[go: up one dir, main page]

JPH01250410A - Production of high-modulus fiber - Google Patents

Production of high-modulus fiber

Info

Publication number
JPH01250410A
JPH01250410A JP5035788A JP5035788A JPH01250410A JP H01250410 A JPH01250410 A JP H01250410A JP 5035788 A JP5035788 A JP 5035788A JP 5035788 A JP5035788 A JP 5035788A JP H01250410 A JPH01250410 A JP H01250410A
Authority
JP
Japan
Prior art keywords
heat treatment
stretching
polymer
temperature
treatment system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5035788A
Other languages
Japanese (ja)
Inventor
Yoichi Yamamoto
洋一 山本
Junyo Nakagawa
潤洋 中川
Yoshio Kishino
岸野 喜雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP5035788A priority Critical patent/JPH01250410A/en
Publication of JPH01250410A publication Critical patent/JPH01250410A/en
Pending legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、全芳香族系ポリマーから′成る高弾性率繊維
の製造方法に関するものであり、産業用資材分野に有益
な高強力、高弾性率lR維を提供するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for producing a high elastic modulus fiber made of a wholly aromatic polymer, which has high strength and high elasticity and is useful in the field of industrial materials. It provides a high rate lR fiber.

〔従来の技術〕[Conventional technology]

異方性溶融物を形成し得るポリエステルを紡糸し、延伸
することなしに無緊張下で熱処理を行い強度を向上させ
る方法は特開昭55−20008号公報に、また溶融加
工容易な6−ヒドロキシ−2−ナフトエ酸とp−ヒドロ
キシ安息香酸とのポリエステルを無緊張熱処理すること
によシ高強力繊維を製造することは特開昭60−239
600号公報等で既に公知である。
JP-A-55-20008 describes a method of spinning polyester that can form an anisotropic melt and heat-treating it under no tension without stretching to improve its strength. JP-A No. 60-239 discloses the production of high-strength fibers by subjecting polyester of 2-naphthoic acid and p-hydroxybenzoic acid to stressless heat treatment.
This is already known in Japanese Patent No. 600 and the like.

〔本発明が解決しようとする課題〕[Problems to be solved by the present invention]

6−ヒドロキシー2−ナフトエ酸とp−ヒドロキシ安息
香酸のポリエステルは、繊維形成能が非常に良好であシ
、高強力と高弾性率を有し、耐熱性、耐薬品性等の優れ
た性能を持ち、製造面と性能面でバランスのとれた優秀
な高性能繊維である(特開昭54−77691号公報)
。しかし、繊維強化プラヌチック(FRP )分野や光
ファイバー等のテンションメンバーとして使用される分
野に於いては、初期弾性率が不足でちゃ、この点の改善
が望まれている。ところで、この初期弾性率の改良は、
ポリマー組成を変更することによっても可能であるが、
紡糸性の著しい低下や物性面の低下を伴い目的をする繊
維が得られなかった。
Polyester of 6-hydroxy-2-naphthoic acid and p-hydroxybenzoic acid has very good fiber forming ability, high strength and high elastic modulus, and has excellent properties such as heat resistance and chemical resistance. It is an excellent high-performance fiber with a good balance in terms of manufacturing and performance.
. However, in the fiber-reinforced planutic (FRP) field and the field where it is used as a tension member for optical fibers, etc., the initial elastic modulus is insufficient, and improvement in this point is desired. By the way, this improvement in the initial elastic modulus is
Although it is also possible by changing the polymer composition,
The desired fiber could not be obtained due to a significant decrease in spinnability and physical properties.

本発明の目的は、上記の如き欠点がなく、初期弾性率を
著しく向上させる方法を見出だすことにある。
The object of the present invention is to find a method of significantly improving the initial elastic modulus without the above-mentioned drawbacks.

〔課題を解決するための手段〕[Means to solve the problem]

即ち本発明は、本質的に下記[1]、 [、nlの反復
構成単位から成る部分が80モルチ以上であるポリマー
を溶融紡糸して得られた繊維を熱処理した熱処理系を、
該熱処理系の示差走査FAi!L計(DSC)測定に於
いて観察される主な吸熱ピークのピーク温度以下にて、
該熱処理系の室温での切断伸度の5%以上を最終的に延
伸することを特徴とする高弾性率繊維の製造方法である
That is, the present invention essentially provides a heat-treated system in which fibers obtained by melt-spinning a polymer having a proportion of 80 molti or more of repeating units of [1], [,nl] are heat-treated,
Differential scanning FAi! of the heat treatment system! Below the peak temperature of the main endothermic peak observed in L meter (DSC) measurement,
This is a method for producing a high elastic modulus fiber, which is characterized in that the final stretching is 5% or more of the elongation at break of the heat treatment system at room temperature.

またよシ好ましくは、上記披造方法において、熱処理系
が、紡糸原糸の強度の40%以上に該強度を向上させた
ものであることを特徴とする製造方法1 一段での延伸倍率が、該延伸前の熱処理系の室温での切
断伸度05〜80≠であることを特依とする製造方法、
まノc ポリマーが本質的に下記([)、  (II:lの反復
構成単位のみから成ることを特徴とする製造方法 である。
More preferably, in the above-mentioned drawing method, the heat treatment system improves the strength of the spun yarn to 40% or more of the strength of the spinning yarn. A manufacturing method in which the cutting elongation at room temperature of the heat treatment system before stretching is 05 to 80≠;
Manoc is a production method characterized in that the polymer essentially consists of only the following repeating structural units ([), (II:l).

本発明に言う本質的に下記m、(If)の反復構成単位
から成る部分が80モルφ以上であるポリマーとは、第
3成分として例えば下記に挙げる構造単位の1個又は複
数個を20モルチ以下含んでいても良いことを意味する
。あるいは、酸化チタン、カオリン、シリカ、硫酸バリ
ウム、カーボンブラック、顔料等、または酸化防止剤、
紫外線吸収剤、光安定剤等を含んでいても良い。
In the present invention, a polymer in which a portion essentially consisting of the following repeating structural units m and (If) is 80 mol φ or more means, for example, 20 mol φ of one or more of the following structural units as a third component. This means that it may contain the following: Alternatively, titanium oxide, kaolin, silica, barium sulfate, carbon black, pigments, etc., or antioxidants,
It may also contain an ultraviolet absorber, a light stabilizer, etc.

+0−o−σす、  +0−o−o−0ナボリマーの構
成単位は、溶融紡糸性や繊維の熱処理後の到達強度の面
から言えばEl)と(nlのみから成ることが好ましい
が、繊維の熱処理後の到達初期弾性率の面からは例えば
特開昭54−50594号公報にある如く他の構成単位
を含むのが良い場合もある。2成分ポリマーの好ましい
構成単位の割合いは5モルチ比テ[1’l/ (Il]
=10/9 o 〜90/1.0のIf1囲である。溶
融紡糸性の点からよシ好ましい割合いは、60/40〜
80/20である。
+0-o-σ, +0-o-o-0 It is preferable that the constituent units of the naborimer consist of only El) and (nl) from the viewpoint of melt spinnability and the strength achieved after heat treatment of the fiber. In terms of the initial elastic modulus reached after heat treatment, it may be better to include other structural units as described in JP-A-54-50594.The preferred ratio of structural units in the two-component polymer is 5 mol/min. ratio [1'l/ (Il]
If1 ranges from =10/9o to 90/1.0. From the viewpoint of melt spinnability, the preferred ratio is from 60/40 to
It is 80/20.

また該ポリマーの好ましい固有粘度(ηinh )は3
〜12dll?である。本発明に言う固有粘度は次の方
法により求められる。試料をペンタフルオロフェノール
に0.1重量%溶解しく60〜80 ’C)、60℃の
恒fWm中で、ウッペローデ型粘度計で測定する。
Further, the preferable intrinsic viscosity (ηinh) of the polymer is 3
~12dll? It is. The intrinsic viscosity referred to in the present invention is determined by the following method. The sample is dissolved in pentafluorophenol in an amount of 0.1% by weight (60-80'C) and measured with an Upperohde viscometer in a constant fWm at 60C.

ηinhが3以下では%繊維形成能が著しく劣シ、かつ
得られた繊維の強度、初期弾性率とも著しく低い。13
以上では、繊維化、!!:fに10デニール以下の細デ
ニール繊維を得ることは不可能となる。
When ηinh is less than 3, the % fiber forming ability is extremely poor, and the strength and initial elastic modulus of the obtained fibers are extremely low. 13
That's all for fiberization! ! : It becomes impossible to obtain fine denier fibers with f of 10 denier or less.

ηinhの高い方が物性面では好ましいが、操業的紡光
安定性と繊維性能の面から、ニジ好ましい範囲はηin
hが4〜10である。
A higher ηinh is preferable in terms of physical properties, but from the viewpoint of operational spinning stability and fiber performance, the most preferable range is ηinh.
h is 4 to 10.

紡糸温度は、ポリマー融点(MP)ニジ10°C以上k
MP+80℃以下が好ましい。
The spinning temperature is 10°C or higher than the polymer melting point (MP).
The temperature is preferably MP+80°C or lower.

本発明に言うポリマーの融点とは示差走査熱量計(DS
C)に現われる溶融転移ピークを観察することにより求
められる。
The melting point of a polymer referred to in the present invention is a differential scanning calorimeter (DS).
It is determined by observing the melting transition peak appearing in C).

本発明に言う剪断速度tとは、円型ノズルの場合は次式
により求められる。
The shear rate t referred to in the present invention is determined by the following equation in the case of a circular nozzle.

但し、r:ノズル孔の半径((7)) Q:単孔当りのポリマー吐出量(m/5ee)異型ノズ
ルの場合は、同一孔面積をもつ円の半径で求めた値とす
る。低剪断速度下では、非常に高粘度で繊維形成性が悪
いポリマーでも剪断速度が400 Q sec  以上
となると溶融粘度が低下し、紡糸性が良好とな)、かつ
得られた繊維の初期弾性率が向上する。100,000
5ec−1以上となるとノズル径が小さすぎ、ノズル詰
シ、洗浄不良等のトラブルが多発し実用上採用不可能で
ある。よシ好ましい範囲はi o、o o O〜50,
0005ec=である。
However, r: radius of nozzle hole ((7)) Q: amount of polymer discharged per single hole (m/5ee) In the case of an irregular nozzle, the value is determined by the radius of a circle having the same hole area. At low shear rates, even if the polymer has a very high viscosity and poor fiber forming properties, when the shear rate exceeds 400 Q sec, the melt viscosity decreases and the spinnability is good), and the initial elastic modulus of the resulting fibers decreases. will improve. 100,000
When it is 5ec-1 or more, the nozzle diameter is too small and troubles such as nozzle clogging and poor cleaning occur frequently, making it impossible to use in practice. The preferred range is i o, o o O~50,
0005ec=.

得られた繊維は、紡糸原糸の段階で衣料用繊維に比べて
既に高い強度と初期弾性率を有しているが、さらに熱処
理を行うことによって強度や熱安定性を著しく向上させ
ることが出来る。熱処理は、窒素等の不活性ガスや突気
の如き酸素含有の不活性ガス雰囲気中または真空中で行
なえれる。好ましい温度条件は、MP−60℃からMP
+20℃の範囲で、MP−40℃以下から順次昇温して
行くパターンがより好ましい。処理時間は、目的の性能
によシ数秒から数時間行うことが出来るが、本発明の目
的である延伸による初期弾性率の向上に使用する繊維と
してはポリマーの構成単位によっても異なるが、概ね紡
糸原糸の強度を40%以上向上させたものが好ましい。
The resulting fibers already have higher strength and initial elastic modulus than clothing fibers at the spinning stage, but further heat treatment can significantly improve the strength and thermal stability. . The heat treatment can be carried out in an atmosphere of an inert gas such as nitrogen or an oxygen-containing inert gas such as blown air, or in a vacuum. Preferred temperature conditions are from MP-60°C to MP
A pattern in which the temperature is gradually increased from MP-40°C or lower within the range of +20°C is more preferable. The treatment time can vary from several seconds to several hours depending on the desired performance, but the fibers used for improving the initial elastic modulus by stretching, which is the purpose of the present invention, vary depending on the constituent units of the polymer, but generally speaking It is preferable that the strength of the yarn is improved by 40% or more.

延伸による初期弾性率の向上は紡糸原糸でも可能である
が、熱処理系に比べて熱安定性に劣る紡糸原糸は、有効
な延伸温度範囲が狭くまた延伸中単繊維の切断による毛
羽立ちが生じ易い。一方熱処理系は、熱処理に工って強
度と熱安定性が向上させられているため、有効な延伸温
度範囲が広くまた延伸中の単繊維切断が起り難いことか
ら安定な延伸が可能であり、手羽立ちが無く、強度や初
期弾性率に変動の極めて少ない糸が得られる。
It is possible to improve the initial elastic modulus of spun yarn by stretching, but spun yarn has lower thermal stability than that of heat-treated yarns, so the effective stretching temperature range is narrow, and fluffing occurs due to the breakage of single fibers during stretching. easy. On the other hand, heat treatment systems have improved strength and thermal stability through heat treatment, so they have a wide effective stretching temperature range and are less likely to break single fibers during stretching, making stable stretching possible. A yarn with no frizz and extremely little variation in strength and initial elastic modulus can be obtained.

熱処理系は、示差走査熱量計(IJSC)測定に於いて
観察される主な吸熱ピークのピーク温度(’rh)以下
で未延伸熱処理系の室温での切断伸度の5%以上を最終
的に延伸されたならば、初期弾性率が著しく向上させら
れる。本発明に言う初期弾性率の著しい向上とは、少な
くとも50 r/d以上向上させることを意味する。
The heat-treated system has a final elongation at break of 5% or more of the room temperature cutting elongation of the unstretched heat-treated system at a temperature below the peak temperature ('rh) of the main endothermic peak observed in differential scanning calorimetry (IJSC) measurement. Once stretched, the initial modulus is significantly improved. A significant improvement in the initial elastic modulus as used in the present invention means an improvement of at least 50 r/d or more.

延伸処理は、従来衣料用ボリヱステル繊維に一般に用い
られている2個以上のローラー間で行うのが良い。
The stretching process is preferably carried out between two or more rollers, which are conventionally used for polyester fibers for clothing.

熱処理系への延伸は何段に分けて行っても艮いが、効果
的に初期弾性率を向上させ得る好ましい最終延伸倍率は
、ポリマーの構成単位及び構成比率によって異なるけれ
ども、概ね熱処理系の室温での切断伸度の5〜200%
である。ただここで肝要な点は、−度の延伸に於ける延
伸倍率である。
Stretching to the heat treatment system can be carried out in any number of stages, but the preferred final stretching ratio that can effectively improve the initial elastic modulus varies depending on the constituent units and composition ratio of the polymer, but is generally at room temperature of the heat treatment system. 5-200% of cutting elongation at
It is. However, the important point here is the stretching ratio in the -degree stretching.

即ち、−段の延伸を構成する一対のローラー間での延伸
倍率は、室温でのこの一段延伸前に於ける熱処理系の切
断伸度の5〜80饅、好′ましくは10〜60%とする
ことである。80%以上では毛羽や断糸が生じ易く、場
合によっては強度の低下が起こる。延伸温度は、同じく
この一段延伸前の熱処理系をDSCにて測定した際観察
される主な吸熱ピークのピーク温度以下であり、加熱方
法としては、加熱ローラー、接触式中空ヒーター、非接
触式中空ヒーター等いずれの方法でも良い。
That is, the stretching ratio between the pair of rollers constituting the first stage stretching is 5 to 80%, preferably 10 to 60%, of the cutting elongation of the heat treatment system before this one stage stretching at room temperature. That is to say. If it exceeds 80%, fluffing and thread breakage are likely to occur, and in some cases, strength may decrease. The stretching temperature is also below the peak temperature of the main endothermic peak observed when the heat treatment system before one-stage stretching is measured by DSC, and the heating methods include heating rollers, contact type hollow heaters, and non-contact type hollow heaters. Any method such as a heater may be used.

より好ましい温度は、動的粘弾性測定による損失正接t
anδのα分散ピーク温度(Tα)以上からピーク温度
Thより5℃低い温度である。
A more preferable temperature is the loss tangent t determined by dynamic viscoelasticity measurement.
The temperature ranges from above the α dispersion peak temperature (Tα) of andδ to 5° C. lower than the peak temperature Th.

以下、実施例により本発明をより具体的に説明するが、
本発明は、これら実施例により限定されるものではない
。同、実施例に示されるデニール、ア、DE、IMの測
定値はヤーンに80T/Mの撚りを与えた試料を室温に
て測定して得たものである0 実施例1 構成単位〔■〕と〔■〕が70/30モルー比である全
芳香族ポリエステルポリマーを作成した0このポリマー
の物性は、 ηinh = 6.0 dl / f MP=278℃ であった。このポリマーを140℃の乾燥機中で10時
間乾燥させた後、単軸ペント型押出機より押出してサン
ド(ステンレスノ(ウダー)層と金属細線から成るフィ
ルターを通過させて320℃で紡糸した。ノズルは、穴
径0.12日φで穴数300個であり、吐出量167f
/分、剪断速度t=39.000156(!= %紡速
1000 m7分で巻き取った。
Hereinafter, the present invention will be explained in more detail with reference to Examples.
The present invention is not limited to these Examples. The measured values of denier, a, DE, and IM shown in the same example were obtained by measuring at room temperature a sample in which the yarn was twisted at 80 T/M.0 Example 1 Constituent unit [■] A wholly aromatic polyester polymer having a molar ratio of 70/30 and [■] was prepared. The physical properties of this polymer were ηinh = 6.0 dl/f MP = 278°C. This polymer was dried in a dryer at 140°C for 10 hours, then extruded from a single-screw pent extruder, passed through a filter consisting of a sand (stainless steel) layer and fine metal wire, and spun at 320°C. The nozzle has 300 holes with a hole diameter of 0.12 days, and a discharge amount of 167f.
/min, shear rate t = 39.000156 (! = %) Spinning speed 1000 m 7 min.

この紡糸原糸の性能は、 ヤーンデニ−p、 (DR) = 1503 dr強 
 度      (DT)  =l  1.(1/d伸
  度       (DE)  = 2.0  %初
期弾性4   (IM)=590f/dTα     
    =91℃ であった。この紡糸原糸を穴あきアルミボビンに巻き密
度0.58 f/ccで巻き、260℃で1時間。
The performance of this spinning yarn is as follows: Yarn density p, (DR) = 1503 dr
Degree (DT) = l 1. (1/d elongation (DE) = 2.0% initial elasticity 4 (IM) = 590f/dTα
=91°C. This spun yarn was wound around a perforated aluminum bobbin at a winding density of 0.58 f/cc and heated at 260°C for 1 hour.

270℃から280℃まで3時間、280℃から285
℃まで5時間熱処理をした。得られた熱処理系の性能は DR=1481dr DT=25.3r/d D E = 3.6% IM=585 f/d Th=331℃ であった。この熱処理系にココナツツオイルを主成分と
する油剤を1重量φ付着させた後1表1に示す温度に加
熱された第10−ラー(R1)と室温の第20−ラー(
R2)からなる装置で、該熱処理系の切断伸度の28%
(延伸率1.0%)で連続的に延伸処理した。得られた
延伸糸の性能は、表1のとおりであった。
3 hours from 270℃ to 280℃, 280℃ to 285℃
Heat treatment was performed for 5 hours at ℃. The performance of the obtained heat treatment system was as follows: DR = 1481 dr DT = 25.3 r/d DE = 3.6% IM = 585 f/d Th = 331°C. After attaching 1 weight φ of an oil agent mainly composed of coconut oil to this heat treatment system, the 10th roller (R1) heated to the temperature shown in Table 1 and the 20th roller (R1) at room temperature
R2), 28% of the cutting elongation of the heat treatment system.
The film was continuously stretched at a stretching rate of 1.0%. The performance of the obtained drawn yarn was as shown in Table 1.

以下余白 表   1 実施例2 実施例1で得られた油剤付着の熱処理系を用い、R1,
R2の温度がそれぞれ300℃と室温にコントロールさ
れた延伸装置で、表2に示す伸度(R)となる延伸倍率
で連続的に延伸処理した。得られた延伸糸の性能は、表
2のとおシであった。
Margin table below 1 Example 2 Using the oil adhesion heat treatment system obtained in Example 1, R1,
Using a stretching device in which the temperature of R2 was controlled to 300° C. and room temperature, respectively, the film was continuously stretched at a stretching ratio that gave the degree of elongation (R) shown in Table 2. The performance of the obtained drawn yarn was as shown in Table 2.

表    2 実施例3 実施例1で得られたA5の延伸糸を2段延伸する目的で
実施例2と同様にして延伸したところ、この45延伸糸
の切断伸度の75チまで延伸可能であり1表3に示す性
能となった。
Table 2 Example 3 When the A5 drawn yarn obtained in Example 1 was drawn in the same manner as in Example 2 for the purpose of two-stage drawing, it was possible to draw it to 75 inches, which is the cutting elongation of this 45 drawn yarn. 1 The performance was as shown in Table 3.

実施例4 下記構成却位がC1〕/ [II] / [[n:l 
= 60 / 20/20モルラ比である全芳香族ポリ
エステルポリマーを作成した。
Example 4 The following configuration is C1] / [II] / [[n:l
A wholly aromatic polyester polymer with a molar ratio of = 60/20/20 was prepared.

このポリマーの性質は、 η1nh= 4.9 dl / ? MP=298℃ であった。このポリマーを紡糸のノズル温度355℃と
した以外は実施例1と同様にして紡糸し、得られた紡糸
原糸を同じ〈実施例1と同様に熱処理した。得られた熱
処理系の性能は、 DR=1505dr DT=18.tr/d D E = 3.2% IM=576r/d Th==341℃ この熱処理に実施例1と同様に油剤を付着させて、表4
に示す温度に加熱された第10−ラー(R1)と室温の
第20−ラー(R2)からなる装置で、該熱処理系の切
断伸度の31%(延伸率1.0%)で連続的に延伸処理
した。得られた延伸糸の性能は、表4のとおりであった
The properties of this polymer are: η1nh=4.9 dl/? MP=298°C. This polymer was spun in the same manner as in Example 1, except that the spinning nozzle temperature was 355° C., and the obtained spun yarn was heat-treated in the same manner as in Example 1. The performance of the obtained heat treatment system is as follows: DR=1505dr DT=18. tr/d D E = 3.2% IM = 576r/d Th = = 341°C An oil agent was attached to this heat treatment in the same manner as in Example 1, and Table 4
With a device consisting of a 10th roller (R1) heated to the temperature shown in , and a 20th roller (R2) at room temperature, the heat treatment system was continuously heated at a cutting elongation of 31% (stretching ratio 1.0%). Stretched. The performance of the obtained drawn yarn was as shown in Table 4.

表   4 特許出願人  株式会社 り ラ しTable 4 Patent applicant: RiRashi Co., Ltd.

Claims (1)

【特許請求の範囲】 1)本質的に下記〔 I 〕、〔II〕の反復構成単位から
成る部分が80モル%以上であるポリマーを溶融紡糸し
て得られた繊維を熱処理した熱処理系を、該熱処理系の
示差走査熱量計(DSC)測定に於いて観察される主な
吸熱ピークのピーク温度以下にて、該熱処理系の室温で
の切断伸度の5%以上で最終的に延伸することを特徴と
する高弾性率繊維の製造方法 ▲数式、化学式、表等があります▼・・・・・・〔 I
〕 ▲数式、化学式、表等があります▼・・・・・・〔II〕
[Scope of Claims] 1) A heat-treated system obtained by heat-treating fibers obtained by melt-spinning a polymer in which 80 mol% or more of the repeating units essentially consist of the following repeating units [I] and [II], Final stretching is performed at a temperature below the peak temperature of the main endothermic peak observed in differential scanning calorimetry (DSC) measurement of the heat treatment system at a cutting elongation of 5% or more of the cutting elongation at room temperature of the heat treatment system. ▲Mathematical formulas, chemical formulas, tables, etc. are available▼・・・・・・〔I
] ▲There are mathematical formulas, chemical formulas, tables, etc.▼・・・・・・[II]
JP5035788A 1987-12-08 1988-03-02 Production of high-modulus fiber Pending JPH01250410A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5035788A JPH01250410A (en) 1987-12-08 1988-03-02 Production of high-modulus fiber

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP31166887 1987-12-08
JP62-311668 1987-12-08
JP5035788A JPH01250410A (en) 1987-12-08 1988-03-02 Production of high-modulus fiber

Publications (1)

Publication Number Publication Date
JPH01250410A true JPH01250410A (en) 1989-10-05

Family

ID=26390823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5035788A Pending JPH01250410A (en) 1987-12-08 1988-03-02 Production of high-modulus fiber

Country Status (1)

Country Link
JP (1) JPH01250410A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5082100B2 (en) * 2005-03-11 2012-11-28 国立大学法人山梨大学 Means for producing fully aromatic polyester microfilaments

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5477691A (en) * 1977-10-20 1979-06-21 Celanese Corp Polyester composed of 66hydroxyy 22naphtoic acid and pphydroxy benzoic acid* which enable melt processing to be easy

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5477691A (en) * 1977-10-20 1979-06-21 Celanese Corp Polyester composed of 66hydroxyy 22naphtoic acid and pphydroxy benzoic acid* which enable melt processing to be easy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5082100B2 (en) * 2005-03-11 2012-11-28 国立大学法人山梨大学 Means for producing fully aromatic polyester microfilaments

Similar Documents

Publication Publication Date Title
US2130948A (en) Synthetic fiber
JPS6163710A (en) High-molecular substance
CA2088398A1 (en) Polyamide monofilament suture and process for its manufacture
JPH11189938A (en) Polypropylene terephthalate staple fiber and its production
JPH01250410A (en) Production of high-modulus fiber
JP2776017B2 (en) Polyphenylene sulfide fiber and method for producing the same
JPH03260114A (en) Production of high-modulus fiber composed of melt-anisotropic polymer
JPH04222217A (en) Polyphenylene sulfide fiber and production thereof
JP2905553B2 (en) Division method
JPH0931749A (en) Method for producing polyester fiber
JPH11302922A (en) Modified cross section fiber of polyester
JPS6311445B2 (en)
JP2817390B2 (en) Method for producing spandex monofilament
JP3672810B2 (en) High density screen monofilament
JP3693552B2 (en) Method for producing polyester fiber
JPS63196716A (en) Method for producing high modulus fiber
US5175236A (en) Tough, high strength fibers of copolyesters prepared from isophthalic acid; 4,4'-oxydibenzoic acid; and hydroquinone diacetate
JP2003129337A (en) Polytrimethylene terephthalate fiber and method for producing the same
JPS584090B2 (en) Polyester fabric
JPS61119710A (en) Production of acrylic fiber having high tenacity and modules
JP2866190B2 (en) Method for producing mixed fiber having different elongation
JP2960755B2 (en) Manufacturing method of polyester fiber
JPH02112404A (en) Porous polyethylene hollow fiber and its manufacturing method
JPS6059116A (en) Acrylic fiber as precursor for carbon fiber
JP3003155B2 (en) Method for producing high-strength high-modulus polyester fiber