[go: up one dir, main page]

JP2011243540A - Selected area aperture plate of transmission electron microscope, manufacturing method of selected area aperture plate, and observing method of selected area electron diffraction image - Google Patents

Selected area aperture plate of transmission electron microscope, manufacturing method of selected area aperture plate, and observing method of selected area electron diffraction image Download PDF

Info

Publication number
JP2011243540A
JP2011243540A JP2010117313A JP2010117313A JP2011243540A JP 2011243540 A JP2011243540 A JP 2011243540A JP 2010117313 A JP2010117313 A JP 2010117313A JP 2010117313 A JP2010117313 A JP 2010117313A JP 2011243540 A JP2011243540 A JP 2011243540A
Authority
JP
Japan
Prior art keywords
limited
limited field
electron microscope
transmission electron
field stop
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010117313A
Other languages
Japanese (ja)
Inventor
Hiroaki Matsumoto
弘昭 松本
Yasutaka Nakano
靖孝 仲野
Yasushi Kuroda
靖 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2010117313A priority Critical patent/JP2011243540A/en
Publication of JP2011243540A publication Critical patent/JP2011243540A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a selected area aperture plate, a manufacturing method of the same and the like, in which a fine pore can be formed while maintaining mechanical strength, and which is suitable for observing a selected area electron diffraction image of a TEM.SOLUTION: The manufacturing method of a selected area aperture plate includes: forming a preliminary fabrication region 16 (2 μm or less) by FIB fabrication in an aperture plate 11 composed of a single material such as tantalum or molybdenum with a depth of tens μm or more whose mechanical strength is secured and which screens an electron beam; and next, forming a fine pore 15 of 1 μm or less. Since a side wall portion of this fine pore 15 is formed with a sharp cutting edge and a non-taper shape, an outer periphery outside the fine pore 15 does not transmit even a high energy electron beam of 200 keV to 300 keV.

Description

本発明は、透過電子顕微鏡(Transmission Electron Microscope:TEM)の制限視野電子回折像観察で用いる制限視野絞りプレート並びにその製造方法、及び制限視野電子回折像の観察方法に関するものである。   The present invention relates to a limited field stop plate used for observation of a limited field electron diffraction image of a transmission electron microscope (TEM), a manufacturing method thereof, and a method for observing a limited field electron diffraction image.

TEMの制限視野電子回折法は、対物レンズの実像面に絞りを挿入して観察視野を制限した状態で電子回折像を得る方法である。この時の観察視野の領域は、制限視野絞りの孔径により制限でき、その観察視野径は対物レンズの倍率の逆数と孔径の積になる。例えば、対物レンズを100倍にすると、10 nm以下の制限視野からの電子回折像を得るためには1μm以下の孔径を有する絞りが必要になる。TEMの制限視野絞りは、数十μm厚のモリブデン,タンタルなどの単一金属プレートの軸上に複数個の孔を設けたものが多く用いられ、使用目的に応じて異なる絞りの孔径を複数設ける場合と同一孔径を設ける場合がある。   The limited-field electron diffraction method of TEM is a method of obtaining an electron diffraction image in a state where an observation field is limited by inserting a stop on the real image surface of an objective lens. The observation field area at this time can be limited by the hole diameter of the limited field stop, and the observation field diameter is the product of the reciprocal of the magnification of the objective lens and the hole diameter. For example, when the objective lens is made 100 times, a diaphragm having a hole diameter of 1 μm or less is required to obtain an electron diffraction image from a limited field of view of 10 nm or less. A limited field stop of TEM is often used with a plurality of holes on the axis of a single metal plate of molybdenum, tantalum, etc. with a thickness of several tens of μm. In some cases, the same hole diameter may be provided.

また、TEMには、それぞれの絞り孔を選択するための移動機構および絞り孔中心と電子線の光軸を一致させる調整機構を備え、観察目的に対応した絞り孔の選択が行えるようになっている。   In addition, the TEM has a moving mechanism for selecting each aperture and an adjustment mechanism for aligning the center of the aperture with the optical axis of the electron beam, so that the aperture can be selected according to the observation purpose. Yes.

これまでに、小孔を設けた絞りまたは絞り孔を形成する技術として、機械加工または半導体プロセス技術を応用したエッチング法(特許文献1)や集束イオンビーム(Focused Ion Beam:FIB)法(特許文献2)などが知られている。エッチング法では、ベース層Si、コート層SiO2、コート層Ptなどの異種材料の貼り合わせ及びドライ・ウエットエッチング工程を複数回繰り返すことにより直径20 nmの絞り孔を形成する方法として、FIB法では、円形プレートに孔を設けてホルダに装着する方法と絞り基体に直接孔を形成する方法として知られている。   Up to now, as a technique for forming an aperture or aperture with a small hole, an etching method (Patent Document 1) or a focused ion beam (FIB) method (Patent Document 1) applying machining or semiconductor process technology (Patent Document) 2) is known. In the etching method, as a method of forming an aperture of 20 nm in diameter by repeating the bonding of different materials such as the base layer Si, the coating layer SiO2, the coating layer Pt and the dry / wet etching process a plurality of times, the FIB method It is known as a method of forming a hole in a circular plate and mounting it on a holder, and a method of directly forming a hole in a diaphragm base.

特開2008-204675号公報JP 2008-204675 A 特開2007-329043号公報JP 2007-329043

ここで、前記特許文献記載の絞りプレート及びその製造時の課題等について説明する。TEMの制限視野観察で用いる制限視野絞りは、観察視野を高位置精度に選択するための絞りであるため、微細孔部以外の絞り部位で電子線透過が発生しないことが必要である。   Here, the diaphragm plate described in the above-mentioned patent document and the problems in manufacturing the plate will be described. The limited field stop used in the TEM limited field observation is a stop for selecting the observation field with high positional accuracy, and therefore, it is necessary that electron beam transmission does not occur in the stop part other than the fine hole portion.

エッチング法で作製した絞りプレートでは、絞り孔が形成されたシート層の材質が軽元素のSiO2で構成され、その絞り孔周辺部を含むシート層の厚みが1μm程度で薄いため、200keVないし300keVの高エネルギー電子線が孔周辺部を透過し、観察視野の選択位置精度を著しく低下させる。また、エッチングにより作製した孔側壁の形状はシャープ性に欠けるため、制限視野絞りに応用することは困難である。 In the diaphragm plate manufactured by the etching method, the material of the sheet layer in which the diaphragm hole is formed is composed of light element SiO 2 , and the thickness of the sheet layer including the periphery of the diaphragm hole is as thin as about 1 μm, so 200 keV to 300 keV The high energy electron beam passes through the periphery of the hole, and the selected position accuracy of the observation field is remarkably lowered. Moreover, since the shape of the hole sidewall produced by etching lacks sharpness, it is difficult to apply it to a limited field stop.

また、1μm程度の厚さのSiO2シート層の電子線透過を阻止するために、0.3μm程度のPt膜を表面に成膜しても、数keV程度の低エネルギー電子線での透過を阻止するのには有効であるが、高加速電子線ではシート層およびPt膜を電子線が透過してしまう。電子線透過を阻止するためにPt膜厚を増膜させた場合、絞り孔の内壁にPtがコーティングされ、絞り孔内壁が凹凸形状になり、高位置精度での視野制限領域の選択ができなくなる。 In addition, even if a Pt film of about 0.3 μm is formed on the surface to prevent transmission of an electron beam through a SiO 2 sheet layer having a thickness of about 1 μm, transmission of a low energy electron beam of about several keV is blocked. It is effective to do this, but with a high acceleration electron beam, the electron beam passes through the sheet layer and the Pt film. When the Pt film thickness is increased to prevent electron beam transmission, the inner wall of the aperture hole is coated with Pt, and the inner wall of the aperture hole becomes uneven, making it impossible to select a field-of-view restriction region with high positional accuracy. .

さらに、ベース層のSi厚みが200μm程度の絞りでは、制限視野絞りホルダに搭載する時の機械的強度が確保できず、絞りが湾曲変形する問題が生じる。さらには、エッチング時に使用したレジストの残留がTEM観察中に帯電とコンタミネーションを発生させる。   Furthermore, when the base layer has an Si thickness of about 200 μm, the mechanical strength when mounted on the limited field stop holder cannot be ensured, causing a problem that the stop is curved and deformed. Furthermore, the residual resist used during etching causes charging and contamination during TEM observation.

図12にイオンビーム1により金属板2をスパッタするときの概念図を、図13にその時製作された絞り孔の例を示す。イオンビーム1で金属板2を加工する際、加工深さが増すにつれ、スパッタ物3が金属板2表面に排出されず、孔の壁面に堆積していき、加工孔4の形状が深さ方向にテーパー状になる。特に、数十μmの金属板では、FIB法により一度に1μm程度の微細孔(アスペクト比10以上の金属板)を貫通させることは困難である。   FIG. 12 is a conceptual diagram when the metal plate 2 is sputtered by the ion beam 1, and FIG. 13 shows an example of the aperture hole manufactured at that time. When the metal plate 2 is processed with the ion beam 1, as the processing depth increases, the sputtered material 3 is not discharged onto the surface of the metal plate 2, but accumulates on the wall surface of the hole, and the shape of the processed hole 4 changes in the depth direction. Tapered. In particular, with a metal plate of several tens of μm, it is difficult to penetrate fine holes (metal plate having an aspect ratio of 10 or more) of about 1 μm at a time by the FIB method.

また、FIB法により微細孔を作製するために、数μm厚の薄い金属板の絞り基体を用いても、TEMの制限視野絞りホルダに搭載する際に機械的強度が確保できず、金属板2が湾曲し、微細孔が変形する問題が発生する。   In addition, even if a thin metal plate diaphragm base with a thickness of several μm is used to make a fine hole by the FIB method, the mechanical strength cannot be secured when mounted on the TEM limited field diaphragm holder, and the metal plate 2 Bends and the micropores are deformed.

本発明は以上述べた最近の課題に鑑みてなされたもので、その主な目的とするところは、
機械的強度を維持しつつ微細孔を形成することができ、TEMの制限視野電子回折像の観察に好適な制限視野絞りプレート及びその製造方法を提供することにある。
The present invention has been made in view of the recent problems described above, and its main purpose is as follows.
It is an object of the present invention to provide a limited field stop plate that can form fine holes while maintaining mechanical strength, and is suitable for observing a limited field electron diffraction image of a TEM, and a method for manufacturing the same.

本発明の他の目的は、上記制限視野絞りプレートを用いた制限視野電子回折像の観察方法を提供することにある。   Another object of the present invention is to provide a method for observing a limited field electron diffraction image using the limited field stop plate.

前記主な目的を達成するための本発明における制限視野絞りプレートの特徴は、制限視野絞りプレート本体の厚さより薄い予備加工領域を形成し、この予備加工領域に微細孔を形成することにある。   The feature of the limited field stop plate in the present invention for achieving the main object is that a preliminary processing region thinner than the thickness of the limited field stop plate main body is formed, and a fine hole is formed in the preliminary processing region.

更に具体的には厚さが数10μm以上のプレートに2μm程度の厚さの予備加工領域を形成し、この予備加工領域に直径1μm程度の微細孔を設けているが、それらの特徴については以下述べる実施の態様で詳述する。   More specifically, a preliminary processing region having a thickness of about 2 μm is formed on a plate having a thickness of several tens of μm or more, and micropores having a diameter of about 1 μm are provided in the preliminary processing region. This will be described in detail in the embodiment to be described.

前記主な目的を達成する本発明の制限視野絞りプレート製造方法の特徴は、先ず微細孔よりも直径が大きい予備加工領域を形成し、次にこの予備加工領域に微細孔を貫通することにある。   The feature of the limited field stop plate manufacturing method of the present invention that achieves the main object is that a preliminary processing region having a diameter larger than that of the fine hole is first formed, and then the fine hole is penetrated into the preliminary processing region. .

更に具体的には、FIB加工係数パラメータの入力により、設定到達加工深さの終点位置をコントロールして前記予備加工領域を形成し、次にこのFIBで前記微細孔を設けることで制限視野絞りプレートを製造するようにしたところにある。   More specifically, by inputting the FIB processing coefficient parameter, the end point position of the set processing depth is controlled to form the preliminary processing region, and then the fine hole is provided in this FIB, thereby restricting the field-of-view diaphragm plate. It is in the place where it was made to manufacture.

前記他の目的を達成するための本発明の特徴は、前記のように構成ないし製造した制限視野絞りプレートを透過電子顕微鏡の対物レンズの実像面に挿入し、観察視野を制限した状態で試料の電子回折像を観察することにあり、更に具体的には、微細孔の径が1μm以下の制限視野絞りプレートを用い、直径10 nm以下の電子線照射に対応する制限視野電子回折像で前記試料の局所的な格子歪みを観察するようにしたところにある。   The feature of the present invention for achieving the other object is that the restricted field stop plate constructed or manufactured as described above is inserted into the real image surface of the objective lens of the transmission electron microscope, and the observation field is limited. It is to observe an electron diffraction image. More specifically, a sample with a limited field electron diffraction image corresponding to electron beam irradiation with a diameter of 10 nm or less is used using a limited field stop plate having a micropore diameter of 1 μm or less. The local lattice distortion is observed.

本発明によれば、TEMの制限視野電子回折像観察に好適な制限視野絞りプレートを容易に得ることができ、この本発明の制限視野絞りプレートを用いることで、微小領域からの制限視野電子回折像を高い位置精度で観察することが出来るようになる。   According to the present invention, it is possible to easily obtain a limited field stop plate suitable for TEM limited field electron diffraction image observation. By using the limited field stop plate of the present invention, limited field electron diffraction from a minute region is achieved. An image can be observed with high positional accuracy.

本発明の絞りプレートを製作するためのFIB装置の模式図Schematic diagram of the FIB device for manufacturing the diaphragm plate of the present invention 本発明の一実施例に係るTEM用制限視野絞りプレートの模式図Schematic diagram of a limited field stop plate for TEM according to one embodiment of the present invention 図2の制限視野絞りプレートの断面図Sectional view of the limited field stop plate of FIG. 特定箇所に機械加工孔を設けたTEM制限視野絞りプレートの模式図Schematic diagram of TEM limited field stop plate with machined holes at specific locations 本発明による微細孔作製手順を説明するための絞りプレート断面図Cross-sectional view of a diaphragm plate for explaining the micropore manufacturing procedure according to the present invention TEMの制限視野観察領域を説明するための模式図Schematic diagram for explaining the limited field of view observation region of TEM 本発明の一実施例に係る加工孔側壁部の加工方法を説明する模式図The schematic diagram explaining the processing method of the side wall part of the processing hole which concerns on one Example of this invention. 本発明の他の実施例に係る制限視野絞りプレートの模式図Schematic diagram of a limited field stop plate according to another embodiment of the present invention 本発明を適用する透過電子顕微鏡の光学系を示す図The figure which shows the optical system of the transmission electron microscope to which this invention is applied 本発明を適用する格子歪み測定におけるSi基板の断面図Cross-sectional view of Si substrate in lattice strain measurement to which the present invention is applied 本発明を適用する格子歪み測定におけるSi基板の断面図Cross-sectional view of Si substrate in lattice strain measurement to which the present invention is applied 集束イオンビームにより金属板をスパッタするときの概念図Conceptual diagram when sputtering metal plate with focused ion beam 図12で加工されたときの絞り穴断面図Cross-sectional view of the throttle hole when processed in FIG.

以下、本発明の実施の形態について図示する実施例を用いて説明する。尚、以下述べる実施例では、本発明の前記目的及び特徴に加えて、機械的強度を確保しつつ200keVないし300keVの高エネルギー電子線をも遮蔽する数10 μm以上の厚さのタンタル、モリブデンなどの単一材料の金属板を用い、1μm以下の微細孔をプレート軸上に複数個設け、微細孔周辺部位においても電子線透過が生じないように微細孔の側壁部をシャープかつ非テーパー形状にする等の工夫を施しているが、本発明がこれらの実施例に限られるものでないことは勿論である。   Hereinafter, embodiments of the present invention will be described with reference to the illustrated examples. In the embodiments described below, in addition to the objects and features of the present invention, tantalum, molybdenum, etc. having a thickness of several tens of μm or more that shield high-energy electron beams of 200 keV to 300 keV while ensuring mechanical strength. Using a single metal plate, a plurality of fine holes of 1 μm or less are provided on the plate axis, and the side walls of the fine holes are sharp and non-tapered so that electron beam transmission does not occur around the fine holes. Of course, the present invention is not limited to these examples.

図1に本発明に係る制限視野絞りプレートを製作するためのFIB装置の構成を示す。このFIB装置は、イオン源5、イオン光学系6、ビームを偏向するための偏向器7、これらを制御するための制御装置9で構成されている。実際の装置では、加工対象となる絞りプレート10を装着する試料室が装備されるが、図では省略する。このようなFIB装置を用いたFIB法により、数10μm以上の厚さのタンタル、モリブデンなどの単一材料で構成される金属プレート板に、1μm以下の微細孔を複数個形成することで、目的とする制限視野絞りプレートの製作を行う。   FIG. 1 shows the configuration of an FIB apparatus for manufacturing a limited field stop plate according to the present invention. This FIB apparatus includes an ion source 5, an ion optical system 6, a deflector 7 for deflecting a beam, and a control device 9 for controlling these. In an actual apparatus, a sample chamber in which a diaphragm plate 10 to be processed is mounted is provided, but is omitted in the drawing. By forming a plurality of fine holes of 1 μm or less in a metal plate plate made of a single material such as tantalum or molybdenum having a thickness of several tens of μm or more by the FIB method using such an FIB apparatus, The limited field stop plate is manufactured.

図2は本発明の一実施例に係る制限視野絞りプレート11の構成であり、既存TEM制限視野絞り11にFIB法で微細孔等を形成した単一材料で構成される絞りである。TEM用絞りホルダに搭載固定するためのネジ孔12がプレート端部に設置される。TEMの制限視野観察では、観察目的に応じた絞り孔の変更動作が発生するため、絞り孔を変更させた場合でも、常時、微細孔が電子線光軸上に配置されることが観察の上で望ましい。したがって、複数の微細孔は、プレート上の長軸方向直線上に同一間隔に配置させ、短軸方向では短軸方向中心部に配置させて、絞り孔の変更動作に伴う光軸上からの絞り孔のずれが生じない絞りの構成としている。プレート上の規定位置に微細孔を加工するために目印になる孔13を機械加工により作製している。   FIG. 2 shows the configuration of the limited field stop plate 11 according to an embodiment of the present invention, which is a stop made of a single material in which fine holes and the like are formed in the existing TEM limited field stop 11 by the FIB method. Screw holes 12 for mounting and fixing to the TEM diaphragm holder are installed at the end of the plate. In TEM limited field of view observation, the operation of changing the aperture according to the observation purpose occurs, so even if the aperture is changed, it is observed that the microscopic holes are always arranged on the electron beam optical axis. Is desirable. Therefore, the plurality of micro holes are arranged at the same interval on the straight line in the long axis direction on the plate, and are arranged in the central part in the short axis direction in the short axis direction so that the aperture from the optical axis accompanying the change operation of the aperture hole is reduced. The aperture configuration is such that no hole displacement occurs. A hole 13 serving as a mark is formed by machining in order to process a fine hole at a predetermined position on the plate.

図3は絞りプレート11の微細孔等を示す断面図(図2のA-B断面)である。内壁形状がシャープかつ電子線入射方向に対し平行な非テーパー形状の1μm程度の微細孔15と微細孔よりも直径が大きい微細孔加工部16を2μm程度に残した予備加工領域14で構成される。微細孔加工部16は2μm程度の厚さであるが、材質がモリブデン、タンタルなどの重金属で構成されているため、200keVないし300keVの高エネルギーの電子線でも透過は発生しない。   FIG. 3 is a cross-sectional view (A-B cross section of FIG. 2) showing the fine holes and the like of the aperture plate 11. The inner wall shape is sharp and is composed of a non-tapered micro hole 15 of about 1 μm parallel to the electron beam incident direction and a pre-processed region 14 in which a micro hole processing portion 16 having a diameter larger than the micro hole is left at about 2 μm . The fine hole processed portion 16 has a thickness of about 2 μm. However, since the material is made of heavy metal such as molybdenum or tantalum, transmission does not occur even with a high energy electron beam of 200 keV to 300 keV.

次に、本発明に係る制限視野絞りプレートの製造方法について説明する。図4は、既存TEM制限視野絞り11の構成である。TEM用絞りホルダに搭載固定するためのネジ孔12とプレート11上の規定位置に微細孔を加工するための機械加工された目印孔13が設置されている。規定位置18とは、絞り孔の変更動作に伴う電子線光軸上からの絞り孔のずれが生じない位置を示す。高位置精度な規定位置への微細孔作製は、FIB装置試料ステージ制御によって可能である。試料ステージ制御による規定位置への加工は、機械加工された孔13の位置から長軸方向に3 mm程度試料ステージを移動させた後に微細孔を作製し、さらに3 mm試料ステージを移動させて隣位置の微細孔を作製するという方法になる。   Next, a manufacturing method of the limited field stop plate according to the present invention will be described. FIG. 4 shows the configuration of the existing TEM limited field stop 11. A screw hole 12 for mounting and fixing to the TEM diaphragm holder and a machined mark hole 13 for machining a micro hole are provided at a predetermined position on the plate 11. The specified position 18 indicates a position where no deviation of the aperture from the electron beam optical axis caused by the aperture changing operation occurs. Fine hole production to a specified position with high position accuracy is possible by controlling the sample stage of the FIB device. The processing to the specified position by the sample stage control is performed by moving the sample stage about 3 mm in the long axis direction from the position of the machined hole 13, creating a fine hole, and further moving the 3 mm sample stage. This is a method of producing a minute hole at a position.

図5は、FIB法を用いた本発明による微細孔の作製手順(a)(b)(c)を示している。はじめに、微細孔15より直径が大きな予備加工領域14を加工する方法を説明する(図5(a))。予備加工は、微細孔を高精度に開けるための前加工であり、電子線が絞りを通過するための通リ道で、加工側壁部の形状を必ずしもシャープに仕上げる必要がないため、加工時間を短縮するために、イオンビーム電流量を増加させて行う方が望ましい。   FIG. 5 shows the steps (a), (b) and (c) for producing micropores according to the present invention using the FIB method. First, a method for processing the preliminary processing region 14 having a diameter larger than that of the fine hole 15 will be described (FIG. 5A). Preliminary processing is a pre-processing for opening micro holes with high accuracy, and it is a path for electron beams to pass through the aperture, and it is not necessary to sharpen the shape of the processing side wall, so processing time is reduced. In order to shorten the time, it is preferable to increase the ion beam current amount.

FIB加工装置では、物質固有のスパッタレートをパラメータとして加工深さの制御が可能である。例えば、モリブデンの加工係数は約0.1μm3/nA・sである。例えば、約50nAの大電流イオンビームモードで、加工幅15μm×15μm、深さ36、8μmの体積量を加工する場合に要する加工時間は約6分と計算され、加工が自動で終了される。 In the FIB processing apparatus, the processing depth can be controlled using the spatter rate specific to the material as a parameter. For example, the processing factor of molybdenum is about 0.1 μm 3 / nA · s. For example, in the large current ion beam mode of about 50 nA, the processing time required for processing a volume of processing width 15 μm × 15 μm, depth 36, and 8 μm is calculated as about 6 minutes, and the processing is automatically terminated.

このように、FIB加工では、加工係数パラメータの入力により深さ指定でのFIB加工が行え、高い精度で加工終点深さの位置決めが容易に行える。また、金属プレートの初期厚さが厚い場合には、深さ方向を制御しながら段階的にスパッタしていくことも可能である。   Thus, in FIB processing, FIB processing can be performed with depth designation by inputting a processing coefficient parameter, and positioning of the processing end depth can be easily performed with high accuracy. Further, when the initial thickness of the metal plate is large, it is possible to perform sputtering step by step while controlling the depth direction.

以上の方法により、2μm程度の厚さに残した微細孔加工部16が容易に作製できると同時に、任意の厚さの微細孔加工部16を高精度に作製できる。図5(b)に、2μm程度の厚さに残した微細孔加工部16に直径1μm以下の微細孔を加工した絞りプレートの断面図を示す。予備加工領域加工時のFIB加工条件よりもイオンビーム電流量を小さくしてイオンビーム径を細くして加工位置精度を向上させ、孔側壁部17の形状のシャープ性と平坦化を図る。   By the above method, the fine hole processed part 16 remaining in a thickness of about 2 μm can be easily produced, and at the same time, the fine hole processed part 16 having an arbitrary thickness can be produced with high accuracy. FIG. 5 (b) shows a cross-sectional view of a diaphragm plate in which micro holes having a diameter of 1 μm or less are processed in the micro hole processing portion 16 remaining in a thickness of about 2 μm. The ion beam current amount is made smaller than the FIB processing conditions at the time of preliminary processing region processing to reduce the ion beam diameter to improve the processing position accuracy, and the shape of the hole side wall 17 is sharpened and flattened.

ただし、微細孔加工部16を薄くするとことで、加工孔側壁部17へのスパッタ物の再付着の影響により加工孔がテーパー形状になるのは軽減できるが、イオンビームのフレアの影響により、微細孔加工部16の加工孔側壁部17はくさび形に加工され、加工孔周辺部で電子線の透過が発生する加工側壁部17が形成されてしまう。   However, by making the fine hole processed portion 16 thinner, it is possible to reduce the taper shape of the processed hole due to the reattachment of the sputtered material to the processed hole side wall portion 17. The processed hole side wall portion 17 of the hole processed portion 16 is processed into a wedge shape, and a processed side wall portion 17 in which transmission of an electron beam occurs around the processed hole is formed.

図6を用いて、図5(b)の絞り孔形状の場合のTEM制限視野観察領域について説明する。貫通した加工孔15で制限した領域19、つまり1μm径の微細孔を電子線が透過して観察される制限視野と、同時に、テーパー形状を有する加工孔側壁部17(2μmよりも薄い領域)を透過した電子線の影響により、更にその外側に制限視野ずれの発生した領域20が加わり、微細孔の制限視野絞りで選択される領域に誤差が生じてしまう。   The TEM limited visual field observation region in the case of the aperture shape of FIG. 5B will be described with reference to FIG. A region 19 limited by the penetrating hole 15, that is, a limited visual field through which an electron beam is observed through a 1 μm-diameter fine hole, and at the same time, a processing hole side wall 17 (area thinner than 2 μm) having a tapered shape. Due to the influence of the transmitted electron beam, a region 20 in which the limited visual field shift occurs is further added to the outside, and an error occurs in the region selected by the limited visual field stop of the fine hole.

そこで図7に示したように、FIB装置のイオン光学系6と偏向系7を制御し、加工孔側壁部17のテーパー角に合わせてイオンビーム8を傾斜しながら走査させ、テーパー形状の加工孔側壁部17を平坦に仕上げることで、上記問題が解決できる。このように、イオンビームの傾斜加工により、図5(c)に示したような微細孔の内壁形状17がシャープかつ電子線入射方向に対し平行な非テーパー形状の微細孔が作製でき、制限視野ずれを発生させない絞りを得ることができる。   Therefore, as shown in FIG. 7, the ion optical system 6 and the deflection system 7 of the FIB apparatus are controlled so that the ion beam 8 is scanned while being inclined in accordance with the taper angle of the processing hole side wall portion 17 to thereby form a tapered processing hole. The above problem can be solved by finishing the side wall portion 17 flat. In this way, by tilting the ion beam, a fine hole having a non-tapered shape in which the inner wall shape 17 of the fine hole is sharp and parallel to the electron beam incident direction as shown in FIG. An aperture that does not cause a shift can be obtained.

なお、この制限視野ずれは、テーパー形状の側壁が問題であるため、予備加工で残す微細孔加工部の厚さを2μm以下で電子線が透過しない厚さに加工すれば、アスペクト比を極力小さくでき、イオンビームのフレアの影響により発生する加工孔側壁部17のテーパー形状状態が軽減できる。この時の加工深さ制御は、FIB加工装置の加工終点管理により容易に行うことができる。   Since this limited visual field shift is a problem with the tapered side wall, the aspect ratio can be made as small as possible if the thickness of the micro-hole processed portion left in the preliminary processing is 2 μm or less and processed to a thickness that does not transmit electron beams. In addition, the tapered shape of the processed hole side wall portion 17 caused by the influence of the ion beam flare can be reduced. Processing depth control at this time can be easily performed by processing end point management of the FIB processing apparatus.

以上作製した絞りプレート11をTEMに搭載し制限視野観察を行うことで、絞り孔を透過した領域からのみ選択的に電子回折像が観察できる。従って、TEM観察試料の制限視野で選択する試料の形状に合わせて、制限視野絞りを挿入することで、制限視野観察箇所以外の情報を含まない電子回折像が取得できるようになる。例えば、対象観察視野が四角形状である場合には、図8に示したように、微細孔を観察対象領域に合わせた形状、ここでは四角形状である絞りを搭載することで、観察対象領域を高い空間分解能で選択することが可能になる。   By mounting the aperture plate 11 produced as described above on a TEM and performing limited field of view observation, an electron diffraction image can be selectively observed only from the region that has passed through the aperture hole. Therefore, by inserting a limited field stop according to the shape of the sample selected in the limited field of view of the TEM observation sample, an electron diffraction image that does not include information other than the limited field observation point can be acquired. For example, when the target observation field of view is a quadrangular shape, as shown in FIG. 8, the observation target region is mounted by mounting a shape in which the fine hole is matched to the observation target region, here, a rectangular aperture. It becomes possible to select with high spatial resolution.

なお、この場合の四角形状の孔をFIB加工する方法は、上述の円形状の孔を加工する方法と同様の手順により行うことができる。また、微細孔の形状は、四角形状に限らず、試料の形態乃至は観察対象領域に合わせて多角形に形成することで、必要な電子線回折情報のみを用いた回折像の観察が可能となる。   In this case, the method for FIB processing of the quadrangular hole can be performed by the same procedure as the method for processing the circular hole described above. In addition, the shape of the fine holes is not limited to a rectangular shape, and it is possible to observe a diffraction image using only necessary electron diffraction information by forming a polygon according to the shape of the sample or the observation target region. Become.

図9は本発明を適用する透過電子顕微鏡の光学系を示し、特にここでは制限視野観察による電子回折モードでの電子線光学経路を示す。図は真空内での電子光学経路であるが、真空排気系等の構成は省略する。   FIG. 9 shows an optical system of a transmission electron microscope to which the present invention is applied. In particular, an electron beam optical path in an electron diffraction mode by limited field observation is shown here. The figure shows an electron optical path in a vacuum, but a configuration such as a vacuum exhaust system is omitted.

電子銃25から放出された電子線26は、数百μm以上の孔径の収束レンズ絞り27によって均一な明るさを有する部分のみにカットされる。収束レンズ絞り27を通過した電子線26は照射レンズ28によって平行に広げられた後に試料29に照射される。   The electron beam 26 emitted from the electron gun 25 is cut only into a portion having uniform brightness by a converging lens stop 27 having a hole diameter of several hundred μm or more. The electron beam 26 that has passed through the converging lens diaphragm 27 is spread in parallel by the irradiation lens 28 and then irradiated onto the sample 29.

本発明に係る制限視野絞りプレート30は対物レンズ31の実像面に設置される。TEMの制限視野観察は、対物レンズ31の実像面に設置された制限視野絞り30の孔に対応する視野33、すなわち、絞りの孔を通過する電子線を逆に辿った時に試料と交差する領域34が得られ、その領域34のみに電子線が照射された時と等価な電子線経路になる。   The limited field stop plate 30 according to the present invention is installed on the real image plane of the objective lens 31. The limited field observation of the TEM is a field 33 corresponding to the hole of the limited field stop 30 installed on the real image plane of the objective lens 31, that is, the region that intersects the sample when the electron beam passing through the hole of the stop is traced in reverse. 34 is obtained, and an electron beam path equivalent to that when the electron beam is irradiated only to the region 34 is obtained.

制限視野観察での電子回折像モードでは、中間レンズ35の物点位置が対物レンズ31の後焦点面37になるため、対物レンズ後焦点面の電子回折像が中間レンズ35と投射レンズ36によって最終スクリーン38上に拡大される。従って、対物レンズ31の実像で制限視野絞り30を挿入して視野を限定すれば、試料の狙った領域からの電子回折像が取得でき、その時の照射領域設定は、制限視野絞り30の孔径の選択で行える。なお、制限視野絞りの移動制御は制御装置32により行う。   In the electron diffraction image mode in the limited field observation, the object point position of the intermediate lens 35 becomes the back focal plane 37 of the objective lens 31, so the electron diffraction image of the objective lens rear focal plane is finally obtained by the intermediate lens 35 and the projection lens 36. Magnified on screen 38. Therefore, if the limited field stop 30 is inserted with the real image of the objective lens 31 to limit the field of view, an electron diffraction image from the target region of the sample can be acquired, and the irradiation region setting at that time is set to the hole diameter of the limited field stop 30. It can be done by selection. The movement control of the limited field stop is performed by the control device 32.

次に、1μm以下の微細孔径の制限視野絞りにより10nm以下に制限された領域からの電子回折像を用いた観察例を説明する。半導体デバイスなどの局所歪み測定などに応用が可能である。   Next, an observation example using an electron diffraction image from an area limited to 10 nm or less by a limited field stop having a fine pore diameter of 1 μm or less will be described. It can be applied to local strain measurement of semiconductor devices.

微細化された半導体デバイスでは、歪みを有効に活用してデバイス特性を高める研究が進められている。そのデバイスのチャネル領域での歪み分布は、デバイス性能を大きく左右するように設計・開発が進められており、これらの歪みを制御するためには、正確な歪み評価が必要で、微小径制限視野絞りを用いた電子回折像によりそれが達成される。   For miniaturized semiconductor devices, research is being carried out to improve the device characteristics by effectively utilizing strain. The strain distribution in the channel region of the device is being designed and developed so as to greatly affect the device performance, and in order to control these distortions, accurate strain evaluation is required, and the micro-diameter limited visual field This is achieved by electron diffraction images using a stop.

図10及び図11に示すSi基板の断面模式図を用いて、格子歪みの観察及び測定例について説明する。電子回折を用いた格子歪み測定は、Si基板24上における歪領域21と無歪領域22(リファレンス)の電子回折パターンの回折スポット中心間距離を直接測長して、それぞれの回折スポット間距離の変化分を比較し、リファレンス領域22との相対歪み率として算出する手法として知られている。ここで、デバイス構造物23は歪を導入するためにSi基板24上に埋め込まれた物質であり、また複数個所の歪領域21と無歪領域22の観察視野の選択は、電気的な制御装置32で制限視野絞りを移動させながら行う。   An example of observation and measurement of lattice distortion will be described with reference to schematic cross-sectional views of the Si substrate shown in FIGS. Lattice strain measurement using electron diffraction is performed by directly measuring the distance between the diffraction spot centers of the electron diffraction pattern of the strained region 21 and the unstrained region 22 (reference) on the Si substrate 24, and measuring the distance between the diffraction spots. This method is known as a method of comparing changes and calculating the relative distortion rate with the reference region 22. Here, the device structure 23 is a material embedded on the Si substrate 24 in order to introduce strain, and the selection of the observation field of view of the strain regions 21 and the unstrained regions 22 at a plurality of locations is an electrical control device. In step 32, the limited field stop is moved.

本歪観察では、高精度なスポット中心位置の特定を行い測長精度を向上させるために、取得した回折スポット形状がシャープかつ高対称性の強度分布をもつことが重要にある。   In this distortion observation, it is important that the acquired diffraction spot shape has a sharp and highly symmetric intensity distribution in order to specify the spot center position with high accuracy and improve the measurement accuracy.

本発明の制限視野電子回折では、現行絞りの孔径よりも小さな孔径の絞りが作製できるようになったため、入射電子線の平行性を高めた直径10 nm以下の電子線照射に対応する制限視野電子回折像の観察が可能になり、0.1 % 程度の高精度な格子歪み測定に適用が可能である。   In the limited-field electron diffraction of the present invention, a diaphragm with a smaller hole diameter than that of the current diaphragm can be produced. Therefore, the limited-field electron beam corresponding to electron beam irradiation with a diameter of 10 nm or less with improved parallelism of the incident electron beam. The diffraction image can be observed, and it can be applied to highly accurate lattice distortion measurement of about 0.1%.

また、試料全体からの歪み分布を得る場合には、図10のように円形状の絞りを用いて複数領域からの歪みデータを取得するよりも、図11に示したように、四角形状の絞りを用いて測定領域のむらを省き、絞りで制限した領域の分解能を維持しながら、歪み分布測定領域を全面的に測定するほうが望ましい。   In addition, when obtaining the strain distribution from the entire sample, as shown in FIG. 11, a rectangular aperture is used rather than acquiring strain data from a plurality of regions using a circular aperture as shown in FIG. It is desirable to measure the entire strain distribution measurement region while eliminating the unevenness of the measurement region using the, and maintaining the resolution of the region limited by the diaphragm.

1,8・・・イオンビーム
2・・・金属板
3・・・スパッタ物
4・・・加工孔
5・・・イオン源
6・・・イオン光学系
7・・・偏向器
9・・・制御装置
10・・・絞りプレート
11・・・制限視野絞りプレート
12・・・ネジ孔
13・・・機械加工孔
14・・・予備加工領域
15・・・微細孔
16・・・微細孔加工部
17・・・加工孔側壁部
18・・・絞り孔加工規定位置
19・・・加工孔で制限した制限視野領域
20・・・制限視野ずれの発生した領域
21・・・歪み領域
22・・・無歪領域
23・・・デバイス構造物
24・・・Si基板
25・・・電子銃
26・・・電子線
27・・・収束レンズ絞り
28・・・照射レンズ
29・・・試料
30・・・制限視野絞り
31・・・対物レンズ
32・・・制御装置
33・・・制限視野絞りの孔に対応する視野
34・・・試料と交差する領域
35・・・中間レンズ
36・・・投射レンズ
DESCRIPTION OF SYMBOLS 1,8 ... Ion beam 2 ... Metal plate 3 ... Sputtered material 4 ... Processing hole 5 ... Ion source 6 ... Ion optical system 7 ... Deflector 9 ... Control Apparatus 10 ... Diaphragm plate 11 ... Restricted field diaphragm plate 12 ... Screw hole 13 ... Machined hole 14 ... Pre-machined region 15 ... Micro hole 16 ... Micro hole processed part 17 ·········································································································································· • Strain region 23 ... Device structure 24 ... Si substrate 25 ... Electron gun 26 ... Electron beam 27 ... Converging lens stop 28 ... Irradiation lens 29 ... Sample 30 ... Restriction Field stop 31 ... Objective lens
32 ... Control device 33 ... Field of view 34 corresponding to hole of limited field stop ... Area 35 intersecting sample 35 ... Intermediate lens 36 ... Projection lens

Claims (10)

透過電子顕微鏡の対物レンズの実像面に挿入され、観察視野を制限した状態で電子回折像を得るための制限視野絞りプレートであって、当該プレート本体の厚さより薄い予備加工領域を設け、この予備加工領域に視野絞り用の微細孔を形成したことを特徴とする透過電子顕微鏡の制限視野絞りプレート。   A limited field stop plate that is inserted into the real image surface of an objective lens of a transmission electron microscope and obtains an electron diffraction image in a state in which the observation field is limited, and is provided with a preliminary processing region that is thinner than the thickness of the plate body. A limited field stop plate of a transmission electron microscope, characterized in that a fine hole for a field stop is formed in a processing region. 請求項1記載の制限視野絞りプレートは、数十μm厚のモリブデン、タンタルなどの単一金属材料で構成したことを特徴とする透過電子顕微鏡の制限視野絞りプレート。   The limited field stop plate according to claim 1, which is made of a single metal material such as molybdenum or tantalum having a thickness of several tens of μm. 請求項1又は2記載の制限視野絞りプレートにおいて、前記予備加工領域の厚さを2μm相当とし、前記微細孔の径を1μm以下としたことを特徴とする透過電子顕微鏡の制限視野絞りプレート。   3. The limited field stop plate of a transmission electron microscope according to claim 1, wherein a thickness of the preliminary processing region is equivalent to 2 μm and a diameter of the fine hole is 1 μm or less. 請求項1記載の制限視野絞りプレートにおいて、前記微細孔の側壁形状が電子線入射方向に対し平行な非テーパー形状としたことを特徴とする透過電子顕微鏡の制限視野絞りプレート。   2. The limited field stop plate of a transmission electron microscope according to claim 1, wherein a side wall shape of the fine hole is a non-tapered shape parallel to an electron beam incident direction. 請求項1記載の制限視野絞りプレートにおいて、当該絞りプレートの長軸方向に沿って微細孔を複数個形成したことを特徴とする透過電子顕微鏡の制限視野絞りプレート。   2. The limited field stop plate of a transmission electron microscope according to claim 1, wherein a plurality of fine holes are formed along a major axis direction of the stop plate. 請求項1記載の制限視野絞りプレートにおいて、前記微細孔の形状を多角形状としたことを特徴とする透過電子顕微鏡の制限視野絞りプレート。   2. The limited field stop plate of a transmission electron microscope according to claim 1, wherein the fine hole has a polygonal shape. 透過電子顕微鏡の対物レンズの実像面に挿入され、観察視野を制限した状態で電子回折像を得るための制限視野絞りプレートの製造方法において、当該プレート本体の厚さより薄い予備加工領域をFIB加工により形成し、次に、この予備加工領域の中の特定の位置に前記FIBで微細孔を貫通することを特徴とする透過電子顕微鏡の制限視野絞りプレートの製造方法。   In a manufacturing method of a limited field diaphragm plate that is inserted into a real image surface of an objective lens of a transmission electron microscope and obtains an electron diffraction image in a state where an observation field is limited, a preliminary processing region thinner than the thickness of the plate body is obtained by FIB processing. A method of manufacturing a limited field stop plate for a transmission electron microscope, which is formed and then penetrates through a fine hole with the FIB at a specific position in the preliminary processing region. 請求項7記載の製造方法において、前記FIB加工における係数パラメータの入力により、設定到達加工深さの終点位置をコントロールし、前記予備加工領域を形成することを特徴とする透過電子顕微鏡の制限視野絞りプレートの製造方法。   8. The limited field stop of a transmission electron microscope according to claim 7, wherein the preliminary processing region is formed by controlling an end point position of a set reaching processing depth by inputting a coefficient parameter in the FIB processing. Plate manufacturing method. 請求項1記載の制限視野絞りプレートを透過電子顕微鏡の対物レンズの実像面に挿入し、観察視野を制限した状態で試料の電子回折像を観察することを特徴とする透過電子顕微鏡の制限視野電子回折像の観察方法。   A limited field electron of a transmission electron microscope, wherein the limited field stop plate according to claim 1 is inserted into a real image surface of an objective lens of a transmission electron microscope, and an electron diffraction image of the sample is observed in a state where the observation field is limited. Observation method of diffraction image. 請求項9記載の制限視野電子回折像の観察方法において、前記微細孔の径が1μm以下の制限視野絞りプレートを用い、直径10 nm以下の電子線照射に対応する制限視野電子回折像で前記試料の局所的な格子歪みを観察する透過電子顕微鏡の制限視野電子回折像の観察方法。   10. The method for observing a limited field electron diffraction image according to claim 9, wherein the sample is obtained with a limited field electron diffraction image corresponding to electron beam irradiation having a diameter of 10 nm or less using a limited field diaphragm plate having a diameter of the micropore of 1 μm or less. To observe a limited-field electron diffraction image of a transmission electron microscope for observing local lattice distortions of the transmission electron microscope.
JP2010117313A 2010-05-21 2010-05-21 Selected area aperture plate of transmission electron microscope, manufacturing method of selected area aperture plate, and observing method of selected area electron diffraction image Withdrawn JP2011243540A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010117313A JP2011243540A (en) 2010-05-21 2010-05-21 Selected area aperture plate of transmission electron microscope, manufacturing method of selected area aperture plate, and observing method of selected area electron diffraction image

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010117313A JP2011243540A (en) 2010-05-21 2010-05-21 Selected area aperture plate of transmission electron microscope, manufacturing method of selected area aperture plate, and observing method of selected area electron diffraction image

Publications (1)

Publication Number Publication Date
JP2011243540A true JP2011243540A (en) 2011-12-01

Family

ID=45409983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010117313A Withdrawn JP2011243540A (en) 2010-05-21 2010-05-21 Selected area aperture plate of transmission electron microscope, manufacturing method of selected area aperture plate, and observing method of selected area electron diffraction image

Country Status (1)

Country Link
JP (1) JP2011243540A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012252967A (en) * 2011-06-07 2012-12-20 Nippon Steel & Sumitomo Metal Drawing plate for electron microscope and manufacturing method thereof
CN105158514A (en) * 2015-07-30 2015-12-16 上海华力微电子有限公司 Method for positioning TEM sample having repeating unit structure
JP2017224449A (en) * 2016-06-14 2017-12-21 日本電子株式会社 Electron microscope and image acquisition method
US11961704B2 (en) 2019-07-02 2024-04-16 Hitachi High-Tech Corporation Charged particle beam system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS493292B1 (en) * 1970-04-18 1974-01-25
JPH01267945A (en) * 1988-04-19 1989-10-25 Jeol Ltd Focusing system of electron microscope
JPH0326045U (en) * 1989-07-21 1991-03-18
JPH04206248A (en) * 1990-11-30 1992-07-28 Hitachi Ltd Electron beam diffraction image recorder
JPH10261566A (en) * 1997-03-18 1998-09-29 Toshiba Corp Method for manufacturing through hole for measuring beam current
JP2003166954A (en) * 2001-12-03 2003-06-13 Hitachi Ltd Network solution analysis method
JP2009021156A (en) * 2007-07-13 2009-01-29 Hitachi Ltd Charged particle beam apparatus and charged particle beam microscope
JP2009249236A (en) * 2008-04-07 2009-10-29 Sumitomo Electric Ind Ltd Group iii nitride semiconductor element and epitaxial wafer

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS493292B1 (en) * 1970-04-18 1974-01-25
JPH01267945A (en) * 1988-04-19 1989-10-25 Jeol Ltd Focusing system of electron microscope
JPH0326045U (en) * 1989-07-21 1991-03-18
JPH04206248A (en) * 1990-11-30 1992-07-28 Hitachi Ltd Electron beam diffraction image recorder
JPH10261566A (en) * 1997-03-18 1998-09-29 Toshiba Corp Method for manufacturing through hole for measuring beam current
JP2003166954A (en) * 2001-12-03 2003-06-13 Hitachi Ltd Network solution analysis method
JP2009021156A (en) * 2007-07-13 2009-01-29 Hitachi Ltd Charged particle beam apparatus and charged particle beam microscope
JP2009249236A (en) * 2008-04-07 2009-10-29 Sumitomo Electric Ind Ltd Group iii nitride semiconductor element and epitaxial wafer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012252967A (en) * 2011-06-07 2012-12-20 Nippon Steel & Sumitomo Metal Drawing plate for electron microscope and manufacturing method thereof
CN105158514A (en) * 2015-07-30 2015-12-16 上海华力微电子有限公司 Method for positioning TEM sample having repeating unit structure
CN105158514B (en) * 2015-07-30 2018-02-27 上海华力微电子有限公司 A kind of localization method of repeat unit structure TEM sample
JP2017224449A (en) * 2016-06-14 2017-12-21 日本電子株式会社 Electron microscope and image acquisition method
US11961704B2 (en) 2019-07-02 2024-04-16 Hitachi High-Tech Corporation Charged particle beam system

Similar Documents

Publication Publication Date Title
US9733164B2 (en) Lamella creation method and device using fixed-angle beam and rotating sample stage
KR101463245B1 (en) Intensive ion beam apparatus, sample cross-section making method using the same, and method of producing a flake sample
JP5099291B2 (en) Focused ion beam apparatus and sample cross-section processing and observation method
CN100580865C (en) Apparatus and method for studying or modifying surfaces using charged particle beams
US6949756B2 (en) Shaped and low density focused ion beams
JP2013257317A5 (en)
JP2010230672A (en) Method of forming image while milling work piece
US8907296B2 (en) Charged particle beam system aperture
JP2000123768A (en) Charged particle beam device, adjustment method of charged particle beam device and manufacture of semiconductor device
JP5560246B2 (en) Standard sample used for charged particle beam apparatus and method for producing standard sample used for charged particle beam apparatus
JP2007248082A (en) Standard sample used for charged particle beam apparatus, charged particle beam apparatus, and method for producing standard sample used for charged particle beam apparatus
KR20150110392A (en) Focused ion beam apparatus
JP2011243540A (en) Selected area aperture plate of transmission electron microscope, manufacturing method of selected area aperture plate, and observing method of selected area electron diffraction image
TWI853302B (en) High resolution multiple beam source and method for generating multiple beams
JP2007012290A (en) Charged particle beam application equipment
JP2011014299A (en) Scanning electron microscope
US20190198284A1 (en) Electron source and electron beam irradiation device
TW202145286A (en) Electron beam system for inspection and review of 3d devices
WO2000013200A1 (en) Electron microscope
KR20200124209A (en) A device for producing flake samples and a method for producing flake samples
JP7182003B2 (en) charged particle beam system
JP4845452B2 (en) Sample observation method and charged particle beam apparatus
US11435178B2 (en) Calibration sample, electron beam adjustment method and electron beam apparatus using same
JP6961367B2 (en) Object construction method and related particle beam system
KR101787379B1 (en) Fabrication Method of Monochromator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130827

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20131021