JPH0931749A - Method for producing polyester fiber - Google Patents
Method for producing polyester fiberInfo
- Publication number
- JPH0931749A JPH0931749A JP20738795A JP20738795A JPH0931749A JP H0931749 A JPH0931749 A JP H0931749A JP 20738795 A JP20738795 A JP 20738795A JP 20738795 A JP20738795 A JP 20738795A JP H0931749 A JPH0931749 A JP H0931749A
- Authority
- JP
- Japan
- Prior art keywords
- polyester fiber
- polyester
- fiber
- heating zone
- fine particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229920000728 polyester Polymers 0.000 title claims abstract description 141
- 239000000835 fiber Substances 0.000 title claims abstract description 128
- 238000004519 manufacturing process Methods 0.000 title description 6
- 238000010438 heat treatment Methods 0.000 claims abstract description 36
- 239000010419 fine particle Substances 0.000 claims abstract description 30
- 239000002245 particle Substances 0.000 claims abstract description 26
- 230000009477 glass transition Effects 0.000 claims abstract description 11
- 238000000034 method Methods 0.000 abstract description 39
- 238000010036 direct spinning Methods 0.000 abstract description 7
- -1 polyethylene terephthalate Polymers 0.000 description 21
- 238000001816 cooling Methods 0.000 description 20
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 19
- 229920000139 polyethylene terephthalate Polymers 0.000 description 19
- 239000005020 polyethylene terephthalate Substances 0.000 description 19
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 19
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 18
- 238000009987 spinning Methods 0.000 description 18
- 238000007664 blowing Methods 0.000 description 11
- 230000000052 comparative effect Effects 0.000 description 10
- 238000002074 melt spinning Methods 0.000 description 9
- 239000000377 silicon dioxide Substances 0.000 description 9
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 6
- 229920001634 Copolyester Polymers 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000008188 pellet Substances 0.000 description 3
- QPFMBZIOSGYJDE-UHFFFAOYSA-N 1,1,2,2-tetrachloroethane Chemical compound ClC(Cl)C(Cl)Cl QPFMBZIOSGYJDE-UHFFFAOYSA-N 0.000 description 2
- MMINFSMURORWKH-UHFFFAOYSA-N 3,6-dioxabicyclo[6.2.2]dodeca-1(10),8,11-triene-2,7-dione Chemical group O=C1OCCOC(=O)C2=CC=C1C=C2 MMINFSMURORWKH-UHFFFAOYSA-N 0.000 description 2
- WSQZNZLOZXSBHA-UHFFFAOYSA-N 3,8-dioxabicyclo[8.2.2]tetradeca-1(12),10,13-triene-2,9-dione Chemical group O=C1OCCCCOC(=O)C2=CC=C1C=C2 WSQZNZLOZXSBHA-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- BDJRBEYXGGNYIS-UHFFFAOYSA-N nonanedioic acid Chemical compound OC(=O)CCCCCCCC(O)=O BDJRBEYXGGNYIS-UHFFFAOYSA-N 0.000 description 2
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 238000006068 polycondensation reaction Methods 0.000 description 2
- CYIDZMCFTVVTJO-UHFFFAOYSA-N pyromellitic acid Chemical compound OC(=O)C1=CC(C(O)=O)=C(C(O)=O)C=C1C(O)=O CYIDZMCFTVVTJO-UHFFFAOYSA-N 0.000 description 2
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 2
- 238000004062 sedimentation Methods 0.000 description 2
- ARCGXLSVLAOJQL-UHFFFAOYSA-N trimellitic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C(C(O)=O)=C1 ARCGXLSVLAOJQL-UHFFFAOYSA-N 0.000 description 2
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 1
- YZTJKOLMWJNVFH-UHFFFAOYSA-N 2-sulfobenzene-1,3-dicarboxylic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1S(O)(=O)=O YZTJKOLMWJNVFH-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 150000007933 aliphatic carboxylic acids Chemical class 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 230000000655 anti-hydrolysis Effects 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- CDQSJQSWAWPGKG-UHFFFAOYSA-N butane-1,1-diol Chemical compound CCCC(O)O CDQSJQSWAWPGKG-UHFFFAOYSA-N 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical group 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000012681 fiber drawing Methods 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 239000006081 fluorescent whitening agent Substances 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 239000010954 inorganic particle Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- RXOHFPCZGPKIRD-UHFFFAOYSA-N naphthalene-2,6-dicarboxylic acid Chemical compound C1=C(C(O)=O)C=CC2=CC(C(=O)O)=CC=C21 RXOHFPCZGPKIRD-UHFFFAOYSA-N 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 239000006097 ultraviolet radiation absorber Substances 0.000 description 1
Landscapes
- Artificial Filaments (AREA)
- Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
Abstract
(57)【要約】
【課題】 毛羽の発生や太さ斑などがなく、しかも強度
や伸度などの力学的特性にも優れる高品質のポリエステ
ル繊維を、断糸などを生ずることなく、良好な工程性
で、直接紡糸延伸法によって生産性よく製造することで
ある。
【解決手段】 平均粒径が0.01〜1.0μmの無機
微粒子を0.1〜10重量%の割合で含有する繊維形成
性ポリエステルを溶融紡出した後、そのガラス転移温度
以下に冷却し、引き続いて加熱帯域に導入して延伸させ
た後、3500m/分以上の速度で引き取ってポリエス
テル繊維を製造する。(57) 【Abstract】 PROBLEM TO BE SOLVED: To produce a high quality polyester fiber which is free from fluff generation and thickness unevenness and which is excellent in mechanical properties such as strength and elongation without causing yarn breakage. It is to be manufactured with high processability by the direct spinning and drawing method. SOLUTION: A fiber-forming polyester containing inorganic fine particles having an average particle diameter of 0.01 to 1.0 μm in a proportion of 0.1 to 10% by weight is melt-spun and then cooled to the glass transition temperature or lower. Then, the polyester fiber is continuously introduced into the heating zone, stretched, and then taken out at a speed of 3500 m / min or more to produce a polyester fiber.
Description
【0001】[0001]
【発明が属する技術分野】本発明はポリエステル繊維の
製造方法に関する。より詳細には、本発明は、直接紡糸
延伸法によって延伸したポリエステル繊維を製造する際
の改良方法に係るものであり、本発明の方法による場合
は、毛羽の発生や太さ斑などがなく、しかも強度や伸度
などの力学的特性に優れる高品質のポリエステル繊維
を、断糸や毛羽などを生ずることなく、良好な工程性で
円滑に製造することができる。TECHNICAL FIELD The present invention relates to a method for producing polyester fibers. More specifically, the present invention relates to an improved method for producing a polyester fiber stretched by a direct spinning / drawing method, and in the case of the method of the present invention, there is no occurrence of fluff or uneven thickness, Moreover, high-quality polyester fibers having excellent mechanical properties such as strength and elongation can be smoothly produced with good processability without causing yarn breakage or fluff.
【0002】[0002]
【従来の技術】ポリエステル繊維は、強度や伸度などの
力学的特性の向上、寸法安定性、その他の点から、延伸
して用いることが一般に広く行われている。ポリエステ
ル繊維の延伸方法としては、紡糸して得られたポリエス
テル繊維を一旦巻取った後に巻き戻して加熱・延伸する
逐次延伸方法、または紡糸口金から紡出させたポリエス
テル繊維を巻取らずにそのまま直接延伸してから巻取る
直接紡糸延伸方法の2者が広く採用されている。そし
て、この後者の直接紡糸延伸法の1種に、溶融紡出した
ポリエステル繊維を例えば4000m/分以上、または
2000〜4500m/分というような高速で引き取り
ながら(高速で走行させながら)一旦そのガラス転移温
度以下の温度にまで冷却した後、引き続いて加熱帯域を
通過させてその加熱帯域で延伸させる方法が知られてい
る(特公昭45−1932号公報および特公昭55−1
0684号公報)。2. Description of the Related Art Polyester fiber is generally stretched and used from the standpoint of improving mechanical properties such as strength and elongation, dimensional stability, and other points. As a method for stretching the polyester fiber, a sequential stretching method in which the polyester fiber obtained by spinning is once wound, then rewound and heated / stretched, or the polyester fiber spun from the spinneret is directly wound without being wound. The two methods of direct spinning and drawing, in which the film is drawn and then wound, are widely adopted. Then, in one of the latter direct spinning drawing methods, while melt-spun polyester fibers are taken at a high speed of 4000 m / min or more, or 2000-4500 m / min (while running at a high speed), the glass is once drawn. A method is known in which the material is cooled to a temperature equal to or lower than the transition temperature, and subsequently, it is passed through a heating zone and stretched in the heating zone (Japanese Patent Publication No. 45-1932 and Japanese Patent Publication No. 55-1).
No. 0684).
【0003】上記した高速引き取りを伴う直接紡糸延伸
法では、紡出させた糸条が高速で加熱帯域を走行してい
る間に、その加熱帯域内で空気抵抗が走行糸条に作用し
て糸条の張力が増大して延伸が行われる。そのため、回
転速度の異なる複数のローラーを用いるというような機
械的な延伸装置を特に使用する必要がなくなり、簡略化
した紡糸・延伸装置によって延伸したポリエステル繊維
を生産性よく製造できるという長所がある。しかしなが
ら、このような従来の高速引き取りを伴う直接延伸法に
よる場合は、延伸ローラーなどの延伸装置を用いて機械
的に延伸倍率を設定するものではないために、加熱帯域
の温度、糸条の走行速度、走行糸条にかかる張力などに
よって繊維の品質が大きく左右され、加熱帯域における
糸条の走行速度や走行糸条にかかる張力などが僅かに変
動しても延伸斑が発生し易く、それによって断糸、ルー
プ、毛羽、繊度斑などが起こり易いという欠点がある。In the above-mentioned direct spinning drawing method involving high-speed take-up, while the spun yarn is running in the heating zone at high speed, air resistance acts on the running yarn in the heating zone and the yarn is run. Stretching is performed by increasing the tension of the strip. Therefore, there is no need to particularly use a mechanical drawing device such as using a plurality of rollers having different rotation speeds, and there is an advantage that polyester fibers drawn by a simplified spinning / drawing device can be produced with high productivity. However, in the case of such a conventional direct drawing method involving high-speed take-up, since the draw ratio is not mechanically set using a drawing device such as a drawing roller, the temperature of the heating zone and the running of the yarn are The quality of the fiber is greatly influenced by the speed and the tension applied to the running yarn, and even if the running speed of the yarn in the heating zone or the tension applied to the running yarn is slightly changed, stretch unevenness is likely to occur, which causes It has the drawback that thread breakage, loops, fluff, and fineness unevenness are likely to occur.
【0004】[0004]
【発明が解決しようとする課題】本発明の目的は、ルー
プや毛羽の発生、繊度斑などがなく、均一性に優れ、し
かも強度や伸度などの力学的特性にも優れる、高品質の
延伸したポリエステル繊維を、直接紡糸延伸法によっ
て、断糸などを生ずることなく良好な工程安定性で製造
し得る方法を提供することである。The object of the present invention is to provide a high-quality stretched product which is free from the formation of loops and fluffs, has no unevenness in fineness, is excellent in uniformity, and is excellent in mechanical properties such as strength and elongation. It is an object of the present invention to provide a method capable of producing the above polyester fiber by a direct spinning drawing method with good process stability without causing yarn breakage and the like.
【0005】[0005]
【課題を解決するための手段】上記の目的を達成するた
めに、本発明者は、素材面、工程面、装置面などから色
々検討を行ってきた。その結果、紡出させたポリエステ
ル繊維を一旦ガラス転移温度温度以下に冷却した後、引
き続いて高速で引き取りながら加熱帯域を通過させて加
熱帯域で直接延伸させてポリエステル繊維を製造する上
記した直接紡糸延伸法を行うに当たって、紡糸原料であ
るポリエステル中に、特定の平均粒径を有する無機微粒
子を特定の割合で含有させておくと、加熱帯域の温度、
糸条の走行速度、走行糸条にかかる張力などに多少の変
動が生じても、ループや毛羽の発生がなく、しかも繊度
斑のない、強度や伸度などの力学的特性にも優れる延伸
したポリエステル繊維を、断糸などのトラブルを生ずる
ことなく、良好な工程安定性で生産性よく製造できるこ
とを見出して本発明を完成した。In order to achieve the above object, the inventor of the present invention has made various studies from the viewpoint of material, process, apparatus and the like. As a result, once the spun polyester fiber is once cooled to the glass transition temperature or lower, the polyester fiber is directly drawn in the heating zone by passing through the heating zone while being continuously taken at high speed to directly produce the polyester fiber. In performing the method, in the polyester as the spinning raw material, if the inorganic fine particles having a specific average particle diameter are contained in a specific ratio, the temperature of the heating zone,
Even if there are some fluctuations in the running speed of the yarn, the tension applied to the running yarn, etc., there are no loops or fluffs, and there is no unevenness in fineness, and it has excellent mechanical properties such as strength and elongation. The present invention has been completed by finding that polyester fibers can be produced with good process stability and high productivity without causing troubles such as yarn breakage.
【0006】すなわち、本発明は、平均粒径が0.01
〜1.0μmの無機微粒子を0.1〜10重量%の割合
で含有する繊維形成性ポリエステルを溶融紡出した後、
そのガラス転移温度以下に冷却し、引き続いて加熱帯域
に導入して延伸させた後、3500m/分以上の速度で
引き取ることを特徴とするポリエステル繊維の製造方法
である。That is, according to the present invention, the average particle size is 0.01.
After melt-spinning a fiber-forming polyester containing 0.1 to 10% by weight of inorganic fine particles having a particle size of 1.0 μm,
It is a method for producing a polyester fiber, which comprises cooling to a temperature below the glass transition temperature, subsequently introducing it into a heating zone and stretching it, and then taking it off at a speed of 3500 m / min or more.
【0007】[0007]
【発明の実施の形態】以下に本発明について詳細に説明
する。本発明で用いる繊維形成性ポリエステルは溶融紡
糸が可能なポリエステルであればいずれでもよく特に制
限されないが、繊維形成性ポリエステルが、ポリエチレ
ンテレフタレート、ポリブチレンテレフタレート、或い
はエチレンテレフタレート単位および/またはブチレン
テレフタレート単位を主たる構成単位としこれに少量の
他の共重合単位を含有させたコポリエステルであるのが
好ましく、特にポリエチレンテレフタレートであるのが
より好ましい。BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below. The fiber-forming polyester used in the present invention is not particularly limited as long as it is a melt-spinnable polyester, but the fiber-forming polyester may be polyethylene terephthalate, polybutylene terephthalate, or ethylene terephthalate units and / or butylene terephthalate units. A copolyester having a main constituent unit containing a small amount of another copolymerization unit is preferable, and polyethylene terephthalate is particularly preferable.
【0008】繊維形成性ポリエステルとして、エチレン
テレフタレート単位および/またはブチレンテレフタレ
ート単位を主とするコポリエステルを用いる場合は、コ
ポリエステル中における他の共重合単位の割合が10モ
ル%以下であるのが好ましく、その際の他の共重合単位
の例としては、イソフタル酸、フタル酸、2,6−ナフ
タリンジカルボン酸、5−アルカリ金属スルホイソフタ
ル酸などの芳香族カルボン酸;シュウ酸、アジピン酸、
アゼライン酸、セバシン酸などの脂肪族カルボン酸;ト
リメリット酸、ピロメリット酸などの多官能性カルボン
酸;またはそれらのエステル形成性成分に由来するカル
ボン酸単位;ジエチレングリコール、プロピレングリコ
ール、ブタンジオールまたはエチレングリコール、ポリ
エチレングリコール、グリセリン、ペンタエリスリトー
ルなどから誘導される単位を挙げることができる。そし
て、コポリエステルは前記した共重合単位の1種または
2種以上を含んでいることができる。When a copolyester mainly comprising ethylene terephthalate units and / or butylene terephthalate units is used as the fiber-forming polyester, the proportion of other copolymerized units in the copolyester is preferably 10 mol% or less. Examples of other copolymerized units in this case include aromatic carboxylic acids such as isophthalic acid, phthalic acid, 2,6-naphthalene dicarboxylic acid, and 5-alkali metal sulfoisophthalic acid; oxalic acid, adipic acid,
Aliphatic carboxylic acids such as azelaic acid and sebacic acid; polyfunctional carboxylic acids such as trimellitic acid and pyromellitic acid; or carboxylic acid units derived from their ester-forming components; diethylene glycol, propylene glycol, butanediol or ethylene. Examples thereof include units derived from glycol, polyethylene glycol, glycerin, pentaerythritol and the like. The copolyester can contain one or more of the above-mentioned copolymer units.
【0009】本発明では、繊維の製造に用いる繊維形成
性ポリエステル(以下単に「ポリエステル」という)の
粘度や分子量などは特に制限されず、溶融紡糸を行える
粘度や分子量であればいずれも用いることができるが、
一般に、ウベローデ型粘度計を用いて、フェノールとテ
トラクロロエタン等量混合溶液中、30℃で測定したと
きに、その極限粘度[η]が0.62〜0.65のポリ
エステルを使用するのが、紡糸性や得られるポリエステ
ル繊維の物性の点から好ましい。In the present invention, the viscosity and the molecular weight of the fiber-forming polyester (hereinafter simply referred to as "polyester") used for producing the fiber are not particularly limited, and any viscosity and molecular weight that can be melt-spun can be used. I can, but
Generally, a polyester having an intrinsic viscosity [η] of 0.62 to 0.65 is used when measured at 30 ° C. in a mixed solution of phenol and tetrachloroethane using an Ubbelohde viscometer. It is preferable from the viewpoints of spinnability and physical properties of the obtained polyester fiber.
【0010】そして、本発明では、紡糸前のポリエステ
ルが、上記したように、平均粒径が0.01〜1.0μ
mである無機微粒子を含有していることが必要である。
その場合の無機微粒子としては、繊維を形成するポリエ
ステルに対して劣化作用などをもたず、それ自体で安定
性に優れる無機微粒子であればいずれも使用できる。本
発明で有効に用い得る無機微粒子の代表例としては、シ
リカ、アルミナ、炭酸カルシウム、酸化チタン、硫酸バ
リウムなどを挙げることができることができ、これらの
無機微粒子は単独で使用しても、または2種以上を併用
してもよい。In the present invention, the polyester before spinning has an average particle size of 0.01 to 1.0 μm, as described above.
It is necessary to contain inorganic fine particles of m.
In this case, as the inorganic fine particles, any inorganic fine particles which do not have a deteriorating effect on the polyester forming the fiber and have excellent stability by themselves can be used. Representative examples of the inorganic fine particles that can be effectively used in the present invention include silica, alumina, calcium carbonate, titanium oxide, barium sulfate, and the like. These inorganic fine particles may be used alone or in 2 You may use together 1 or more types.
【0011】ポリエステル中に含有させる無機微粒子は
上記したようにその平均粒径が0.01〜1.0μmで
あることが必要であり、0.03〜0.6μmであるの
が好ましい。無機微粒子の平均粒径が0.01μm未満
であると、延伸を行うための加熱帯域の温度や糸条の走
行速度、走行糸条にかかる張力などに僅かな変動が生じ
ても、ポリエステル繊維にループ、毛羽、繊度斑などが
発生するようになる。一方、無機微粒子の平均粒径が
1.0μmを超えると繊維の延伸性が低下して製糸性が
不良になり、ポリエステル繊維の製造時に断糸などが発
生し易くなる。ここで、本発明でいう無機微粒子の平均
粒径は、遠心沈降法を用いて測定したときの値をいい、
その詳細は、下記の実施例に記載されている。The inorganic fine particles to be contained in the polyester must have an average particle diameter of 0.01 to 1.0 μm, and preferably 0.03 to 0.6 μm, as described above. If the average particle size of the inorganic fine particles is less than 0.01 μm, the polyester fiber may have a slight variation in the temperature of the heating zone for stretching, the running speed of the yarn, the tension applied to the running yarn, etc. Loops, fluff, and fineness unevenness will occur. On the other hand, when the average particle size of the inorganic fine particles exceeds 1.0 μm, the stretchability of the fiber is deteriorated and the spinnability becomes poor, and the fiber breakage easily occurs during the production of the polyester fiber. Here, the average particle size of the inorganic fine particles referred to in the present invention refers to a value when measured using a centrifugal sedimentation method,
The details are described in the examples below.
【0012】また上記したように、本発明では無機微粒
子の含有量が、ポリエステルの重量に基づいて、0.1
〜10.0重量%であることが必要であり、0.5〜
5.0重量%であるのが好ましい。無機微粒子の含有量
がポリエステルの重量に基づいて、0.1重量%未満で
あると延伸を行うための加熱帯域の温度や糸条の走行速
度、走行糸条にかかる張力などに僅かな変動を生じて
も、得られるポリエステル繊維にループや毛羽、繊度斑
などが発生するようになり、一方無機微粒子の含有量が
10.0重量%を超えると、繊維の延伸工程で無機微粒
子が走行糸条と空気との間の抵抗を過度なものにして、
毛羽の発生、断糸の発生などにつながり、工程が不安定
になる。As described above, in the present invention, the content of the inorganic fine particles is 0.1 based on the weight of the polyester.
~ 10.0% by weight, 0.5 ~
It is preferably 5.0% by weight. If the content of the inorganic fine particles is less than 0.1% by weight based on the weight of the polyester, slight fluctuations may occur in the temperature of the heating zone for stretching, the running speed of the yarn, the tension applied to the running yarn, etc. Even if it occurs, loops, fluffs, fineness irregularities, etc. will be generated in the obtained polyester fiber. On the other hand, if the content of the inorganic fine particles exceeds 10.0% by weight, the inorganic fine particles will be running yarns in the fiber drawing step. Makes the resistance between air and air excessive,
The process becomes unstable due to the occurrence of fuzz and yarn breakage.
【0013】ポリエステル中への無機微粒子の添加方法
は特に制限されず。ポリエステルを溶融紡出する直前ま
での任意の段階でポリエステル中に無機微粒子が均一に
混合されているようにして添加、混合すればよい。例え
ば、無機微粒子はポリエステルの重縮合時の任意の時点
に添加しても、重縮合の完了したポリエステル中にペレ
ットの製造時などに後から添加しても、またはポリエス
テルの溶融紡糸を行うときにポリエステルを紡糸口金か
ら紡出させる前の段階でポリエステル中に無機微粒子を
均一に溶融混合するようにしてもよい。The method of adding the inorganic fine particles to the polyester is not particularly limited. The inorganic fine particles may be added and mixed in such a manner that the fine inorganic particles are uniformly mixed in the polyester at an arbitrary stage immediately before melt spinning of the polyester. For example, the inorganic fine particles may be added at any time during the polycondensation of the polyester, may be added later during the production of pellets in the polyester after the polycondensation, or when melt spinning the polyester. Before the polyester is spun from the spinneret, inorganic fine particles may be uniformly melt-mixed in the polyester.
【0014】また、ポリエステルは、上記した無機微粒
子の他に、必要に応じて、蛍光増白剤、安定剤、酸化防
止剤、紫外線吸収剤、加水分解防止剤、帯電防止剤、難
燃剤、着色剤およびその他の添加剤の1種または2種以
上を含有していてもよい。In addition to the above-mentioned inorganic fine particles, the polyester is, if necessary, a fluorescent whitening agent, a stabilizer, an antioxidant, an ultraviolet absorber, an antihydrolysis agent, an antistatic agent, a flame retardant, and a coloring agent. You may contain the 1 type (s) or 2 or more types of an agent and other additives.
【0015】そして、平均粒径0.01〜1.0μmの
無機微粒子を0.1〜10.0重量%の割合で含有する
上記したポリエステルを溶融紡出する。この場合の溶融
紡出温度、溶融紡出速度などは特に制限されず、ポリエ
ステル繊維を製造するのに通常用いられているのと同様
の条件下で行うことができるが、一般に溶融紡出温度を
(ポリエステルの融点+20℃)〜(ポリエステルの融
点+40℃)の範囲の温度(例えばポリエチレンテレフ
タレートの場合は一般に約280〜300℃)にし、か
つ溶融紡出速度(溶融紡出量)を約20〜50g/紡糸
孔1mm2・分程度とすると、品質の良好なポリエステ
ル繊維を良好な紡糸工程性で得ることができるので好ま
しい。また、紡糸口金における紡糸孔の大きさや数、紡
糸孔の形状なども特に制限されず、目的とするポリエス
テル繊維の単繊維繊度、総合デニール数、断面形状など
に応じて調節することができる。一般に、紡糸孔(単
孔)の大きさを約0.018〜0.07mm2程度にし
ておくのが望ましい。Then, the above polyester containing 0.1 to 10.0% by weight of inorganic fine particles having an average particle diameter of 0.01 to 1.0 μm is melt-spun. In this case, the melt spinning temperature, the melt spinning speed, etc. are not particularly limited, and the melt spinning can be carried out under the same conditions as those usually used for producing polyester fibers. The temperature is in the range of (melting point of polyester + 20 ° C.) to (melting point of polyester + 40 ° C.) (generally about 280 to 300 ° C. in the case of polyethylene terephthalate), and the melt spinning speed (melt spinning amount) is about 20 to. 50 g / spinning hole of about 1 mm 2 · min is preferable because polyester fibers of good quality can be obtained with good spinning processability. Further, the size and number of the spinning holes in the spinneret, the shape of the spinning holes, etc. are not particularly limited, and can be adjusted according to the intended single fiber fineness of the polyester fiber, the total denier number, the cross-sectional shape and the like. Generally, it is desirable to set the size of the spinning hole (single hole) to about 0.018 to 0.07 mm 2 .
【0016】そして、上記によって溶融紡出したポリエ
ステル繊維を、一旦そのガラス転移温度以下の温度、好
ましくはガラス転移温度よりも10℃以上低い温度に冷
却する。この場合の冷却方法や冷却装置としては、紡出
したポリエステル繊維をそのガラス転移温度以下に冷却
できる方法や装置であればいずれでもよく特に制限され
ないが、紡糸口金の下に冷却風吹き付け筒などの冷却風
吹き付け装置を設けておいて、紡出されてきたポリエス
テル繊維に冷却風を吹き付けてガラス転移温度以下に冷
却するようにするのが好ましい。その際に冷却風の温度
や湿度、冷却風の吹き付け速度、紡出繊維に対する冷却
風の吹き付け角度などの冷却条件も特に制限されず、口
金から紡出されてきたポリエステル繊維を繊維の揺れな
どを生じないようにしながら速やかに且つ均一にガラス
転移温度以下にまで冷却できる条件であればいずれでも
よい。そのうちでも、一般に、冷却風の温度を約20〜
30℃、冷却風の湿度を20〜60%、冷却風の吹き付
け速度を0.4〜1.0m/秒程度として、紡出繊維に
対する冷却風の吹き付け方向を紡出方向に対して垂直に
して紡出したポリエステル繊維の冷却を行うのが、高品
質のポリエステル繊維を円滑に得ることができるので好
ましい。また、冷却風吹き付け筒を用いて前記の条件下
で冷却を行う場合は、紡糸口金の直下にやや間隔をあけ
てまたは間隔をあけないで、長さが約80〜100cm
程度の冷却風吹き付け筒を配置するのが好ましい。Then, the polyester fiber melt-spun as described above is once cooled to a temperature lower than its glass transition temperature, preferably 10 ° C. or more lower than the glass transition temperature. The cooling method and the cooling device in this case are not particularly limited as long as the method and the device can cool the spun polyester fiber to the glass transition temperature or lower, but are not particularly limited. It is preferable that a cooling air blowing device is provided, and cooling air is blown onto the spun polyester fiber to cool the polyester fiber to a temperature lower than the glass transition temperature. At that time, the cooling conditions such as the temperature and humidity of the cooling air, the blowing speed of the cooling air, and the blowing angle of the cooling air with respect to the spun fiber are not particularly limited, and the polyester fiber spun from the spinneret may be prevented from shaking. Any condition may be used as long as it can be rapidly and uniformly cooled to the glass transition temperature or lower while preventing the occurrence. Among them, generally, the temperature of the cooling air is about 20 ~
30 ° C., the humidity of the cooling air is 20 to 60%, the blowing speed of the cooling air is about 0.4 to 1.0 m / sec, and the blowing direction of the cooling air to the spun fiber is perpendicular to the spinning direction. It is preferable to cool the spun polyester fiber because high quality polyester fiber can be obtained smoothly. When cooling is performed under the above conditions using a cooling air blowing cylinder, the length is about 80 to 100 cm with or without a space just below the spinneret.
It is preferable to arrange a cooling air blowing cylinder.
【0017】次に、ガラス転移温度以下にまで冷却した
ポリエステル繊維を引き続いてそのまま直接加熱帯域に
導入して延伸する。加熱帯域の温度はポリエステルの種
類などに応じて異なり得るが、一般にポリエステルのガ
ラス転移温度よりも40℃以上高い温度としておくと、
得られるポリエステル繊維の物性を実用上満足のゆくも
のとすることができるので好ましく、例えばポリエチレ
ンテレフタレート繊維の場合は加熱帯域の温度を約10
0℃以上とするのが好ましい。加熱帯域の上限温度は、
加熱帯域内で繊維間の融着や糸切れ、単糸切れなどが生
じないような温度であればよい。加熱帯域の種類や構造
は、加熱帯域内を走行するポリエステル繊維を加熱帯域
内の加熱手段などに接触せずに加熱することができ、し
かも加熱帯域内を走行する糸条とそれを包囲する空気と
の間に抵抗を生じさせて糸条張力を増大させて、繊維に
延伸を生じさせることのできる構造であればいずれでも
よい。そのうちでも、加熱帯域としては、筒状の加熱帯
域が好ましく用いられ、特に管壁自体がヒーターとなっ
ている内径が約20〜50mm程度のパイプヒーターな
どが好ましい。Next, the polyester fiber cooled to the glass transition temperature or lower is subsequently directly introduced into the heating zone and stretched. Although the temperature of the heating zone may vary depending on the type of polyester, etc., in general, if the temperature is 40 ° C. or more higher than the glass transition temperature of polyester,
The obtained polyester fiber is preferable because it can satisfy the physical properties practically. For example, in the case of polyethylene terephthalate fiber, the temperature of the heating zone is about 10
It is preferably 0 ° C. or higher. The maximum temperature of the heating zone is
The temperature may be any temperature at which fusion between fibers, yarn breakage, single yarn breakage, and the like do not occur in the heating zone. The type and structure of the heating zone is such that the polyester fiber running in the heating zone can be heated without contacting the heating means in the heating zone and the yarn running in the heating zone and the air surrounding it. Any structure may be used as long as it can generate resistance in the fiber and increase the yarn tension to cause the fiber to be drawn. Among them, a tubular heating zone is preferably used as the heating zone, and a pipe heater having an inner diameter of about 20 to 50 mm in which the tube wall itself is a heater is particularly preferable.
【0018】加熱帯域の紡糸口金からの設置位置、加熱
帯域の長さなどは、ポリエステル繊維の種類、ポリエス
テルの紡出量、ポリエステル繊維の冷却温度、ポリエス
テル繊維の走行速度、加熱帯域の温度、加熱帯域の内径
などに応じて調節できるが、一般に紡糸口金直下から加
熱帯域の入口までの距離を0.5〜3.0m程度とし、
そして加熱帯域の長さを1.0〜2.0m程度としてお
くと、加熱帯域内でポリエステル繊維を加熱して均一に
円滑に延伸することができるので望ましい。The installation position of the heating zone from the spinneret, the length of the heating zone, etc. are determined by the type of polyester fiber, the amount of polyester spun, the cooling temperature of the polyester fiber, the running speed of the polyester fiber, the temperature of the heating zone, and the heating temperature. It can be adjusted according to the inner diameter of the zone, etc., but generally the distance from just below the spinneret to the inlet of the heating zone is about 0.5 to 3.0 m,
It is desirable to set the length of the heating zone to about 1.0 to 2.0 m, because the polyester fiber can be heated in the heating zone and uniformly and smoothly drawn.
【0019】そして、加熱帯域で延伸されたポリエステ
ル繊維に対して、必要に応じて油剤を付与してから、高
速で引き取る。本発明では、上記した一連の工程からな
る延伸したポリエステル繊維の製造工程を、ポリエステ
ル繊維の引取速度を3500m/分以上にして行うこと
が必要であり、引取速度が4000m/分以上であるの
が好ましい。ポリエステル繊維の引取速度が3500m
/分未満であると、加熱帯域において繊維の延伸が十分
に行われなくなり、得られるポリエステル繊維の機械的
物性が低下し、しかも上記した一連の工程からなる本発
明の方法が円滑に行われず、特に加熱帯域における糸条
の張力変動、過加熱などが生じて、均一な延伸が行われ
にくくなる。また、本発明の方法を行うに当たっては、
ポリエステル繊維の{引取速度(m/分)}÷{ポリエ
ステル繊維の紡出量(25g/紡出孔1mm2・分)}
の値が約140〜200の範囲になるようにするのが好
ましい。If necessary, an oil agent is applied to the polyester fiber drawn in the heating zone, and then the polyester fiber is taken out at a high speed. In the present invention, it is necessary to carry out the process for producing a stretched polyester fiber comprising the above-mentioned series of steps at a polyester fiber take-up speed of 3500 m / min or more, and the take-up speed is 4000 m / min or more. preferable. Polyester fiber take-up speed is 3500m
If it is less than / minute, the drawing of the fiber in the heating zone will not be performed sufficiently, the mechanical properties of the obtained polyester fiber will be reduced, and the method of the present invention comprising the above series of steps will not be performed smoothly, In particular, fluctuations in the tension of the yarn in the heating zone, overheating, etc. occur, making it difficult to perform uniform stretching. In performing the method of the present invention,
Polyester fiber {take-off speed (m / min)} / {spun amount of polyester fiber (25 g / spinning hole 1 mm 2 · min)}
The value of is preferably in the range of about 140 to 200.
【0020】本発明では、最終的に得られるポリエステ
ル繊維の単繊維繊度や総デニール数などは特に制限され
ず、ポリエステル繊維の用途などに応じて適宜調節する
ことができるが、本発明の方法は特に単繊維繊度が0.
5〜6デニール、総デニール数が30〜100デニール
のポリエステル繊維(ポリエステルマルチフィラメント
糸)を製造するのに適している。また、本発明ではポリ
エステル繊維の横断面形状なども特に制限されず、通常
の丸形断面繊維だけではなく、例えば楕円形、三角形、
方形、多角形、中空形、多葉形、アレイ形、V字形、T
字形などの異形断面繊維であってもよい。In the present invention, the single fiber fineness and the total number of denier of the finally obtained polyester fiber are not particularly limited and can be appropriately adjusted depending on the use of the polyester fiber, etc. Especially the single fiber fineness is 0.
It is suitable for producing polyester fibers (polyester multifilament yarn) having a denier of 5 to 6 and a total denier of 30 to 100 denier. Further, in the present invention, the cross-sectional shape of the polyester fiber is not particularly limited, and not only ordinary round cross-section fibers, but also elliptical, triangular,
Square, polygon, hollow, multi-lobe, array, V-shaped, T
It may be a modified cross-section fiber such as a letter shape.
【0021】[0021]
【実施例】以下に本発明について実施例などにより具体
的に説明するが、本発明はそれにより何ら限定されな
い。以下の例において、無機微粒子の平均粒径、ポリエ
ステル繊維の紡糸性、最終的に得られたポリエステル繊
維の強度、伸度、均一性(ウスター斑:U%)および毛
羽の発生個数は、以下のようにして測定または評価し
た。EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited thereto. In the following examples, the average particle size of the inorganic fine particles, the spinnability of the polyester fiber, the strength, the elongation, the uniformity (Worcester spots: U%) of the finally obtained polyester fiber, and the number of fluff generated are as follows. It was measured or evaluated in this way.
【0022】無機微粒子の平均粒径の測定:遠心粒径測
定器(堀場製作所製「CAPA−5000型」)を用い
て得られた遠心沈降曲線に基づいて算出した。 Measurement of the average particle size of the inorganic fine particles : It was calculated based on the centrifugal sedimentation curve obtained by using a centrifugal particle size measuring device (“CAPA-5000 type” manufactured by Horiba Ltd.).
【0023】ポリエステル繊維の紡糸性:ポリエステル
繊維を100kg紡糸し、紡糸時の断糸の有無を調べる
と共に得られたポリエステル繊維における毛羽の発生の
有無を目視により観察して、下記の表1に示す評価基準
にしたがって評価した。 Spinnability of polyester fiber: 100 kg of polyester fiber was spun, the presence or absence of yarn breakage during spinning was examined, and the presence or absence of fluff was visually observed in the obtained polyester fiber. The results are shown in Table 1 below. It evaluated according to the evaluation criteria.
【0024】[0024]
【表1】 ポリエステル繊維の紡糸性の評価基準 ◎:紡糸時に断糸が何ら発生せず、しかも得られたポリエステル繊維には 毛羽が全く発生しておらず、紡糸性が極めて良好である ○:紡糸時に断糸が発生せず、そして得られたポリエステル繊維には毛羽 が僅かに発生していたが、紡糸性がほぼ良好である △:100kgを紡糸したときに、断糸が3回まで発生し、紡糸性が不良 である ×:100kgを紡糸したときに、断糸が3回よりも多く発生し、紡糸性 が極めて不良である [Table 1] Evaluation criteria for spinnability of polyester fibers ⊚: No yarn breakage occurred during spinning, and no fluff occurred in the obtained polyester fiber, and the spinnability was extremely good. ○: No yarn breakage occurred during spinning Although slight fluff was generated in the polyester fiber, the spinnability was almost good. Δ: When 100 kg was spun, yarn breakage occurred up to 3 times, and spinnability was poor ×: 100 kg When spun, the yarn breakage occurs more than three times, and the spinnability is extremely poor.
【0025】ポリエステル繊維の強度:インストロン型
の引張り試験器を用いて得られた荷重−伸長曲線よりポ
リエステル繊維の強度を求めた。 Strength of Polyester Fiber : The strength of the polyester fiber was determined from the load-elongation curve obtained using an Instron type tensile tester.
【0026】ポリエステル繊維の伸度:インストロン型
の引張試験器を用いて得られた荷重−伸長曲線よりポリ
エステル繊維の伸度を求めた。The elongation of the polyester fiber: Instron tensile tester load obtained using the - was determined elongation of the polyester fiber from the extension curve.
【0027】ポリエステル繊維の均一性(ウスター斑:
U値):ツエルベーガー社製のウスター斑試験機を用い
て、糸を電極間に一定速度で通し(糸速100m/分、
レンジ±12.5%、チャート速度10cm/分)、断
面変化に比例する電気容量の変化を連続測定し、糸の一
定長さの平均偏差係数「U%」を測定した。 Uniformity of polyester fiber (Worcester spot:
U value) : Using a Wurster spot tester manufactured by Zellberger Co., Ltd., thread is passed between the electrodes at a constant speed (thread speed 100 m / min,
(Range ± 12.5%, chart speed 10 cm / min), the change in electric capacity proportional to the change in cross section was continuously measured, and the average deviation coefficient "U%" of the constant length of the yarn was measured.
【0028】ポリエステル繊維における毛羽の発生個
数:サン電子工業社製の毛羽センサーにより107m以
上の糸長中に存在する毛羽を感知し、糸長106m当た
りの毛羽数に換算して表示した。 Number of fluffs generated in polyester fiber
Number : The fluff existing in a yarn length of 10 7 m or more was detected by a fluff sensor manufactured by Sun Denshi Kogyo Co., Ltd., and converted into the number of fluffs per 10 6 m of the yarn length and displayed.
【0029】《実施例 1》 (1) ポリエチレンテレフタレート(極限粘度[η]
=0.65)100重量部に平均粒径0.4μmの酸化
チタン1.0重量部を添加して2軸押出機を用いて溶融
混合した後、ストランド状に押し出し、切断して酸化チ
タンを1.0重量%の割合で含有するポリエチレンテレ
フタレートのペレットを製造した。 (2) 上記(1)で得られた酸化チタンを含有するポ
リエチレンテレフタレートのペレットを用いて、孔数4
8個(紡出孔の直径=0.2mm)の紡糸口金から、紡
糸温度290℃、1孔当たりの紡出量1.02g/分の
条件下に溶融紡出した。紡糸口金直下に長さ1.0mの
横吹き付け型の冷却風吹き付け装置を設置しておき、口
金から紡出したポリエステル繊維を直ちにその冷却風吹
き付け装置に導入して、温度25℃、湿度65RH%に
調整した冷却空気を0.5m/秒の速度で紡出繊維に吹
き付けて、繊維を80℃以下(冷却風吹き付け装置の出
口での繊維の温度=65℃)にまで冷却した。Example 1 (1) Polyethylene terephthalate (Intrinsic viscosity [η]
= 0.65) 1.0 part by weight of titanium oxide having an average particle size of 0.4 μm was added to 100 parts by weight, melt-mixed using a twin-screw extruder, extruded in a strand shape, and cut to form titanium oxide. Pellets of polyethylene terephthalate containing 1.0% by weight were produced. (2) Using the polyethylene terephthalate pellet containing titanium oxide obtained in (1) above, the number of holes is 4
From eight spinnerets (diameter of spinning holes = 0.2 mm), melt spinning was performed under the conditions of a spinning temperature of 290 ° C. and a spinning rate of 1.02 g / min per hole. A 1.0 m long horizontal blowing type cooling air blowing device was installed immediately below the spinneret, and the polyester fibers spun from the spinneret were immediately introduced into the cooling air blowing device, and the temperature was 25 ° C and the humidity was 65 RH%. The cooled air adjusted to 2 was blown onto the spun fiber at a speed of 0.5 m / sec to cool the fiber to 80 ° C. or lower (temperature of fiber at outlet of cooling air blowing device = 65 ° C.).
【0030】(3) 上記(2)で80℃以下に冷却し
たポリエステル繊維を、紡糸口金直下から1.5mmの
位置に設置した長さ1.0m、内径30mmのパイプヒ
ーター(内壁温度170℃)に導入してパイプヒータ内
で延伸した後、パイプヒーターから出てきた繊維にガイ
ドオイリン方式で油剤を付与し、引き続いて1対(2
個)の引き取りローラを介して4500m/分の引取速
度で巻取って、延伸したポリエステル繊維を製造した。 (4) 上記(2)〜(3)の紡糸・延伸工程を行った
際のポリエステル繊維の紡糸性、並びに最終的に得られ
たポリエステル繊維の強度、伸度、均一性(ウスター
斑:U%)および毛羽の発生個数を上記した方法で測定
または評価したところ、下記の表2に示すとおりであっ
た。(3) A polyester heater having a length of 1.0 m and an inner diameter of 30 mm in which the polyester fiber cooled to 80 ° C. or lower in the above (2) is installed at a position 1.5 mm from directly below the spinneret (inner wall temperature 170 ° C.) After being introduced into the pipe heater and drawn in the pipe heater, an oil agent is applied to the fibers coming out of the pipe heater by a guide oily method, and subsequently a pair of (2
The individual polyester fibers were wound at a take-up speed of 4500 m / min via a take-up roller to produce a stretched polyester fiber. (4) The spinnability of the polyester fiber when the spinning / drawing steps (2) to (3) are performed, and the strength, elongation, and uniformity (Worcester spot: U%) of the finally obtained polyester fiber. ) And the number of generated fluff were measured or evaluated by the above-mentioned method, and were as shown in Table 2 below.
【0031】《実施例 2》ポリエチレンテレフタレー
トに対する酸化チタンの添加量を3.0重量%に変えた
以外は実施例1と同様にしてポリエステル繊維を製造し
て、その時の紡糸性、並びに最終的に得られたポリエス
テル繊維の強度、伸度、均一性(ウスター斑:U%)お
よび毛羽の発生個数を上記した方法で測定または評価し
たところ、下記の表2に示すとおりであった。Example 2 A polyester fiber was produced in the same manner as in Example 1 except that the amount of titanium oxide added to polyethylene terephthalate was changed to 3.0% by weight, and the spinnability at that time and finally The strength, the elongation, the uniformity (Worcester spots: U%) and the number of generated fluffs of the obtained polyester fiber were measured or evaluated by the above-mentioned methods, and the results are shown in Table 2 below.
【0032】《実施例 3》実施例1で用いた酸化チタ
ンの代わりに、平均粒径が1.0μmの酸化チタンを用
いて、そしてポリエチレンテレフタレートに対するその
酸化チタンの添加量を4.0重量%に変えた以外は実施
例1と同様にしてポリエステル繊維を製造して、その時
の紡糸性、並びに最終的に得られたポリエステル繊維の
強度、伸度、均一性(ウスター斑:U%)および毛羽の
発生個数を上記した方法で測定または評価したところ、
下記の表2に示すとおりであった。Example 3 Titanium oxide having an average particle size of 1.0 μm was used in place of the titanium oxide used in Example 1, and the amount of titanium oxide added to polyethylene terephthalate was 4.0% by weight. A polyester fiber was produced in the same manner as in Example 1 except that the polyester fiber was spun at that time, and the strength, elongation, uniformity (Worcester spot: U%) and fluff of the finally obtained polyester fiber. Was measured or evaluated by the above method,
The results are shown in Table 2 below.
【0033】《実施例 4〜5》実施例1で用いた酸化
チタンの代わりに、平均粒径が0.03μmのシリカを
用いて、そしてポリエチレンテレフタレートに対するシ
リカの添加量をそれぞれ1.0重量%(実施例4)およ
び5.0重量%(実施例5)とした以外は実施例1と同
様にしてポリエステル繊維を製造して、その時の紡糸
性、並びに最終的に得られたポリエステル繊維の強度、
伸度、均一性(ウスター斑:U%)および毛羽の発生個
数を上記した方法で測定または評価したところ、下記の
表2に示すとおりであった。Examples 4 to 5 Instead of the titanium oxide used in Example 1, silica having an average particle size of 0.03 μm was used, and the amount of silica added to polyethylene terephthalate was 1.0% by weight, respectively. A polyester fiber was produced in the same manner as in Example 1 except that (Example 4) and 5.0% by weight (Example 5) were used, and the spinnability at that time and the strength of the polyester fiber finally obtained. ,
The elongation, uniformity (Worcester spots: U%), and the number of fluffs generated were measured or evaluated by the methods described above, and the results are shown in Table 2 below.
【0034】《実施例 6》実施例1で用いた酸化チタ
ンの代わりに、平均粒径が0.4μmのシリカを用い
て、そしてポリエチレンテレフタレートに対するシリカ
の添加量を10.0重量%とした以外は実施例1と同様
にしてポリエステル繊維を製造して、その時の紡糸性、
並びに最終的に得られたポリエステル繊維の強度、伸
度、均一性(ウスター斑:U%)および毛羽の発生個数
を上記した方法で測定または評価したところ、下記の表
2に示すとおりであった。Example 6 Instead of the titanium oxide used in Example 1, silica having an average particle size of 0.4 μm was used, and the amount of silica added to polyethylene terephthalate was 10.0% by weight. Produced polyester fiber in the same manner as in Example 1, and the spinnability at that time was measured.
Also, the strength, elongation, uniformity (Worcester spots: U%) and the number of fluffs generated in the finally obtained polyester fiber were measured or evaluated by the above-mentioned methods, and the results are shown in Table 2 below. .
【0035】《実施例 7》実施例1で用いた酸化チタ
ンの代わりに、平均粒径が0.6μmの硫酸バリウムを
用いて、そしてポリエチレンテレフタレートに対するそ
の硫酸バリウムの添加量を5.0重量%に変えた以外は
実施例1と同様にしてポリエステル繊維を製造して、そ
の時の紡糸性、並びに最終的に得られたポリエステル繊
維の強度、伸度、均一性(ウスター斑:U%)および毛
羽の発生個数を上記した方法で測定または評価したとこ
ろ、下記の表2に示すとおりであった。Example 7 Barium sulfate having an average particle size of 0.6 μm was used in place of the titanium oxide used in Example 1, and the addition amount of barium sulfate to polyethylene terephthalate was 5.0% by weight. A polyester fiber was produced in the same manner as in Example 1 except that the polyester fiber was spun at that time, and the strength, elongation, uniformity (Worcester spot: U%) and fluff of the finally obtained polyester fiber. The number of occurrences of the above was measured or evaluated by the above-mentioned method and was as shown in Table 2 below.
【0036】《比較例 1》酸化チタンを何ら添加して
いないポリエチレンテレフタレートを用いた以外は実施
例1と同様にしてポリエステル繊維を製造して、その時
の紡糸性、並びに最終的に得られたポリエステル繊維の
強度、伸度、均一性(ウスター斑:U%)および毛羽の
発生個数を上記した方法で測定または評価したところ、
下記の表2に示すとおりであった。Comparative Example 1 A polyester fiber was produced in the same manner as in Example 1 except that polyethylene terephthalate to which no titanium oxide was added was used, and the spinnability at that time and the polyester finally obtained. When the strength, elongation, uniformity (Worcester spot: U%) of fibers and the number of fluff generated were measured or evaluated by the above-mentioned methods,
The results are shown in Table 2 below.
【0037】《比較例 2》ポリエチレンテレフタレー
トに対する酸化チタンの添加量を0.05重量%に変え
た以外は実施例1と同様にしてポリエステル繊維を製造
して、その時の紡糸性、並びに最終的に得られたポリエ
ステル繊維の強度、伸度、均一性(ウスター斑:U%)
および毛羽の発生個数を上記した方法で測定または評価
したところ、下記の表2に示すとおりであった。Comparative Example 2 Polyester fibers were produced in the same manner as in Example 1 except that the amount of titanium oxide added to polyethylene terephthalate was changed to 0.05% by weight, and the spinnability at that time and finally Strength, elongation and uniformity of the obtained polyester fiber (Worcester spot: U%)
The number of fluffs generated and the number of fluffs generated were measured or evaluated by the methods described above, and the results are shown in Table 2 below.
【0038】《比較例 3》ポリエチレンテレフタレー
トに対する酸化チタンの添加量を15.0重量%に変え
た以外は実施例1と同様にしてポリエステル繊維を製造
して、その時の紡糸性、並びに最終的に得られたポリエ
ステル繊維の強度、伸度、均一性(ウスター斑:U%)
および毛羽の発生個数を上記した方法で測定または評価
したところ、下記の表2に示すとおりであった。Comparative Example 3 A polyester fiber was produced in the same manner as in Example 1 except that the amount of titanium oxide added to polyethylene terephthalate was changed to 15.0% by weight, and the spinnability at that time and finally Strength, elongation and uniformity of the obtained polyester fiber (Worcester spot: U%)
The number of fluffs generated and the number of fluffs generated were measured or evaluated by the methods described above, and the results are shown in Table 2 below.
【0039】《比較例 4》実施例1で用いた酸化チタ
ンの代わりに、平均粒径が2.0μmの酸化チタンを用
いて、そしてポリエチレンテレフタレートに対するその
酸化チタンの添加量を3.0重量%に変えた以外は実施
例1と同様にしてポリエステル繊維を製造して、その時
の紡糸性、並びに最終的に得られたポリエステル繊維の
強度、伸度、均一性(ウスター斑:U%)および毛羽の
発生個数を上記した方法で測定または評価したところ、
下記の表2に示すとおりであった。Comparative Example 4 Titanium oxide having an average particle size of 2.0 μm was used in place of the titanium oxide used in Example 1, and the amount of titanium oxide added to polyethylene terephthalate was 3.0% by weight. A polyester fiber was produced in the same manner as in Example 1 except that the polyester fiber was spun at that time, and the strength, elongation, uniformity (Worcester spot: U%) and fluff of the finally obtained polyester fiber. Was measured or evaluated by the above method,
The results are shown in Table 2 below.
【0040】《比較例 5》実施例1で用いた酸化チタ
ンの代わりに、平均粒径が0.03μmのシリカを用い
て、そしてポリエチレンテレフタレートに対するそのシ
リカの添加量を0.05重量%に変えた以外は実施例1
と同様にしてポリエステル繊維を製造して、その時の紡
糸性、並びに最終的に得られたポリエステル繊維の強
度、伸度、均一性(ウスター斑:U%)および毛羽の発
生個数を上記した方法で測定または評価したところ、下
記の表2に示すとおりであった。Comparative Example 5 Instead of the titanium oxide used in Example 1, silica having an average particle size of 0.03 μm was used, and the addition amount of the silica to polyethylene terephthalate was changed to 0.05% by weight. Example 1 except for
Polyester fiber is produced in the same manner as above, and the spinnability at that time and the strength, elongation, uniformity (Worcester spot: U%) of the finally obtained polyester fiber and the number of fluff generated are as described above. Upon measurement or evaluation, it was as shown in Table 2 below.
【0041】《比較例 6》実施例1で用いた酸化チタ
ンの代わりに、平均粒径が0.03μmのシリカを用い
て、そしてポリエチレンテレフタレートに対するそのシ
リカの添加量を15.0重量%に変えた以外は実施例1
と同様にしてポリエステル繊維を製造して、その時の紡
糸性、並びに最終的に得られたポリエステル繊維の強
度、伸度、均一性(ウスター斑:U%)および毛羽の発
生個数を上記した方法で測定または評価したところ、下
記の表2に示すとおりであった。Comparative Example 6 Instead of the titanium oxide used in Example 1, silica having an average particle size of 0.03 μm was used, and the addition amount of the silica to polyethylene terephthalate was changed to 15.0% by weight. Example 1 except for
Polyester fiber is produced in the same manner as above, and the spinnability at that time and the strength, elongation, uniformity (Worcester spot: U%) of the finally obtained polyester fiber and the number of fluff generated are as described above. Upon measurement or evaluation, it was as shown in Table 2 below.
【0042】[0042]
【表2】 [Table 2]
【0043】上記の表2の結果から、平均粒径が0.0
1〜1.0μmの無機微粒子を0.1〜10重量%の割
合で含有するポリエステルを用いて、上記した本発明の
方法で直接紡糸延伸を行っている実施例1〜7の場合に
は、強度および伸度に優れ、しかもウスター斑(U値)
が低くて均一性に優れ、その上毛羽の発生が全くないか
又は極めて少ない、高品質の延伸ポリエステル繊維を断
糸などを生ずることなく、極めて良好な紡糸性で円滑に
製造できることがわかる。From the results shown in Table 2 above, the average particle size was 0.0
In the case of Examples 1 to 7 in which direct spinning and drawing is carried out by the above-mentioned method of the present invention using polyester containing 1 to 1.0 μm of inorganic fine particles in a proportion of 0.1 to 10% by weight, Excellent strength and elongation, and Worcester spot (U value)
It can be seen that the high-quality drawn polyester fiber having a low value, excellent in uniformity and, at the same time, little or no fluff generation can be smoothly produced with extremely good spinnability without causing yarn breakage.
【0044】それに対して、無機微粒子を含有していな
いポリエチレンテレフタレートを用いている比較例1、
平均粒径が0.01〜1.0μmの範囲にある無機微粒
子を含有していてもその含量が本発明の上記範囲(0.
1〜10重量%)から外れている比較例2〜3および比
較例5〜6の場合は、得られる延伸ポリエステル繊維の
ウスター斑(U値)が大きくて不均一であり、しかも毛
羽の発生が実施例に比べて大幅に高く、最終的に得られ
る延伸ポリエステル繊維の品質が実施例に比べて大幅に
劣っていること、その上も紡糸性にも劣っており良好な
工程安定性で延伸ポリエステル繊維を得ることができな
いことがわかる。On the other hand, Comparative Example 1 using polyethylene terephthalate containing no inorganic fine particles,
Even if the inorganic fine particles having an average particle diameter of 0.01 to 1.0 μm are contained, the content thereof is within the above range (0.
In the cases of Comparative Examples 2 to 3 and Comparative Examples 5 to 6 which are out of the range of 1 to 10% by weight), the resulting stretched polyester fibers have large Worcester spots (U value) and are non-uniform, and moreover fluff is generated. The stretched polyester fiber is significantly higher than the examples, and the quality of the finally obtained stretched polyester fiber is significantly inferior to the examples, and the spinnability is also poor and the stretched polyester has good process stability. It turns out that no fibers can be obtained.
【0045】更に、無機微粒子の平均粒径が2.0μm
であって本発明で用いる無機微粒子の平均粒径の範囲か
ら外れている比較例4の場合も、得られる延伸ポリエス
テル繊維のウスター斑(U値)が大きくて不均一であ
り、しかも毛羽の発生が実施例に比べて大幅に高く、得
られる延伸ポリエステル繊維の品質が実施例に比べて大
幅に劣っていること、その上紡糸性にも劣っており良好
な工程安定性で延伸ポリエステル繊維を得ることができ
ないことがわかる。Further, the average particle size of the inorganic fine particles is 2.0 μm.
Also in the case of Comparative Example 4 in which the average particle size of the inorganic fine particles used in the present invention is out of the range, Worcester spots (U value) of the obtained stretched polyester fiber are large and non-uniform, and fluff is generated. Is significantly higher than that of the examples, and the quality of the obtained stretched polyester fibers is significantly inferior to that of the examples. Furthermore, the spinnability is also poor and the stretched polyester fibers are obtained with good process stability. It turns out that you can't.
【0046】[0046]
【発明の効果】本発明の方法による場合は、毛羽の発生
や太さ斑などがなく、しかも強度や伸度などの力学的特
性にも優れる高品質のポリエステル繊維を、断糸や毛羽
などを生ずることなく、良好な工程性で、直接紡糸延伸
法によって生産性よく製造することができる。According to the method of the present invention, high-quality polyester fiber free from fluff generation and thickness unevenness, and excellent in mechanical properties such as strength and elongation is used. It can be produced with good productivity by a direct spin-drawing method with good processability.
Claims (1)
微粒子を0.1〜10重量%の割合で含有する繊維形成
性ポリエステルを溶融紡出した後、そのガラス転移温度
以下に冷却し、引き続いて加熱帯域に導入して延伸させ
た後、3500m/分以上の速度で引き取ることを特徴
とするポリエステル繊維の製造方法。1. A fiber-forming polyester containing 0.1 to 10% by weight of inorganic fine particles having an average particle diameter of 0.01 to 1.0 μm is melt-spun and then cooled to a temperature below its glass transition temperature. Then, the polyester fiber is introduced into the heating zone, drawn, and then taken off at a speed of 3500 m / min or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20738795A JPH0931749A (en) | 1995-07-24 | 1995-07-24 | Method for producing polyester fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20738795A JPH0931749A (en) | 1995-07-24 | 1995-07-24 | Method for producing polyester fiber |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0931749A true JPH0931749A (en) | 1997-02-04 |
Family
ID=16538900
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20738795A Pending JPH0931749A (en) | 1995-07-24 | 1995-07-24 | Method for producing polyester fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0931749A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002201528A (en) * | 2000-12-26 | 2002-07-19 | Nippon Ester Co Ltd | Method for spinning and direct drawing of polyester multifilament yarn |
US7767298B2 (en) | 2005-10-21 | 2010-08-03 | Kuraray Co., Ltd. | Electrically conductive composite fiber and process for producing the same |
US10619268B2 (en) | 2013-11-13 | 2020-04-14 | Illinois Tool Works, Inc. | Metal detectable fiber and articles formed from the same |
US10753022B2 (en) | 2014-07-25 | 2020-08-25 | Illinois Tool Works, Inc. | Particle-filled fiber and articles formed from the same |
US10947664B2 (en) | 2018-02-19 | 2021-03-16 | Illinois Tool Works Inc. | Metal detectable scouring pad |
US11542634B2 (en) | 2014-07-25 | 2023-01-03 | Illinois Tool Works Inc. | Particle-filled fiber and articles formed from the same |
-
1995
- 1995-07-24 JP JP20738795A patent/JPH0931749A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002201528A (en) * | 2000-12-26 | 2002-07-19 | Nippon Ester Co Ltd | Method for spinning and direct drawing of polyester multifilament yarn |
JP4596503B2 (en) * | 2000-12-26 | 2010-12-08 | 日本エステル株式会社 | Direct spinning method of polyester multifilament |
US7767298B2 (en) | 2005-10-21 | 2010-08-03 | Kuraray Co., Ltd. | Electrically conductive composite fiber and process for producing the same |
US10619268B2 (en) | 2013-11-13 | 2020-04-14 | Illinois Tool Works, Inc. | Metal detectable fiber and articles formed from the same |
US10753022B2 (en) | 2014-07-25 | 2020-08-25 | Illinois Tool Works, Inc. | Particle-filled fiber and articles formed from the same |
US11542634B2 (en) | 2014-07-25 | 2023-01-03 | Illinois Tool Works Inc. | Particle-filled fiber and articles formed from the same |
US10947664B2 (en) | 2018-02-19 | 2021-03-16 | Illinois Tool Works Inc. | Metal detectable scouring pad |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW567257B (en) | Polytrimethyleneterephthalate modified cross section yarn | |
JP2001164433A (en) | False twisted yarn of polypropylene terephthalate and method for producing the same | |
JP4954955B2 (en) | High-shrinkage polyester fiber and production method and use thereof | |
JPH0931749A (en) | Method for producing polyester fiber | |
JPS62243824A (en) | Production of ultrafine polyester filament yarn | |
JP2007524764A (en) | Spin annealed poly (trimethylene terephthalate) yarn | |
JP3583248B2 (en) | Splittable conjugate fiber comprising polyester and polyamide and method for producing the same | |
JPH09137317A (en) | Melt-spinning apparatus for ultrafine multifilament yarn, spinning therefor and production of the same yarn | |
JP2945130B2 (en) | Naphthalate polyester fiber for reinforcing tire cord or belt material and method for producing the same | |
WO2001068498A1 (en) | Stretched yarn pirn | |
JP7332307B2 (en) | Method for producing highly hollow polyester fiber | |
JPS61194218A (en) | Production of polyester fiber | |
JPS584091B2 (en) | Polyester fiber manufacturing method | |
WO2001023650A1 (en) | Poly(trimethylene terephthalate) multifilament yarn | |
JPS6311445B2 (en) | ||
JP2002161436A (en) | Polytrimethylene terephthalate fiber dyeable with cationic dye | |
JP3837227B2 (en) | Direct spinning drawing method of polyester extra fine multifilament | |
JPH10158932A (en) | Polyester ultrafine fiber and method for producing the same | |
JP4725200B2 (en) | Split type composite fiber excellent in uniform dyeability and method for producing the same | |
JP3998667B2 (en) | Polytrimethylene terephthalate modified yarn | |
JP4059800B2 (en) | Method for producing polytrimethylene terephthalate composite fiber | |
JP4056288B2 (en) | Method for producing polyester ultrafine multifilament yarn | |
JP3224879B2 (en) | Ultrafine fiber and method for producing the same | |
JPH1096117A (en) | Polyester fiber and method for producing the same | |
JPH11100719A (en) | Method for producing polyester fiber |