[go: up one dir, main page]

JPH01262387A - Parallel compression type refrigerator - Google Patents

Parallel compression type refrigerator

Info

Publication number
JPH01262387A
JPH01262387A JP63089406A JP8940688A JPH01262387A JP H01262387 A JPH01262387 A JP H01262387A JP 63089406 A JP63089406 A JP 63089406A JP 8940688 A JP8940688 A JP 8940688A JP H01262387 A JPH01262387 A JP H01262387A
Authority
JP
Japan
Prior art keywords
capacity
compressor
inverter
medium
driven
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63089406A
Other languages
Japanese (ja)
Inventor
Toshiaki Yamaguchi
敏明 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP63089406A priority Critical patent/JPH01262387A/en
Publication of JPH01262387A publication Critical patent/JPH01262387A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors
    • F25B2400/0751Details of compressors or related parts with parallel compressors the compressors having different capacities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Control Of Positive-Displacement Pumps (AREA)

Abstract

PURPOSE:To improve the extent of capacity transfer performance by controlling each compressor of large and small capacities for starting and stopping according to refrigerant pressure at the low pressure side, while controlling the output frequency of an inverter connected to a medium capacity compressor, in a device parallelly connecting three compressors difference capacity each. CONSTITUTION:In a device which secures required refrigerating capacity to refrigeration load of a cooling system 2 with showcases 2a-2c by a refrigerator A inclusive of three compressors 1b-1d different in large, medium and small capacities selected at almost 1:1.5:2 in each rated capacity ratio, there is provided with a pressure detecting element 4 which detects the refrigerating capacity at the low pressure side. In addition, an inverter 1i continuously controllable up to 50-125% of the rated capacity is connected to the medium capacity compressor 1c. Then, output frequency of the inverter 1i is controlled by a control part 3 according to output of the pressure detector 4, while these large and small capacity compressors 1b, 1d are controlled for their on-off operation, and thereby refrigerant pressure at the low pressure is converged on the specified setting value.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、たとえばスーパーマーケットなど同一場所
に設置された複数台の冷凍・冷蔵ショーケース群で使用
される冷凍装置、すなわち負荷変動の大きい冷凍装置に
おいて、常に最適な状態で運転できるようにした並列圧
縮式冷凍装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] This invention relates to a refrigeration system used in a group of multiple freezer/refrigerated showcases installed at the same place, such as a supermarket, that is, a refrigeration system with large load fluctuations. The present invention relates to a parallel compression refrigeration system that can always operate in an optimal state.

〔従来の技術〕[Conventional technology]

従来、と・の種の装置としてはgrI3図に示すものが
あった。このl!3図において、(A)は並列圧縮式冷
凍装置、(2)は複数台のショーケース(2m)、 (
2b)。
Conventionally, there was a type of device shown in figure grI3. This l! In Figure 3, (A) is a parallel compression refrigeration system, (2) is a multiple showcase (2m), (
2b).

(2c)の組合せで構成された冷却装置である。fil
は凝縮装置であり、水冷式の凝縮器(1a)あるし)は
空冷式凝縮器(図示せず)の下流側に接続される受液4
器の上に圧縮機の定格容量比がは″i1対1.5対2に
選定されている大容量の圧縮機(1b)と中容量の圧縮
機(IC)と小容量の圧縮機(1d)の3台カニ並列に
搭載されており、かつ各圧縮機(1b)と(IC)と(
1d)の冷媒吐出管(IC)および吸入管(1f)が並
列に接続されている。
This is a cooling device configured with the combination of (2c). fil
is a condensing device, and a water-cooled condenser (1a) is a liquid receiver 4 connected downstream of an air-cooled condenser (not shown).
A large capacity compressor (1b), a medium capacity compressor (IC), and a small capacity compressor (1d) are placed on top of the container, with the rated capacity ratio of the compressors being selected as i1 to 1.5 to 2. ) are installed in parallel, and each compressor (1b), (IC) and (
The refrigerant discharge pipe (IC) and suction pipe (1f) of 1d) are connected in parallel.

なお、(ig)は各圧縮機(1b)と(IC)のクラン
ク室を相互に連通させる均圧均油管、(1h)は各圧縮
機(1b)と(1d)のクランク室を相互に連通させる
均圧均油管である。(3)は上記圧縮機(lb)、 (
lc)および(1d)の低圧側の冷媒圧力を検出する圧
力検出部(4)の出力信号に応じて上記圧縮機(lb)
、 (lc)および(1d)の運転を制御する制御部で
ある。
In addition, (ig) is a pressure equalizing oil pipe that communicates the crank chambers of each compressor (1b) and (IC) with each other, and (1h) is a pipe that communicates the crank chambers of each compressor (1b) and (1d) with each other. This is a pressure equalizing oil pipe. (3) is the above compressor (lb), (
The compressor (lb) according to the output signal of the pressure detection unit (4) that detects the refrigerant pressure on the low pressure side of
, (lc) and (1d).

また、!4図に示すように、通常圧力領域は、容量アッ
プ圧力値、容量ダウン圧力値、低圧力・ント債の3つに
よって、並列圧縮式冷凍装置(A)に容量アップ信号を
出す容量アップ圧力値以上の領域に)と、並列圧縮式冷
凍装置(A)に容量ダウン信号も容量アップ信号も出さ
ない容量ダウン圧力値以上で、かつ容量アップ圧力値未
開の領域(ハ)と、並列圧縮式冷凍装置(A)に容量ダ
ウン信号を出す容量ダウン圧力値未開の領域(ロ)と、
並列圧縮式冷凍装置(A)に停止信号を出す低圧カット
値以下の領域(イ)の4つに分けられる。
Also,! As shown in Figure 4, the normal pressure region is determined by three factors: capacity up pressure value, capacity down pressure value, and low pressure/low pressure value. above), the parallel compression refrigeration system (A) has a capacity down pressure value or higher where neither a capacity down signal nor a capacity up signal is output, and the capacity up pressure value has not yet been reached (c), and a parallel compression refrigeration system a capacity down pressure value unexplored area (b) that sends a capacity down signal to the device (A);
It can be divided into four areas (A) where the pressure is below the low pressure cut value that issues a stop signal to the parallel compression refrigeration system (A).

次に動作について説明する。たとえば、冷却装置(2)
の冷凍負荷に対する所要の冷凍能力を得るための所要動
力が22.5IPである場合に、圧縮機(1b)の定格
容量はl0IP、圧縮機(1c)の定格容量は7.5W
1圧縮機(1d)の定格容量は5)Pに選定されている
Next, the operation will be explained. For example, cooling device (2)
When the required power to obtain the required refrigerating capacity for the refrigerating load is 22.5 IP, the rated capacity of the compressor (1b) is 10 IP, and the rated capacity of the compressor (1 c) is 7.5 W.
The rated capacity of 1 compressor (1d) is selected as 5)P.

一方、複数台のショーケース(2m)* (2b)、(
2c)からなる冷却装置(2)では、各ショーケースの
使用状況によって冷凍負荷はOから100%まで大幅に
変動する。
On the other hand, multiple showcases (2m) * (2b), (
In the cooling device (2) consisting of 2c), the refrigeration load varies greatly from 0 to 100% depending on the usage status of each showcase.

ここで1.冷凍負荷が少なくなると、冷凍サイクルの低
圧側の冷媒圧力が下がり、これに伴って圧力検出部(4
)から制御部(3)に出力される圧力検出信号のレベル
も低下する。
Here 1. When the refrigeration load decreases, the refrigerant pressure on the low pressure side of the refrigeration cycle decreases, and the pressure detection part (4
) also decreases the level of the pressure detection signal output from the controller (3).

制御部(3)では、上記圧力検出信号を基準値(容量ア
ップ圧力値あるいは容量ダウン圧力値)と比較する比較
回路を有しているため、圧力検出信号が容量ダウン圧力
値よりも低い場合、すなわち領域(ロ)の場合には、制
御部(31は並列圧縮式冷凍装置(A)の容量が低下す
るように制御し、冷却能力を下げる。このようにして冷
却能力が下げられると、冷凍サイクルの低圧側の冷媒圧
力が上昇し、領域f→に収束し、運転は安定する。
The control unit (3) has a comparison circuit that compares the pressure detection signal with a reference value (capacity up pressure value or capacity down pressure value), so if the pressure detection signal is lower than the capacity down pressure value, In other words, in the case of region (B), the control unit (31) controls the capacity of the parallel compression refrigeration system (A) to decrease, thereby lowering the cooling capacity. The refrigerant pressure on the low pressure side of the cycle increases and converges to the region f→, and the operation becomes stable.

また、冷却負荷が高い場合には、冷凍サイクルの低圧側
の冷媒圧力が上昇し、これに伴って圧力検出部(4)か
ら制御部(3)に出力される圧力検出信号のレベルが上
昇する。この結果、圧力検出信号が容量アップ圧力値よ
りも高い場合、すなわち領域に)の場合には、制御部(
3)は並列圧縮式冷凍装置(A)の容量がアップするよ
うに制御し、冷却能力を増加させる。このようにして冷
却能力が増加すると、冷凍サイクルの低圧側の冷媒圧力
は低下し、領域(ハ)に収束し、運転は安定する。
Additionally, when the cooling load is high, the refrigerant pressure on the low pressure side of the refrigeration cycle increases, and the level of the pressure detection signal output from the pressure detection section (4) to the control section (3) increases accordingly. . As a result, if the pressure detection signal is higher than the capacity up pressure value, i.e. in the area), the control unit (
3) is controlled to increase the capacity of the parallel compression type refrigeration system (A), thereby increasing the cooling capacity. When the cooling capacity increases in this way, the refrigerant pressure on the low pressure side of the refrigeration cycle decreases and converges to region (c), and the operation becomes stable.

なお、冷凍サイクルの低圧側の冷媒圧力が低圧カット値
以下、すなわち領域(イ)になった場合、圧縮機(lb
)、(lc)、 (ld)は直ちに停止するようになっ
ている。
Note that if the refrigerant pressure on the low pressure side of the refrigeration cycle is below the low pressure cut value, that is, in region (A), the compressor (lb
), (lc), and (ld) are designed to stop immediately.

したがって、上記の冷凍負荷変動に対し、冷凍負荷が2
fl以下の部分負荷時には定格容量5H’の圧縮機(1
d)のみが単独運転される。また、冷凍負荷が22〜3
3チの範囲では定格容量7.5B’の圧礫機(1c)の
みが単独運転される。冷凍負荷が33〜44俤の範囲で
は定格容量101Fの圧縮機(1b)のみが単独運転さ
れる。
Therefore, for the above refrigeration load fluctuation, the refrigeration load is 2
At partial loads below fl, a compressor with a rated capacity of 5H' (1
d) is operated independently. In addition, the refrigeration load is 22 to 3
In the range of 3 inches, only the crusher (1c) with a rated capacity of 7.5B' is operated independently. When the refrigerating load is in the range of 33 to 44 k, only the compressor (1b) with a rated capacity of 101F is operated independently.

さらに、冷凍負荷が44〜55チの範囲では圧縮機(1
c)と(1d)が同時に並列運転される。冷凍負荷が5
5〜66%の範囲では圧縮機(1b)と(1d)が同時
に並列運転される。冷凍負荷が66〜77チの範囲では
圧縮機(1b)と(1c)が同時に並列運転される。
Furthermore, if the refrigeration load is in the range of 44 to 55 inches, the compressor (1
c) and (1d) are operated in parallel at the same time. Refrigeration load is 5
In the range of 5 to 66%, compressors (1b) and (1d) are operated in parallel at the same time. When the refrigerating load is in the range of 66 to 77 inches, the compressors (1b) and (1c) are operated in parallel at the same time.

冷凍負荷が77〜100チの範囲では圧縮機(1b)と
(lc)と(1d)が同時に並列運転される。この容量
制御運転の推移を示せば%5図のようになる。
When the refrigeration load is in the range of 77 to 100 inches, the compressors (1b), (lc), and (1d) are operated in parallel at the same time. The transition of this capacity control operation is shown in Figure 5.

すなわち、%5図に示されているように圧縮機の定格容
量比がはヌ1対1.5対2に選定されている大中小の圧
縮機を選択的に運転、停止制御することによって0.2
2.33.44.55.66、77、100%の8段階
の容量制御運転を行うことができる。
In other words, as shown in Figure 5, by selectively operating and stopping small, medium and large compressors, the rated capacity ratio of the compressors is selected to be 1:1:1:5:2. .2
Capacity control operation can be performed in eight stages: 2.33.44.55.66, 77, and 100%.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の並列圧縮式冷凍装#は以上のように構成されてい
るので、0.22.33.44.55.66、77゜1
00%の8段階の容量制御運転しかできず、冷凍負荷が
0〜22%の間、22〜3.3%(7)間、 33〜4
4%の間、44〜55チの間、55〜66チの間、66
〜77チの間および77〜100チの間の部分負荷域で
は圧縮機の過剰運転となって運転効率が著しく低下する
欠点があった。
Since the conventional parallel compression type refrigeration system # is configured as described above, 0.22.33.44.55.66, 77°1
Capacity control operation can only be performed in 8 stages of 00%, and the refrigeration load is between 0 and 22%, between 22 and 3.3% (7), and between 33 and 4.
Between 4%, between 44 and 55 inches, between 55 and 66 inches, 66 inches
In the partial load range between 77 inches and 77 inches to 100 inches, the compressor is over-operated, resulting in a significant drop in operating efficiency.

この発明は、上記従来の欠点を除去するためになされた
もので、冷凍負荷の17〜108%の変動壇で冷凍負荷
に追従した最適な運転ができ、部分負荷に対する運転効
率が向上できる並列圧縮式冷凍装置を提供することを目
的とする。
This invention was made in order to eliminate the above-mentioned conventional drawbacks, and it is possible to perform optimal operation that follows the refrigeration load at a variable stage of 17 to 108% of the refrigeration load, and to improve the operating efficiency for partial loads. The purpose of this invention is to provide a type refrigeration system.

〔課題を解決するための手段〕[Means to solve the problem]

この発明においては、定格容量比がはソ1対1.5対2
に選定されている大容量、中容量および小容量の圧縮機
を有し、かつこの圧縮機に凝縮器を接続した凝縮装置、
並びにこの凝縮装置に接続され之冷却装置から構成され
る装置 冷凍装置の低圧側における冷媒圧力を検出して圧力検出
信号を発生する圧力検出部と、出力周波数に応じ上記中
容量の圧縮機のみその定格容量の50〜125%まで連
続的に制御するインバータ、および上記圧力検出信号に
応じて上記インバータの出力周波数を制御すると共に上
記大容量並びに小容量の圧縮機の運転をON, OFF
制御することにより、低圧側の冷媒圧力を所定の設定値
に収束させる制御部とを備え、その制御部の出力に基づ
き上記冷却装置の冷凍負荷が17〜39%では上記イン
バータにより上記中容量の圧縮機のみを駆動すると共に
冷凍負荷が39〜61%では上記小容量の圧縮機を商用
交流電源で駆動し、中容量の圧縮機を上記インバータに
て駆動して並列運転し、かつ冷凍負荷が61〜83チで
は上記の大容量の圧縮機を商用交流電源で駆動し、中容
量の圧縮機を上記インバータにて駆動して並列運転する
。さらに冷凍負荷が83〜108チでは上記小容量およ
び大容量の圧縮機を商用交流を源で駆動し中容1の圧縮
機を上記インバータにて駆動して並列運転させることに
より上記目的を達成するものである。
In this invention, the rated capacity ratio is 1:1.5:2.
A condensing device having a large capacity, medium capacity and small capacity compressor selected as
There is also a pressure detection section that detects the refrigerant pressure on the low-pressure side of the refrigeration system, which is connected to the condensation device and includes a cooling device, and generates a pressure detection signal, and a pressure detection section that detects the refrigerant pressure on the low pressure side of the refrigeration system, which is connected to the condensation device and generates a pressure detection signal. An inverter that continuously controls up to 50 to 125% of the rated capacity, and controls the output frequency of the inverter according to the pressure detection signal, and turns on and off the operation of the large capacity and small capacity compressors.
and a control unit that converges the refrigerant pressure on the low pressure side to a predetermined set value by controlling the refrigerant pressure on the low pressure side, and when the refrigeration load of the cooling device is 17 to 39% based on the output of the control unit, the inverter controls the medium capacity. When only the compressor is driven and the refrigeration load is 39 to 61%, the small capacity compressor is driven by the commercial AC power supply, the medium capacity compressor is driven by the inverter and operated in parallel, and the refrigeration load is In units 61 to 83, the large-capacity compressor is driven by a commercial AC power source, and the medium-capacity compressor is driven by the inverter to operate in parallel. Further, when the refrigeration load is 83 to 108 inches, the above objective is achieved by driving the small capacity and large capacity compressors with the commercial alternating current source, and driving the medium capacity 1 compressor with the inverter to operate them in parallel. It is something.

〔作用〕[Effect]

この発明における冷凍装置は、制御部の出力に基づき、
インバータを介して上記中容量の圧縮機のみ、その定格
容量の50〜125チまで連続的に制御すると共に大容
量並びに小容量の圧縮機の運転をON 、 OFF w
lJ御するものであり、上記冷却装置の冷凍負荷が17
〜39%では上記インバータにより上記中容量の圧縮機
のみを駆動し、かつ冷凍負荷が39〜61%では上記小
容量の圧縮機を商用交流電源で駆動し中容量の圧縮機を
上記インバータにて駆動して並列運転し、冷凍負荷が6
1〜83%では上記大容量の圧縮機を商用交流x源で駆
動し中容量の圧縮機を上記インバータにて駆動して並列
運転する。さらに冷凍負荷が83〜108チでは上記小
容量および大容量の圧縮機を商用交流電源で駆動し中容
量の圧縮機を上記インバータにて駆動して並列運転する
ことにより、冷凍負荷の17〜108チの変動域で冷凍
負荷に追従した最適な運転ができ、非常に経済的で省エ
ネルギ化に有利となる。
The refrigeration system in this invention is based on the output of the control section,
Through the inverter, only the medium-capacity compressor is continuously controlled up to its rated capacity of 50 to 125 inches, and the large-capacity and small-capacity compressors are turned on and off.
1J, and the refrigeration load of the cooling device is 17
When the refrigeration load is between 39% and 39%, only the medium capacity compressor is driven by the inverter, and when the refrigeration load is between 39 and 61%, the small capacity compressor is driven by the commercial AC power supply and the medium capacity compressor is driven by the inverter. Drive and parallel operation, refrigeration load is 6
At 1% to 83%, the large capacity compressor is driven by the commercial AC x source, and the medium capacity compressor is driven by the inverter for parallel operation. Furthermore, when the refrigeration load is 83 to 108 inches, the small capacity and large capacity compressors are driven by the commercial AC power supply, and the medium capacity compressor is driven by the inverter and operated in parallel. It is possible to perform optimal operation that follows the refrigeration load in the range of fluctuations in temperature, making it extremely economical and advantageous for energy conservation.

〔実施例〕〔Example〕

以下、この発明による並列圧縮式冷凍装置の実施例を図
について説明する。¥I1図はその一実施例の冷媒回路
図であり、この並列圧縮式冷凍装t(A)には′@3図
と同様に互いに孔列に配管接続されている複数台のショ
ーケース(2l)〜(2C)で構成された冷却装置(2
)が接続されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of a parallel compression type refrigeration system according to the present invention will be described with reference to the drawings. Figure I1 is a refrigerant circuit diagram of one embodiment, and this parallel compression type refrigeration system t(A) has a plurality of showcases (2l ) to (2C)
) are connected.

一方、並列圧縮式冷凍装置(A)は83図と異なり、中
容量の圧縮機(I C’)にはその定格容量の50〜1
25チまで連続的に制御できるインバータ(10が接続
されている。なお、他の構成機器は!3図と同じである
On the other hand, the parallel compression type refrigeration system (A) is different from the one shown in Fig. 83, and the medium capacity compressor (I C') has a
An inverter (10 is connected) that can continuously control up to 25 channels.The other components are the same as in Figure 3.

次に、以上のように構成されたこの発明の並列圧縮式冷
凍装置体)の動作について説明する。
Next, the operation of the parallel compression type refrigeration system of the present invention configured as described above will be explained.

たとえば、冷却装置(2)の冷凍負荷に対する所要の冷
凍能力を得るための所要動力が22.5Pである場合に
、圧縮機(1b)の定格容量は10P、圧縮機(lc)
の定格容量は7−5Pl圧縮機(1d)の定格容量は5
)Pに選定され、圧縮機(IC)の容量はインバータ(
II)により3.75〜9.375)Pまで連続的に変
動させることができる。制御部(3)は、負荷容量に応
じて、圧縮機(lb)、(lc) 、(ld)とも停止
、圧縮機(IC)のみインバータ(11)で単独運転、
圧縮機(IC)をインバータ(II)で圧縮機(1d)
を商用交流電源で運転。
For example, if the required power to obtain the required refrigerating capacity for the refrigerating load of the cooling device (2) is 22.5P, the rated capacity of the compressor (1b) is 10P, and the compressor (lc)
The rated capacity of the compressor (1d) is 7-5Pl The rated capacity of the compressor (1d) is 5
) P is selected, and the capacity of the compressor (IC) is selected as the inverter (
II) can be continuously varied from 3.75 to 9.375) P. The control unit (3) stops all the compressors (lb), (lc), and (ld) depending on the load capacity, and operates only the compressor (IC) independently with the inverter (11).
Compressor (IC) with inverter (II)
is operated on commercial AC power.

圧縮機(1c)をインバータ(II)で圧縮機(1b)
を商用交流電源で運転、圧縮機(lc) ?インバータ
(11)で圧縮機Qb) 、(ld)を商用交流電源で
運転の順に容量を増加するように制御する。冷却装置(
2)の冷凍負荷変動に対し、冷凍負荷が39%以下の部
分負荷時には定格容量7.5Wの圧縮機(IC)のみが
インバータ(II)により単独運転され、冷凍負荷に追
従するようにインバータ(11)により圧縮機(IC)
の容量が3.75〜8.751P−1で変動する。
The compressor (1c) is connected to the compressor (1b) by the inverter (II).
Is the compressor (LC) operated on commercial AC power? The inverter (11) controls the compressors Qb) and (ld) so that their capacities increase in the order of operation with commercial AC power. Cooling system(
Regarding the refrigeration load fluctuation in 2), when the refrigeration load is at partial load of 39% or less, only the compressor (IC) with a rated capacity of 7.5W is operated independently by the inverter (II), and the inverter (IC) is operated independently to follow the refrigeration load. 11) Compressor (IC)
The capacity varies from 3.75 to 8.751P-1.

ま九、冷凍負荷が39〜61%になれば圧縮機(Ic)
はインバータ(10により運転され、圧縮機((1d)
は商用交流電源により同時に並列運転される。
Nine, if the refrigeration load reaches 39-61%, the compressor (Ic)
is operated by an inverter (10) and a compressor ((1d)
are simultaneously operated in parallel by a commercial AC power source.

このとき冷凍負荷に追従するようにインバータ(11)
により圧縮機(1c)の容量が3.75〜8.75 )
P 1で変動し、圧縮機(1d)の定格容i 5 )P
が加わるので、並列圧縮式冷凍装置全体としては容量は
8.75〜13.75Wまで変動する。冷凍負荷が61
〜83%になれば圧縮機(1c)はインバータ(11)
により運転され、圧縮機(lb)は商用交流電源により
同時に並列運転される。このとき冷凍負荷に追従するよ
うにインバータ(11)により圧縮機(IC)の容量が
3.75〜8.75Wまで変動し、圧縮機(1b)の定
格容量10)Pが加わるので、並列圧縮式冷凍装置全体
としては容量は13.75〜18.75)Pまで変動す
る。冷凍負荷が83〜108%になれば圧縮機(IC)
はインバータ(11)により運転され、圧縮機(lb)
、 (ld)は商用交流電源により同時に並列運転され
る。
At this time, the inverter (11) is installed to follow the refrigeration load.
The capacity of the compressor (1c) is 3.75 to 8.75)
The rated capacity of the compressor (1d) i 5 ) P
is added, so the capacity of the entire parallel compression type refrigeration system varies from 8.75 to 13.75W. Refrigeration load is 61
When it reaches ~83%, the compressor (1c) is replaced by an inverter (11)
The compressor (lb) is simultaneously operated in parallel by a commercial AC power source. At this time, the capacity of the compressor (IC) changes from 3.75 to 8.75 W by the inverter (11) to follow the refrigeration load, and the rated capacity 10) P of the compressor (1b) is added, so parallel compression The capacity of the entire type refrigeration system varies from 13.75 to 18.75)P. When the refrigeration load reaches 83-108%, the compressor (IC)
is operated by an inverter (11), and a compressor (lb)
, (ld) are simultaneously operated in parallel by a commercial AC power source.

このとき、冷凍負荷に追従するようにインバータ(11
)により圧縮機(1c)の容量が3.75〜9.375
 Pまで変動し、圧縮機(1b)の定格容量10H)お
よび圧縮機(1d)の定格容量5Fが加わるので並列圧
縮式冷凍装置全体としては容量18.75〜24.37
5fFまで変動する。
At this time, the inverter (11
), the capacity of the compressor (1c) is 3.75 to 9.375
Since the rated capacity of the compressor (1b) (10H) and the rated capacity of the compressor (1d) of 5F are added, the parallel compression refrigeration system as a whole has a capacity of 18.75 to 24.37.
It fluctuates up to 5fF.

この容量制御運転の推移を示せば第2図のようになる。The transition of this capacity control operation is shown in Figure 2.

すなわち、第2図に示されているように圧縮機の定格容
量比がはソ1対1.5対2に選定されている大中小の圧
縮機(lb)+ (lc)、(ld)を選択的に運転、
停止制御すると共にインバータにより中容量の圧縮機(
1c)の容量を50〜125%まで連続的に容量制御す
ることにより、0および17〜108チまで連続的に容
量制御運転を行なうことができる。
In other words, as shown in Figure 2, large, medium and small compressors (lb) + (lc), (ld) whose rated capacity ratios are selected to be 1:1:1:2: drive selectively,
A medium capacity compressor (
By continuously controlling the capacity of 1c) from 50 to 125%, continuous capacity control operation can be performed from 0 and 17 to 108 inches.

この結果、冷凍負荷の17〜108%の変動域で冷凍負
荷に追従し之最適な運転ができ、第3図の従来方式と比
較して省エネルギ化に有利な並列圧縮式冷凍装置となる
。しかも、3台の圧縮機のうち、中容量の圧縮機(1c
)の容量ft50〜125%まで制御できるインバータ
1台により上記の容量制御が可能となり、非常に経済的
である。
As a result, the parallel compression type refrigeration system is able to perform optimal operation by following the refrigeration load in a fluctuation range of 17 to 108% of the refrigeration load, and is more advantageous in energy saving than the conventional system shown in FIG. Moreover, among the three compressors, the medium capacity compressor (1c
) Capacity ft 50 to 125% can be controlled with a single inverter, making the above capacity control possible and very economical.

なお、並列圧縮式冷凍装置(A)の容量の17%以下で
圧縮機を運転すれば、冷媒循環量が減少し、ショーケー
スなどの油滞溜量が増加し、圧縮機の摺動部への潤滑油
の供給不良などによる焼付が起こる恐れがあり、17%
以下で冷凍負荷に追従して容量制御運転を行なうことは
危険である。
Note that if the compressor is operated at 17% or less of the capacity of the parallel compression refrigeration system (A), the amount of refrigerant circulating will decrease, and the amount of oil accumulated in the showcase will increase, causing damage to the sliding parts of the compressor. There is a risk of seizure due to insufficient supply of lubricating oil, etc., and 17%
It is dangerous to perform capacity control operation following the refrigeration load in the following conditions.

〔発明の効果〕〔Effect of the invention〕

以上のように、この並列圧縮式冷凍装置によれば、圧縮
機の定格容量比がはソ1対1.5対2に選定されている
犬、中、小3台の圧縮機を並列接続した冷凍装置におい
て、上記冷凍装置の低圧側の冷媒圧力を検出する圧力検
出部と、この圧力検出部の圧力検出信号を入力とし上記
大容量並びに小容量圧縮機の運転をON、 OFF制御
すると共にインバータの出力周波数を制御することによ
り、中容量の圧縮機の容量を50〜125%まで連続的
に容量制御する制御部とを設けたことにより、冷凍負荷
の17〜108チの変動域で冷凍負荷に追従した最適な
運転ができ、非常に経済的で、省エネルギ化に有利にな
るものである。
As described above, according to this parallel compression type refrigeration system, three compressors, small, medium, and small, with a rated capacity ratio of 1 to 1.5 to 2, are connected in parallel. The refrigeration system includes a pressure detection section that detects the refrigerant pressure on the low-pressure side of the refrigeration system, and a pressure detection signal from the pressure detection section that is input to control ON and OFF operation of the large capacity and small capacity compressors, as well as an inverter. By controlling the output frequency of It is possible to perform optimal operation according to the following conditions, is very economical, and is advantageous for energy saving.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一天施例による並列圧縮式冷凍装置
の冷媒回路図、第2図は第1図の並列圧線式冷凍装置の
容量制御運転の説明図、第3図は従来の並列圧縮式冷凍
装置の冷媒回路図、gS4図は低圧側の冷媒圧力の領[
を示す図、第5図は第3図の並列圧縮式冷凍装置の容量
制御運転の説明図である。 これらの図において、(A)は並列圧縮式冷凍装置、(
IIは凝縮装置、(1a)は凝縮器、(lb) 、(l
c) 、(ld)はそれぞれ大、中、小容量の圧縮機、
(11)はインバータ、(2)は冷却装置、(3)は制
御部、(41は圧力検出部である。 なお、図中、同一符号は同一または相当部分を示す。
Fig. 1 is a refrigerant circuit diagram of a parallel compression type refrigeration system according to an embodiment of the present invention, Fig. 2 is an explanatory diagram of capacity control operation of the parallel pressure line type refrigeration system of Fig. 1, and Fig. 3 is a diagram of a conventional parallel compression type refrigeration system. The refrigerant circuit diagram of a compression refrigeration system, gS4 diagram, shows the refrigerant pressure area on the low pressure side [
FIG. 5 is an explanatory diagram of capacity control operation of the parallel compression type refrigeration system of FIG. 3. In these figures, (A) is a parallel compression refrigeration system, (
II is a condensing device, (1a) is a condenser, (lb), (l
c) and (ld) are large, medium, and small capacity compressors, respectively;
(11) is an inverter, (2) is a cooling device, (3) is a control unit, and (41 is a pressure detection unit. In the drawings, the same reference numerals indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 定格容量比がほゞ1対1.5対2に選定されている大容
量、中容量および小容量の圧縮機を有し、かつこの圧縮
機に凝縮器を接続した凝縮装置と、この凝縮装置に接続
された冷却装置から構成された冷凍装置と、この冷凍装
置の低圧側における冷媒圧力を検出して圧力検出信号を
発生する圧力検出部と、出力周波数に応じ上記中容量の
圧縮機のみその定格容量の50〜125%まで連続的に
制御する可変周波数のインバータおよび上記圧力検出信
号に応じて上記インバータの出力周波数を制御すると共
に上記大容量並びに小容量の圧縮機の運転をON、OF
F制御することにより、低圧側の冷媒圧力を所定の設定
値に収束させる制御部とを備え、その制御部の出力に基
づき上記冷却装置の冷凍負荷が39%以下では上記イン
バータにより上記中容量の圧縮機のみを駆動すると共に
冷凍負荷が39〜61%では上記小容量の圧縮機を商用
交流電源で駆動し、中容量の圧縮機を上記インバータに
て駆動して並列運転し、冷凍負荷が61〜83%では上
記大容量の圧縮機を商用交流電源で駆動し中容量の圧縮
機を上記インバータにて駆動して並列運転し、かつ冷凍
負荷が83〜108%では上記小容量および大容量の圧
縮機を商用交流電源で駆動し中容量の圧縮機を上記イン
バータにて駆動して並列運転させることを特徴とする並
列圧縮式冷凍装置。
A condensing device having a large capacity, medium capacity and small capacity compressor with a rated capacity ratio of approximately 1:1.5:2, and a condenser connected to the compressor, and this condensing device A refrigeration system consisting of a cooling system connected to A variable frequency inverter that continuously controls from 50 to 125% of the rated capacity, and controls the output frequency of the inverter according to the pressure detection signal, and turns on and off the operation of the large capacity and small capacity compressors.
A control unit that converges the refrigerant pressure on the low pressure side to a predetermined set value by F control, and based on the output of the control unit, when the refrigeration load of the cooling device is 39% or less, the inverter controls the medium capacity. When only the compressor is driven and the refrigeration load is 39 to 61%, the small-capacity compressor is driven by the commercial AC power supply, and the medium-capacity compressor is driven by the inverter and operated in parallel, and the refrigeration load is 61%. At ~83%, the large-capacity compressor is driven by the commercial AC power supply, and the medium-capacity compressor is driven by the inverter for parallel operation, and when the refrigeration load is 83-108%, the small-capacity and large-capacity compressors are operated in parallel. A parallel compression type refrigeration system characterized in that a compressor is driven by a commercial AC power source, and a medium capacity compressor is driven by the above-mentioned inverter for parallel operation.
JP63089406A 1988-04-12 1988-04-12 Parallel compression type refrigerator Pending JPH01262387A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63089406A JPH01262387A (en) 1988-04-12 1988-04-12 Parallel compression type refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63089406A JPH01262387A (en) 1988-04-12 1988-04-12 Parallel compression type refrigerator

Publications (1)

Publication Number Publication Date
JPH01262387A true JPH01262387A (en) 1989-10-19

Family

ID=13969763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63089406A Pending JPH01262387A (en) 1988-04-12 1988-04-12 Parallel compression type refrigerator

Country Status (1)

Country Link
JP (1) JPH01262387A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0697089A1 (en) * 1993-05-05 1996-02-21 Hussmann Corporation Strategic modular commercial refrigeration
WO2003036189A1 (en) * 2001-10-23 2003-05-01 Daikin Industries,Ltd. Freezer
US6837068B2 (en) 2001-03-13 2005-01-04 Applied Design And Engineering Limited Airflow management in cold storage appliances
US6915657B1 (en) 1999-09-13 2005-07-12 Applied Design And Engineering Limited Cold-storage appliance
EP1985939A4 (en) * 2006-02-17 2015-03-11 Daikin Ind Ltd AIR CONDITIONING

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0697089A1 (en) * 1993-05-05 1996-02-21 Hussmann Corporation Strategic modular commercial refrigeration
EP0697089A4 (en) * 1993-05-05 1997-03-26 Hussmann Corp Strategic modular commercial refrigeration
US6915657B1 (en) 1999-09-13 2005-07-12 Applied Design And Engineering Limited Cold-storage appliance
US6837068B2 (en) 2001-03-13 2005-01-04 Applied Design And Engineering Limited Airflow management in cold storage appliances
US6901767B2 (en) 2001-03-13 2005-06-07 Applied Design And Engineering Limited Use of heat in cold storage appliances
US6925833B2 (en) 2001-03-13 2005-08-09 Applied Design And Engineering Limited Airflow management in cold storage appliances
US6941766B2 (en) 2001-03-13 2005-09-13 Applied Design And Engineering Limited Airflow management in cold storage appliances
US7159415B2 (en) 2001-03-13 2007-01-09 Applied Design And Engineering Limited Drawer storage
WO2003036189A1 (en) * 2001-10-23 2003-05-01 Daikin Industries,Ltd. Freezer
US6883346B2 (en) 2001-10-23 2005-04-26 Daikin Industries, Ltd. Freezer
EP1985939A4 (en) * 2006-02-17 2015-03-11 Daikin Ind Ltd AIR CONDITIONING

Similar Documents

Publication Publication Date Title
US4594858A (en) Highly efficient flexible two-stage refrigeration system
US6185946B1 (en) System for sequencing chillers in a loop cooling plant and other systems that employ all variable-speed units
US9488400B2 (en) System for managing lubricant levels in tandem compressor assemblies of an HVAC system
JP2009109065A (en) Refrigeration equipment
CA1242086A (en) Highly efficient flexible two-stage refrigeration system
CN110953686A (en) Control method of air conditioning system and air conditioner
JPH0593550A (en) Freezing system
JPH0827082B2 (en) Capacity balancing control system for refrigeration system and operating method thereof
EP4148347A1 (en) Multi-compressor one-pass segmented compression type water chiller
JPH01262387A (en) Parallel compression type refrigerator
JPH01262386A (en) Parallel compression type refrigerator
JPH0335519B2 (en)
JPH0227176A (en) Parallel compression freezer
JPS629153A (en) Refrigerator
JPH0216073Y2 (en)
JPH0237191A (en) Parallel compression refrigerating unit
JPH0490455A (en) Freezer
JPS6284261A (en) Refrigerator
JPH01312345A (en) Air conditioner
JPH03129254A (en) Freezer
JPH0639980B2 (en) Parallel refrigerator
JP2614253B2 (en) Air conditioner
JPH01167557A (en) Refrigerator
JPS63163738A (en) Refrigerator
JP2017122524A (en) Freezing system