制限視野絞り
、5は中間レンズ、6は投影レンズ、7は蛍光板、8は
対物絞りである。なお、図中、各レンズはレンズ中心の
位置だけを示す。以下、同様である。In Figure 2, 1 is a sample, 2 is an objective lens (hereinafter, the objective lens is referred to as OL), 3 is a back focal plane, 4 is a selected area diaphragm, 5 is an intermediate lens, 6 is a projection lens, and 7 is a fluorescent screen. , 8 is an objective aperture. In addition, in the figure, only the position of the center of each lens is shown. The same applies hereafter.
第2図において、試料1にビームが当てられることによ
り、後焦点面3には試料1の回折像ができ、制限視野絞
り4の位置には像が結像される。In FIG. 2, when the beam is applied to the sample 1, a diffraction image of the sample 1 is formed on the back focal plane 3, and the image is formed at the position of the selected area diaphragm 4.
つまり、回折像面は後焦点面3の位置にあり、像面は制
限視野絞り4の位置にある。この状態で、OL2の後焦
点面3の位置に置かれた対物絞り8の開き具合いを調整
したり、矢印9で示す方向に移動させて所望の回折像を
選択し、更に中間レンズ5の焦点距離を調節して、中間
レンズ5の前焦点面をOL2の後焦点面3に一致させて
、この面を投影レンズ6により最終像として蛍光板7上
に結像させると試料の所望の回折像を観察することがで
きる。なお、このとき中間レンズ5は極低倍、即ち非常
に小さな倍率になされている。That is, the diffraction image plane is located at the back focal plane 3, and the image plane is located at the selected area diaphragm 4. In this state, adjust the opening of the objective diaphragm 8 placed at the back focal plane 3 of the OL2, move it in the direction shown by the arrow 9 to select a desired diffraction image, and then focus the intermediate lens 5. By adjusting the distance, the front focal plane of the intermediate lens 5 is made to coincide with the rear focal plane 3 of the OL 2, and this plane is imaged onto the fluorescent screen 7 as a final image by the projection lens 6, thereby forming a desired diffraction image of the sample. can be observed. Note that, at this time, the intermediate lens 5 has an extremely low magnification, that is, a very small magnification.
また、対物絞り8で選択したビームをエネルギー分析装
置に導入してエネルギー分析を行うこともできる。Alternatively, the beam selected by the objective aperture 8 can be introduced into an energy analyzer to perform energy analysis.
なお、第2図の構成で試料1の電子顕微鏡像を観察する
場合には、制限視野絞り4上の像を中間レンズ5、投影
レンズ6によって拡大して蛍光板7上に写し出せばよい
。When observing an electron microscope image of the sample 1 with the configuration shown in FIG. 2, the image on the selected area diaphragm 4 may be enlarged by the intermediate lens 5 and the projection lens 6 and projected onto the fluorescent screen 7.
[発明が解決しようとする課題]
しかしながら、従来のものにおいては次のような問題が
ある。[Problems to be Solved by the Invention] However, the conventional method has the following problems.
一つは、対物絞り8をOL2の後焦点面3の位置に配置
する点である。確かに、対物絞り8をOL2の後焦点面
3の位置に配置することは理論上正しく、また図面上も
相当な余裕を持って配置できるように見える。しかし、
実際には試料ホルダーの形状、ポールピースのギャップ
長等の制約があり、必ずしも対物絞り8を後焦点面3に
正しく配置できるとは限らないのである。もし、対物絞
り8が正しい位置に配置されていない場合には不所望の
ビームまで通過してしまうことになるし、また逆に、対
物絞り8が正しい位置に配置できるように対物レンズ回
りを設計しようとすると、ポールピース間のギャップ長
や穴径等が制約を受け、高分解能のポールピースの設計
が非常に困難になる。このように、何れにしても対物絞
り8をOL2の後焦点面3の位置に配置することは困難
を伴うものなのである。One is that the objective diaphragm 8 is arranged at the position of the back focal plane 3 of the OL 2. Certainly, it is theoretically correct to arrange the objective diaphragm 8 at the position of the back focal plane 3 of the OL2, and it also appears possible to arrange it with considerable margin in the drawings. but,
In reality, there are restrictions such as the shape of the sample holder and the gap length of the pole pieces, so it is not always possible to correctly position the objective diaphragm 8 at the back focal plane 3. If the objective diaphragm 8 is not placed in the correct position, undesired beams will pass through, and conversely, the area around the objective lens should be designed so that the objective diaphragm 8 can be placed in the correct position. If you try to do this, the gap length between pole pieces, hole diameter, etc. will be restricted, making it extremely difficult to design high-resolution pole pieces. Thus, in any case, it is difficult to arrange the objective diaphragm 8 at the position of the back focal plane 3 of the OL2.
次に、従来は回折像の選択は対物絞り8を手動で動かし
て行っていたために、所望の回折像を得るのに時間が掛
かり、また、熟練を要するものであった。Next, conventionally, the selection of a diffraction image was carried out by manually moving the objective aperture 8, which took time and required skill to obtain a desired diffraction image.
本発明は、上記の課題を解決するものであって、構造上
無理がなり、シかも容易に所望の回折像を得ることがで
きる電子顕微鏡の結像系を提供することを目的とするも
のである。The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide an imaging system for an electron microscope that can easily obtain a desired diffraction image even though the structure is unreasonable. be.
[課題を解決するための手段]
上記の目的を達成するために、本発明の電子顕微鏡の結
像系は、対物レンズの後焦点面にできる回折像を制限視
野絞り上に結像する対物ミニレンズと、該制限視野絞り
上の像を偏向させる偏向コイルを少なくとも備えること
を特徴とする。[Means for Solving the Problems] In order to achieve the above object, the imaging system of the electron microscope of the present invention has an objective miniaturization system that images a diffraction image formed at the back focal plane of the objective lens on a selected area aperture. It is characterized by comprising at least a lens and a deflection coil that deflects the image on the selected area diaphragm.
[作用]
本発明によれば、対物ミニレンズにより制限視野絞り上
に回折像を得るようにし、制限視野絞りを従来の対物絞
りとしても使用することにしたので透過電子顕微鏡の機
構上無理なく回折像の選択を行うことができる。また、
回折像を偏向コイルで偏向し、所望の回折像だけを制限
視野絞りから取り出すようにしたので、回折像の選択を
容易に行うことができる。[Function] According to the present invention, a diffraction image is obtained on the selected area diaphragm using the objective mini-lens, and the selected area diaphragm is also used as a conventional objective diaphragm, so diffraction can be easily achieved due to the mechanism of the transmission electron microscope. A selection of statues can be made. Also,
Since the diffraction image is deflected by the deflection coil and only the desired diffraction image is taken out from the selected area diaphragm, the selection of the diffraction image can be easily performed.
[実施例コ 以下、図面を参照しつつ実施例を説明する。[Example code] Examples will be described below with reference to the drawings.
第1図は本発明に係る電子顕微鏡の結像系の1実施例の
構成を示す図であり、図中、10は対物ミニレンズ(以
下、対物ミニレンズをOMと称す。FIG. 1 is a diagram showing the configuration of an embodiment of an imaging system of an electron microscope according to the present invention, and in the figure, reference numeral 10 denotes an objective mini-lens (hereinafter, the objective mini-lens is referred to as OM).
)、IL 12はそれぞれ第1、第2の偏向コイル、
13は像面を示す。なお、第2図と同じものについては
同一番号を付してその説明は省略する。), IL 12 are the first and second deflection coils, respectively.
13 indicates an image plane. Components that are the same as those in FIG. 2 are given the same numbers and their explanations will be omitted.
また、第1図では図示していないが、制限視野絞り4の
下には第2図と同様に中間レンズその他が配置されるも
のである。Further, although not shown in FIG. 1, an intermediate lens and the like are arranged below the selected area diaphragm 4 as in FIG. 2.
第1図においては第2図と異なって対物絞りは配置され
ておらず、OL2の後焦点面3に形成された回折像はそ
のまま0Ml0で制限視野絞り4上に結像されるように
なされる。このとき、OL2による像は、図の13の位
置、即ち、0M10と制限視野絞り4の間に形成される
。そして、制限視野絞り4上に形成される回折像を第1
および第2の偏向コイル11,12で図の実線あるいは
波線のように偏向させることによって、所望の回折像だ
けを制限視野絞り4の開口から取り出すようにするので
ある。制限視野絞り4が配置される位置は通常空間的に
も余裕があるので、対物絞りのように種々の制約を受け
ることはないのである。In FIG. 1, unlike in FIG. 2, no objective diaphragm is arranged, and the diffraction image formed on the back focal plane 3 of the OL2 is directly focused on the selected area diaphragm 4 at 0 Ml0. . At this time, the image by OL2 is formed at position 13 in the figure, that is, between 0M10 and selected area aperture 4. Then, the diffraction image formed on the selected area aperture 4 is
The second deflection coils 11 and 12 deflect the light as indicated by solid lines or broken lines in the figure, so that only a desired diffraction image is extracted from the aperture of the selected area diaphragm 4. Since the selected area diaphragm 4 is usually located at a location with sufficient space, it is not subject to various restrictions unlike the objective diaphragm.
以上の説明から明らかなように、O’M10が配置され
る位置は、OL2が作る像面13よりも試料1側であり
、その励磁は実像を作るだけの強励磁になされる。As is clear from the above description, the position where O'M10 is placed is closer to the sample 1 than the image plane 13 formed by OL2, and its excitation is strong enough to form a real image.
以上は回折像を観察する場合であるが、電子顕微鏡像を
観察する場合には、第1図の状態で図示しない中間レン
ズの励磁を通常の励磁条件より弱励磁にするか、または
、0M10を不動作として第2図と同様に制限視野絞り
4上に像面を形成し、その像を中間レンズ、投影レンズ
で拡大するようにすればよい。なお、前者の場合、中間
レンズにとって通常より物面が遠くなるので最高倍率は
減少することになるが、この対策としては、制限視野絞
り4を中間レンズのギャップの中に入れてしまうのが有
効である。The above is a case of observing a diffraction image, but when observing an electron microscope image, the excitation of the intermediate lens (not shown) in the state shown in Fig. 1 should be made weaker than the normal excitation conditions, or the 0M10 As a non-operating device, an image plane may be formed on the selected area diaphragm 4 as in FIG. 2, and the image may be magnified by an intermediate lens and a projection lens. In the former case, the object surface will be farther away than usual for the intermediate lens, so the maximum magnification will decrease, but an effective countermeasure to this is to place the selected area diaphragm 4 in the gap between the intermediate lenses. It is.
以上、本発明の1実施例について説明したが、本発明は
上記実施例に限定されるものではなく、種々の変形が可
能である。例えば、第1図では偏向コイルを二つ使用し
たが、一つでもよいことは明かであろう。Although one embodiment of the present invention has been described above, the present invention is not limited to the above embodiment, and various modifications are possible. For example, although two deflection coils are used in FIG. 1, it is obvious that one deflection coil may also be used.
[発明の効果]
以上の説明から明らかなように、本発明によれば、所望
の回折像を選択するのに制限視野絞りを用いることとし
たので、当該絞りを正しい位置に配置することができる
ものである。また、偏向コイルで回折像を偏向させるこ
とによって、制限視野絞りを動かすことなく所望の回折
像を選択できるようにしたので、多数ある回折像をプロ
グラムにより自動的に選択することも可能である。[Effects of the Invention] As is clear from the above description, according to the present invention, a selected area diaphragm is used to select a desired diffraction image, so the diaphragm can be placed at the correct position. It is something. Furthermore, by deflecting the diffraction image with a deflection coil, a desired diffraction image can be selected without moving the selected area diaphragm, so it is also possible to automatically select a large number of diffraction images using a program.
第1図は本発明に係る電子顕微鏡の結像系の1実施例の
構成を示す図、第2図は従来の電子顕微鏡の結像系を示
す図である。
1・・・試料、2・・・対物レンズ、3・・・後焦点面
、4・・・制限視野絞り、5・・・中間レンズ、6・・
・投影レンズ、7・・・蛍光板、8・・・対物絞り、1
0・・・対物ミニレンズ、11.12・・・偏向コイル
、13・・・像面。
出 願 人 日本電子株式会社
代理人 弁理士 菅 井 英 雄(外4名)第1区FIG. 1 is a diagram showing the configuration of an embodiment of an imaging system for an electron microscope according to the present invention, and FIG. 2 is a diagram showing an imaging system for a conventional electron microscope. DESCRIPTION OF SYMBOLS 1... Sample, 2... Objective lens, 3... Back focal plane, 4... Selected area aperture, 5... Intermediate lens, 6...
・Projection lens, 7... Fluorescent screen, 8... Objective diaphragm, 1
0... Objective mini lens, 11.12... Deflection coil, 13... Image plane. Applicant JEOL Ltd. Agent Patent Attorney Hideo Sugai (4 others) District 1
Claims (3)
絞り上に結像する対物ミニレンズと、該制限視野絞り上
の像を偏向させる偏向コイルを少なくとも備えることを
特徴とする電子顕微鏡の結像系。(1) An electron microscope characterized by comprising at least an objective mini-lens that forms a diffraction image formed on the back focal plane of the objective onto a selected area diaphragm, and a deflection coil that deflects the image on the selected area diaphragm. Imaging system.
り試料側に配置されていることを特徴とする請求項1記
載の電子顕微鏡の結像系。(2) The imaging system for an electron microscope according to claim 1, wherein the objective mini-lens is arranged closer to the sample than the image plane formed by the objective lens.
置する中間レンズのギャップ中に設けられていることを
特徴とする請求項1または2記載の電子顕微鏡の結像系
。(3) The imaging system for an electron microscope according to claim 1 or 2, wherein the selected area diaphragm is provided in a gap of an intermediate lens located immediately behind the objective lens.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63096082A JPH01267945A (en) | 1988-04-19 | 1988-04-19 | Focusing system of electron microscope |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63096082A JPH01267945A (en) | 1988-04-19 | 1988-04-19 | Focusing system of electron microscope |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01267945A true JPH01267945A (en) | 1989-10-25 |
Family
ID=14155471
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63096082A Pending JPH01267945A (en) | 1988-04-19 | 1988-04-19 | Focusing system of electron microscope |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01267945A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011243540A (en) * | 2010-05-21 | 2011-12-01 | Hitachi High-Technologies Corp | Selected area aperture plate of transmission electron microscope, manufacturing method of selected area aperture plate, and observing method of selected area electron diffraction image |
JP2017054606A (en) * | 2015-09-07 | 2017-03-16 | 日本電子株式会社 | Charged particle device |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS614144A (en) * | 1984-06-15 | 1986-01-10 | Jeol Ltd | Diffraction pattern display method by electron microscope |
-
1988
- 1988-04-19 JP JP63096082A patent/JPH01267945A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS614144A (en) * | 1984-06-15 | 1986-01-10 | Jeol Ltd | Diffraction pattern display method by electron microscope |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011243540A (en) * | 2010-05-21 | 2011-12-01 | Hitachi High-Technologies Corp | Selected area aperture plate of transmission electron microscope, manufacturing method of selected area aperture plate, and observing method of selected area electron diffraction image |
JP2017054606A (en) * | 2015-09-07 | 2017-03-16 | 日本電子株式会社 | Charged particle device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3942363B2 (en) | Lens system for phase plate of transmission electron microscope and transmission electron microscope | |
US5013913A (en) | Method of illuminating an object in a transmission electron microscope | |
KR950019946A (en) | Electron Beam System for Writing Patterns on Wafers | |
JP5117652B2 (en) | Electron beam lithography method and electron optical lithography system | |
JPH0244103B2 (en) | ||
JPS6029186B2 (en) | electronic microscope | |
US6140645A (en) | Transmission electron microscope having energy filter | |
JPS614144A (en) | Diffraction pattern display method by electron microscope | |
JPH01267945A (en) | Focusing system of electron microscope | |
US5304801A (en) | Electron microscope | |
JPH10104523A (en) | Confocal microscope | |
JPS6133254B2 (en) | ||
JPH06215714A (en) | Field emission type transmission electron microscope | |
JPH05217536A (en) | Throttle device for electron microscope | |
JPH01276552A (en) | electronic microscope | |
JP3790646B2 (en) | Low energy reflection electron microscope | |
JP4365721B2 (en) | electronic microscope | |
JP3869957B2 (en) | Transmission electron microscope with energy filter | |
US20230178329A1 (en) | Sample Display Method | |
JP2839683B2 (en) | Foucault electron microscope | |
JPH10227738A (en) | Light radiating device for cleavage of caged reagent | |
JPH0234144B2 (en) | ||
SU1243046A1 (en) | Electron microscope | |
JP2007080724A (en) | Magnetic field application device for electron microscope | |
JP3331245B2 (en) | Scanning soft X-ray microscope |