[go: up one dir, main page]

JPH01243405A - Manufacture of resin magnet structure body - Google Patents

Manufacture of resin magnet structure body

Info

Publication number
JPH01243405A
JPH01243405A JP6397688A JP6397688A JPH01243405A JP H01243405 A JPH01243405 A JP H01243405A JP 6397688 A JP6397688 A JP 6397688A JP 6397688 A JP6397688 A JP 6397688A JP H01243405 A JPH01243405 A JP H01243405A
Authority
JP
Japan
Prior art keywords
resin
magnet
annular
binder
resin magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6397688A
Other languages
Japanese (ja)
Other versions
JP2615781B2 (en
Inventor
Fumitoshi Yamashita
文敏 山下
Masami Wada
正美 和田
Masaharu Miyagawa
宮川 雅春
Yuji Doi
土肥 裕司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP6397688A priority Critical patent/JP2615781B2/en
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to DE68922911T priority patent/DE68922911T2/en
Priority to DE68912157T priority patent/DE68912157T2/en
Priority to EP93100979A priority patent/EP0540503B1/en
Priority to EP93100980A priority patent/EP0540504B1/en
Priority to DE68922748T priority patent/DE68922748T2/en
Priority to EP89103336A priority patent/EP0331055B1/en
Priority to US07/316,967 priority patent/US4981635A/en
Publication of JPH01243405A publication Critical patent/JPH01243405A/en
Application granted granted Critical
Publication of JP2615781B2 publication Critical patent/JP2615781B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PURPOSE:To make an annular type resin magnet small, thin and light, by pressing glanular composite material formed by using binder and Fe-B-R system magnet material (R is Nd or/and Pr), and thermally polymerizing it. CONSTITUTION:Microcapsule binder contains thermally polymerizing resin constituting components as the contents. Glanular composite material is formed by using the above binder and Fe-B-R system magnet material (R is Nd or/and Pr), and pressed in a cavity. While contents of the microcapsule are eluted, a green body is molded, and then the binder components are made a rigid body by thermal polymerization. That is, when the granular composite material is compressed in the cavity on which a retaining member is previously mounted and is turned into a green body, the microcapsule is mechanically destructed, the retaining member is wetted by the content substance, and the green body and the retaining member are unified in a body. Thereby, an annular resin magnet is made small-sized and thin, and assembling characteristics are improved.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は所謂永久磁石モータのロータ部材として使用さ
れるような樹脂磁石構造体の製造方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method of manufacturing a resin magnet structure used as a rotor member of a so-called permanent magnet motor.

従来の技術 本発明の対象となる樹脂磁石の形状は、適状リング状、
円筒或いはC形状などの環状であり、これに対応する支
持部材も必要に応じて係合部を設けることができるもの
のリング状、円筒状或いは円柱状などの環状である。
BACKGROUND OF THE INVENTION The shape of the resin magnet to which the present invention is applied is a suitable ring shape,
It has an annular shape such as a cylinder or a C shape, and the corresponding support member also has an annular shape such as a ring shape, a cylinder shape, or a cylinder shape, although it can be provided with an engaging portion if necessary.

R(Co、 Cu、 Fe、 M)n (但しRはSm
、 Ceなどの希土類元素、Mは周期律表の■族、V族
R(Co, Cu, Fe, M)n (R is Sm
, rare earth elements such as Ce, M is Group II and Group V of the periodic table.

■族、■族に属する元素の1種または2種以上の組み合
わせ、nは一般に5〜9の整数)などで例示される焼結
磁石は環状に形成する場合、ラジアル方向へ磁気異方化
することは極めて難しい。その主な理由は、焼結過程に
おいて異方性に基づく膨張率に差が生じるためであり、
特に薄肉環状磁石の場合には等方性にて対応するほかな
い。このため本来ならば20〜30MGOe発現する高
度な磁気性能も5 M G Oe程度に低下してしまう
When a sintered magnet, such as one or a combination of two or more elements belonging to group ① or group Ⅰ, where n is generally an integer of 5 to 9, is formed into an annular shape, it becomes magnetically anisotropic in the radial direction. That is extremely difficult. The main reason for this is that there is a difference in expansion coefficient due to anisotropy during the sintering process.
In particular, in the case of thin-walled annular magnets, the only solution is isotropy. For this reason, the high magnetic performance that would normally exhibit 20 to 30 MGOe is reduced to about 5 MGOe.

更に高度な寸法精度が要求される永久磁石モータのロー
タ部材のような場合には焼結後に研削加工が必要である
ため歩溜まりが悪く、SlやCOを主成分とすることも
加えて経済性において性能とのバランスに乏しい。
Furthermore, in cases such as rotor parts of permanent magnet motors that require a high degree of dimensional accuracy, grinding is required after sintering, resulting in poor yields, and the fact that the main components are Sl and CO makes it difficult to achieve economic efficiency. There is a poor balance between performance and performance.

一方、R(Co * Cu + F e e M ) 
n樹脂磁石はマトリクスである樹脂がラジアル方向へ異
方化した磁石素材の膨張率の差を吸収して(れるために
ラジアル磁気異方化した環状磁石を製造することができ
る。例えばアキシャル方向へ磁気異方化した場合には8
〜10MGOeの磁気性能を有する磁石が容易に得られ
る。該磁気性能は磁気異方化した焼結磁石に比べて低い
けれども密度が概ね30%軽減され、且つ高度な寸法精
度を確保し易い。更には焼結磁石特有の機械的に脆弱な
点も改善されるので環状磁石としての形状任意性に利点
がある。
On the other hand, R(Co*Cu+FeeM)
In resin magnets, the matrix resin absorbs the difference in expansion coefficient of the magnet material which is anisotropic in the radial direction, so it is possible to manufacture annular magnets with radial magnetic anisotropy.For example, in the axial direction 8 in case of magnetic anisotropy
Magnets with magnetic performance of ~10 MGOe are easily obtained. Although the magnetic performance is lower than that of a magnetically anisotropic sintered magnet, the density is reduced by approximately 30%, and it is easy to ensure a high degree of dimensional accuracy. Furthermore, since the mechanical weakness peculiar to sintered magnets is improved, the annular magnet has the advantage of being arbitrarily shaped.

発明が解決しようとする課題 しかし、上the−R(Co、 Cu、 F el M
 ) n樹脂磁石であっても環状磁石の小形化、薄肉軽
量化或いは、例えば永久磁石モータのロータ部材に使用
されるような一般に他の支持部材とのアッセンブル性な
どの面で、なお十分対処できないという欠点があった。
However, the problems to be solved by the invention are as follows:
) Even with resin magnets, it is still not possible to sufficiently address the issues of reducing the size of the annular magnet, making it thinner and lighter, or assembling it with other supporting members, such as those used in rotor members of permanent magnet motors. There was a drawback.

以下、その理由を説明する。The reason for this will be explained below.

先ず環状磁石の小形化、薄肉化などでは磁気性能上の制
約を受は易い。一般にR(Co * Cu 、F e 
+M)n樹脂磁石を半径方向へ磁気異方化する手段とし
ては、例えば特開昭57−170501号公報に記載さ
れ、ているようにキャビティを取り囲んで磁性体ヨーク
と非磁性体ヨークとを組み合わせ、且つ外側に磁化コイ
ルを配置した金型を用いるか、或いはまたキャビティの
外周に磁化コイルを埋設した金型を用いる。かかる方法
はキャビティ内に所定の磁界の強さを発生させるために
高電圧低電流型の電源を用い、且つ起磁力を大とするこ
とが行われている。しかし金型の外周からヨークによっ
て磁化コイルで励磁した磁束をキャビティ内に有効に集
束させるために磁路長を長くせざるを得す、特に小形の
環状磁石の場合には起磁力のかなりの部分が漏洩磁束と
して消費されてしまう。従ってラジアル磁気異方化は環
状磁石の形状によっては十分に成されない場合がある。
First, when annular magnets are made smaller and thinner, they tend to be subject to restrictions on magnetic performance. Generally R(Co*Cu, Fe
+M) As a means for making a resin magnet magnetically anisotropic in the radial direction, for example, as described in Japanese Patent Laid-Open No. 57-170501, a magnetic yoke and a non-magnetic yoke are combined by surrounding a cavity. , and a mold in which a magnetizing coil is disposed on the outside, or a mold in which a magnetizing coil is embedded in the outer periphery of the cavity. In this method, a high voltage, low current type power source is used to generate a predetermined magnetic field strength within the cavity, and the magnetomotive force is increased. However, in order to effectively focus the magnetic flux excited by the magnetizing coil from the outer periphery of the mold into the cavity by the yoke, the magnetic path length must be made long.Especially in the case of a small annular magnet, a considerable portion of the magnetomotive force is generated. is consumed as leakage magnetic flux. Therefore, radial magnetic anisotropy may not be achieved sufficiently depending on the shape of the annular magnet.

また、R(Co、 Cut Fel M)n樹脂磁石の
成形時の溶融固化に基づく体積収縮が原因となって薄肉
の環状樹脂磁石の場合には亀裂が生じてしまう場合があ
る。
Moreover, cracks may occur in the case of thin-walled annular resin magnets due to volumetric shrinkage due to melting and solidification during molding of R(Co, Cut Fel M)n resin magnets.

一方、以上のようなR(Co、 Cu、 Fe、 M 
) n樹脂磁石を、例えば永久磁石モータのロータ部材
とする場合、環状樹脂磁石に直接軸を固定するよりも支
持部材を介在させて環状樹脂磁石と軸とを固定する場合
が多い。ここで環状樹脂磁石と支持部材とは機械的な嵌
合によるか、或いは外部から接着剤を流入せしめて固着
するなどが一般的である。何故ならラジアル磁気異方化
した環状樹脂磁石では金型構成上の制約によって非磁性
或いは磁性を有する任意の支持部材と一体的に成形する
ことが極めて困難だからである。従って環状樹脂磁石と
支持部材とを機械的な嵌合とした場合には接着剤が流入
する空隙が必要なことから環状樹脂磁石と支持部材との
接合強度や寸法精度、或いは作業性に難点がある。
On the other hand, the above R(Co, Cu, Fe, M
) When a resin magnet is used as a rotor member of a permanent magnet motor, for example, the annular resin magnet and the shaft are often fixed with a supporting member interposed, rather than directly fixing the shaft to the annular resin magnet. Here, the annular resin magnet and the support member are generally fixed by mechanical fitting or by flowing an adhesive from the outside. This is because it is extremely difficult to integrally mold an annular resin magnet with radial magnetic anisotropy with any non-magnetic or magnetic support member due to constraints on the mold configuration. Therefore, when the annular resin magnet and the support member are mechanically fitted, a gap is required for the adhesive to flow, which poses difficulties in the bonding strength, dimensional accuracy, and workability between the annular resin magnet and the support member. be.

以上のような問題は、本発明の利用分野として挙げる永
久磁石モータの性能や構造などの設計思想に重大な影響
を与えることは明白である。
It is clear that the above-mentioned problems have a significant impact on the design concept of the performance and structure of permanent magnet motors, which are the field of application of the present invention.

本発明は以上のような形状任意性の乏しさに起因した環
状樹脂磁石の小形化、薄肉軽量化への障害を除去し、同
時にアッセンブル性の向上を果たし得る樹脂磁石構造体
の製造方法を提供しようとするものである。
The present invention provides a method for manufacturing a resin magnet structure that eliminates the obstacles to making annular resin magnets smaller, thinner and lighter due to the lack of shape arbitrariness as described above, and at the same time improves assemblability. This is what I am trying to do.

課題を解決するための手段 本発明は熱重合性樹脂構成成分を内包物質としたマイク
ロカプセルの1種または2種以上を結合剤成分とし、該
結合剤とFe−B−R系磁石素材(但しRはNdまたは
/およびPr)とで形成した顆粒状複合材をキャビティ
内で圧縮することにより、マイクロカプセル内包物質を
溶出せしめながら直接支持部材と一体的な構造のグリー
ン体を成形し、然るのち結合剤成分を熱重合で剛体化し
、樹脂磁石構造体とするものである。
Means for Solving the Problems The present invention uses one or more types of microcapsules containing a thermopolymerizable resin component as a binder component, and the binder and a Fe-B-R magnet material (however, By compressing the granular composite material (R is Nd or/and Pr) in the cavity, a green body having an integral structure with the supporting member is directly molded while the microcapsule-encapsulated substance is eluted. The binder component is then made into a rigid body by thermal polymerization to form a resin magnet structure.

ここで、顆粒状複合材の形態はマイクロカプセル以外の
結合剤の1種または2種以上とFe−B−R系磁石素材
とで顆粒状中間体とし、然るのちマイクロカプセルおよ
び必要に応じて加える各種添加剤を混合したものである
Here, the form of the granular composite material is to form a granular intermediate with one or more binders other than microcapsules and Fe-B-R magnet material, and then form microcapsules and optionally It is a mixture of various additives.

また支持部材としては所謂永久磁石モータなどのロータ
部材として使用されるような環状の積層電磁鋼板であり
、このような支持部材と一体的に環状樹脂磁石を構成す
る。
Further, the supporting member is a ring-shaped laminated electromagnetic steel plate used as a rotor member of a so-called permanent magnet motor, and an annular resin magnet is integrally formed with such a supporting member.

作用 以下、本発明を更に詳しく説明する。action The present invention will be explained in more detail below.

本発明で言う熱重合性樹脂構成成分とは、一般に樹脂磁
石の結合剤として使用されているようなエポキシ樹脂組
成物が好ましい。ここでエポキシ樹脂組成物とはエポキ
シ樹脂と、これを三次元的に橋架けする硬化剤並びに必
要に応じて加える非反応性から反応性各種添加剤を抱括
するものである。ここでエポキシ樹脂とは下記一般式で
示すことのできる1分子中に少なくとも2個以上のオキ
シラン環を有する化合物を言う。
The thermopolymerizable resin component referred to in the present invention is preferably an epoxy resin composition that is generally used as a binder for resin magnets. Here, the epoxy resin composition includes an epoxy resin, a curing agent that three-dimensionally bridges the epoxy resin, and various additives ranging from non-reactive to reactive, which are added as necessary. Here, the epoxy resin refers to a compound having at least two or more oxirane rings in one molecule, which can be represented by the following general formula.

但し、上式中Yは多官能ハロヒドリンであり、例えばエ
ピクロルヒドリンと多価フェノールとの反応生成物残基
である。ここで有用な多価−フェノールとしてはレゾシ
ノールおよびフェノールとアルデヒド或いはケトンとの
縮合によって得られる種々のビスフェノール類である。
However, Y in the above formula is a polyfunctional halohydrin, for example, a residue of a reaction product of epichlorohydrin and polyhydric phenol. Polyhydric phenols useful herein include resorcinol and various bisphenols obtained by condensation of phenol with aldehydes or ketones.

このビスフェノール類の代表的なものとして2・2′−
ビス(P−ヒドロキシフェニルプロパン)であるビスフ
ェノールA、4−4’−ジヒドロキシビフェニル。
A representative example of these bisphenols is 2,2'-
Bisphenol A, 4-4'-dihydroxybiphenyl, which is bis(P-hydroxyphenylpropane).

4・4′−ジヒドロキシビフェニルメタン、2・2′−
ジヒドロキシジフェニルオキサイドなどがある。最も普
通のエポキシ樹脂としては、下記−般式で示されるグリ
シジルエーテル型が例示できる。
4,4'-dihydroxybiphenylmethane, 2,2'-
Examples include dihydroxydiphenyl oxide. As the most common epoxy resin, a glycidyl ether type represented by the following general formula can be exemplified.

但し、上式中R1は−Hまたは−CH3であり、R2,
R3,R41R5,R6+ R71R11l R9はそ
れぞれ独立に−H,−CQ、−Br、−Fであり、Aは
炭素数1〜8のアルキレン基、−S−、−O−。
However, in the above formula, R1 is -H or -CH3, R2,
R3, R41R5, R6+ R71R11l R9 is each independently -H, -CQ, -Br, -F, and A is an alkylene group having 1 to 8 carbon atoms, -S-, -O-.

−8O□−であり、nはOもしくは1〜10の整数であ
る。また一方の硬化剤としては、脂肪酸ポリアミン類、
ポリアミド類、複素環ジアミン類。
-8O□-, and n is O or an integer from 1 to 10. In addition, as one curing agent, fatty acid polyamines,
Polyamides, heterocyclic diamines.

芳香族ポリアミン類、酸無水物類、含芳香核脂肪族ポリ
アミン類、イミダゾール類、有機酸ジヒドラジド類、ポ
リイソシアナート類など各種の化合物を例示することが
できる。また、上記エポキシ樹脂およびその硬化剤とと
もに必要に応じて適宜使用する各種添加剤としては、各
種モノエポキシ化合物類、脂肪酸およびその金属石鹸類
、脂肪酸アミド類などを挙げることができる。
Examples include aromatic polyamines, acid anhydrides, aromatic nuclear aliphatic polyamines, imidazoles, organic acid dihydrazides, and polyisocyanates. Further, as various additives to be used as appropriate with the above-mentioned epoxy resin and its curing agent as necessary, there may be mentioned various monoepoxy compounds, fatty acids and their metal soaps, fatty acid amides, and the like.

以上のような熱重合性樹脂構成成分を内包物質としたマ
イクロカプセルとは、例えば熱重合性樹脂構成成分の存
在下で懸濁重合する、いわゆる1n−situ重合法で
製造することができる。
The microcapsules containing the thermopolymerizable resin component as an encapsulating material can be produced, for example, by a so-called 1n-situ polymerization method in which suspension polymerization is carried out in the presence of the thermopolymerizable resin component.

ここで使用する単量体類としては塩化ビニル、塩化ビニ
リデン、アクリロニトリル、スチレン、酢酸ビニル、ア
クリル酸エステルおよび種々の架橋剤などであって、こ
れにより共重合体マイクロカプセルとするものである。
The monomers used here include vinyl chloride, vinylidene chloride, acrylonitrile, styrene, vinyl acetate, acrylic esters, and various crosslinking agents, which are used to form copolymer microcapsules.

但し、内包物質として使用する熱重合性樹脂構成成分と
しては少なくとも室温で液体であり、且つマイクロカプ
セルとは化学的に不活性である必要がある。また、マイ
クロカプセルの形態としては単核球状でカプセルが数な
いし数十μ−のものが好ましい。尚、内包物質として使
用する熱重合性樹脂構成成分は1種または2種以上であ
っても差し支えない。また、マイクロカプセルの内包物
質として使用する熱重合性樹脂構成成分以外の化合物と
しては少な(とも最終的に調整した結合剤として室温で
固体状となることが必要である。
However, the thermopolymerizable resin component used as the encapsulating material must be liquid at least at room temperature and chemically inert with respect to the microcapsules. Further, as for the form of the microcapsules, mononuclear spherical capsules having several to several tens of μm are preferable. Incidentally, the number of thermopolymerizable resin components used as the encapsulating substance may be one or two or more. In addition, the amount of compounds other than the thermopolymerizable resin constituents used as the encapsulating material of the microcapsules is small (it is necessary that the final binder is solid at room temperature).

次に本発明で言うFe−B−R系磁石素材とは、例えば
特開昭59−64739号公報で開示されているように
単ロール法などの液体急冷法により製造した薄片をその
まま、或いは熱処理することにより下記組成式で示され
る樹脂磁石の磁石素材としたものである。
Next, the Fe-B-R magnet material referred to in the present invention refers to a thin piece produced by a liquid quenching method such as a single roll method as disclosed in JP-A No. 59-64739, or by heat treatment. By doing so, a magnet material for a resin magnet represented by the following compositional formula was obtained.

Fe 10G−x−1/−Z Cox Ry Bz但し
、上式中0≦X≦30.10≦V≦28,2≦2≦12
. y + z≦34,6z+y≦34. x、 y、
 zはそれぞれCo、R+ Bの原子%であり、RはN
dまたは/およびPrである。尚、このようなFe−B
−R系磁石素材は永久磁石素材としての特性を損なわな
い範囲であれば他の元素の混在或いは規則的な一部置換
があっても差し支えない。
Fe 10G-x-1/-Z Cox Ry Bz However, in the above formula, 0≦X≦30.10≦V≦28, 2≦2≦12
.. y + z≦34, 6z+y≦34. x, y,
z is the atomic percent of Co, R+B, respectively, and R is N
d or/and Pr. In addition, such Fe-B
The -R magnet material may be mixed with other elements or may have regular partial substitution as long as the characteristics as a permanent magnet material are not impaired.

以上のような熱重合性樹脂構成成分を内包物質としたマ
イクロカプセルの1種または2種以上を結合剤成分とし
、該結合剤とFe−B−R系磁石素材とで顆粒状複合材
を調整する。ここで顆粒状複合材は室温で非粘着であり
、粉末成形に必要な成形性を有することが必要である。
A granular composite material is prepared by using one or more types of microcapsules containing the above thermopolymerizable resin constituents as a binder component, and using the binder and Fe-B-R magnet material. do. Here, the granular composite material is required to be non-adhesive at room temperature and to have moldability necessary for powder molding.

特に好ましい顆粒状複合材の形態としては、予めマイク
ロカプセル以外の結合剤の1種または2種以上の結合剤
成分により磁石素材を顆粒状中間体とし、然るのちマイ
クロカプセルおよび必要に応じて加える添加剤を混合す
るのである。何故ならば顆粒状複合材を、予め支持部材
を装填したキャビティ内で圧縮してグリーン体を成形す
るとき、マイクロカプセルが機械的に破壊し、内包物質
である室温で液体の熱重合性樹脂構成成分が溶出したと
き、これにより支持部材が濡れ易(、グリーン体と支持
部材との圧着および粘着による一体性を確保し易(する
ためである。
A particularly preferred form of the granular composite is that the magnetic material is made into a granular intermediate in advance with one or more binder components other than microcapsules, and then microcapsules and, if necessary, are added. Additives are mixed. This is because when the granular composite material is compressed in a cavity preloaded with a support member to form a green body, the microcapsules are mechanically destroyed and the encapsulated material, which is a thermopolymerizable resin composition that is liquid at room temperature, is released. This is because when the components are eluted, the supporting member is easily wetted (and the integrity of the green body and the supporting member is easily ensured by pressure bonding and adhesion).

実施例 実施例1゜ 以下、本発明を実施例により具体的に説明する。Example Example 1゜ Hereinafter, the present invention will be specifically explained with reference to Examples.

エピクロルヒドリンとビスフェノールAとの縮合によっ
て得られる粘度η25℃100〜160poisesの
グリシジルエーテル型エポキシ樹脂の存在下でアクリロ
ニトリルとメチルメタアクリレートとの共重合体を1n
−situ重合法にて合成することにより、マイクロカ
プセルとした。このマイクロカプセルは、平均粒子径8
μ曙の単核球状カプセルであり、該マイクロカプセルの
内包物質含有量は75重量%である。
A 1N copolymer of acrylonitrile and methyl methacrylate was prepared by condensation of epichlorohydrin and bisphenol A in the presence of a glycidyl ether type epoxy resin with a viscosity η of 100 to 160 poises at 25°C.
- Microcapsules were prepared by synthesis using an in-situ polymerization method. This microcapsule has an average particle size of 8
The microcapsules are mononuclear spherical capsules made by μAkebono, and the content of the encapsulated substance in the microcapsules is 75% by weight.

一方、液体急冷法により得た個有保磁力1Hc14〜1
5KOe、粒子径53〜350μmのNd口)’67s
  3e  薄片96重量部をDurran’smp6
5〜75℃のグリシジルエーテル型エポキシ樹脂50重
量%アセトン溶液3重量部で混合し、脱溶媒し、粉砕す
ることにより、53〜500μ■に粒度調整した顆粒状
中間材とした。
On the other hand, the unique coercive force 1Hc14~1 obtained by the liquid quenching method
5KOe, Nd port with particle size 53-350μm)'67s
3e Add 96 parts by weight of thin flakes to Durran'smp6
The mixture was mixed with 3 parts by weight of a 50% by weight acetone solution of a glycidyl ether type epoxy resin at 5 to 75°C, solvent removed, and ground to obtain a granular intermediate material whose particle size was adjusted to 53 to 500 μι.

上記顆粒状中間材に前述したマイクロカプセル゛2重量
部、下記構造を有し、且つ粒子径5〜10μ■1・3−
ビス(ヒドラジノカルボエチルχ5−イソプロピルヒダ
ントイン NH2 O,45重量部、およびステアリン酸カルシウム0.2
0重量部を混合しFe−B−R系磁石素材95.9重量
%の本発明にかかる顆粒状複合材(I)を調整した。
The above-mentioned granular intermediate material contains 2 parts by weight of the microcapsules described above, which have the following structure and a particle size of 5 to 10μ.
Bis(hydrazinocarboethyl χ5-isopropylhydantoin NH2O, 45 parts by weight, and calcium stearate 0.2
A granular composite material (I) according to the present invention containing 95.9% by weight of Fe-B-R magnet material was prepared by mixing 0 parts by weight.

第1図(a) 、 (b)は上記顆粒状複合材(1)の
外観を示す写真である。図から明らかなように、Fe−
B−R系磁石素材は、先ずDurran’smp65〜
75℃の固体エポキシ樹脂で顆粒状に調整されたもので
あり、該顆粒状に調整した表面に室温で液体のエポキシ
樹脂を内包物としたマイクロカプセル、エポキシ樹脂硬
化剤、ステアリン酸カルシウムなどの微粒子が付着した
構成になっている。従ってこの顆粒状複合材は室温で非
粘着性であって、しかも粉末成形材としての流動性を備
えたものである。
FIGS. 1(a) and 1(b) are photographs showing the appearance of the granular composite material (1). As is clear from the figure, Fe-
The B-R magnet materials are Durran'smp65~
It is prepared into granules using solid epoxy resin at 75°C, and on the surface of the granules are microcapsules containing epoxy resin that is liquid at room temperature, epoxy resin curing agents, calcium stearate, and other fine particles. It has an attached structure. Therefore, this granular composite material is non-adhesive at room temperature and has fluidity as a powder molding material.

次に、外径47.9+n+++、内径8IIIIRの環
状であって、厚さ0.5mmの電磁鋼板を22枚積層し
た支持部材を金型部材に装填し、該支持部材の外周に径
50.2On+n+の環状キャビティを形成した。この
環状キャビティに顆粒状複合材(1)を充填し、室温下
で圧縮し環状グリーン体を成形した。
Next, a support member having an annular shape with an outer diameter of 47.9+n+++ and an inner diameter of 8IIIR and made by laminating 22 electromagnetic steel plates with a thickness of 0.5 mm is loaded into the mold member, and a diameter of 50.2On+n+ is attached to the outer periphery of the support member. An annular cavity was formed. The granular composite material (1) was filled into this annular cavity and compressed at room temperature to form an annular green body.

次に上記環状グリーン体と支持部材とを一体的に脱型し
、然るのち結合剤を120℃で1時間熱重合した。得ら
れた環状グリーン体は支持部材と一体的に剛体化してい
た。
Next, the annular green body and the support member were demolded together, and then the binder was thermally polymerized at 120° C. for 1 hour. The obtained annular green body was made rigid integrally with the support member.

第2図は支持部材に軸をアッセンブルした上記、本発明
にかかる樹脂磁石構造体を示すものである。
FIG. 2 shows the above resin magnet structure according to the present invention in which a shaft is assembled to a support member.

図中1は支持部材、2は支持部材1と一体的に剛体化し
た樹脂磁石、3は支持部材1ヘアツセンブルした軸であ
る。図から明らかなように永久磁石モータのロータ部材
として、そのまま使用可能な樹脂磁石構造体であること
が明白である。
In the figure, 1 is a support member, 2 is a resin magnet made rigid integrally with the support member 1, and 3 is a shaft on which the support member 1 is assembled. As is clear from the figure, it is clear that the resin magnet structure can be used as is as a rotor member of a permanent magnet motor.

下記の第1表は上記の樹脂磁石構造体の外径寸法と軸基
準の外周振れを示す特性表である。
Table 1 below is a characteristic table showing the outer diameter dimension and the outer circumferential runout with respect to the axis of the resin magnet structure described above.

第1表 特に外径47.9mの積層電磁鋼板からなる環状支持部
材の外周部分に直接肉薄1mm程度の薄肉環状Fe−B
−R系磁石素材を一体的に成形した樹脂磁石構造体であ
るに拘らず高度な寸法精度が確保されたものである。
Table 1 In particular, thin-walled annular Fe-B with a thickness of about 1 mm is directly attached to the outer peripheral part of an annular support member made of laminated electromagnetic steel sheets with an outer diameter of 47.9 m.
-Although it is a resin magnet structure integrally molded from R-based magnet material, a high degree of dimensional accuracy is ensured.

第3図は上記樹脂磁石構造体の樹脂磁石と支持部材との
剪断強度の温度依存性を示す特性図である。図から明ら
かなように樹脂磁石と支持部材との剪断強度は、樹脂磁
石の結合剤の性質を反映して高温下で低下する。しかし
、100℃であっても概ね300kg程度を維持してお
り、樹脂磁石と支持部材とが十分に一体的な剛体となっ
た樹脂磁石構造体であることは明白である。
FIG. 3 is a characteristic diagram showing the temperature dependence of the shear strength of the resin magnet and the support member of the resin magnet structure. As is clear from the figure, the shear strength between the resin magnet and the support member decreases at high temperatures, reflecting the properties of the binder in the resin magnet. However, even at 100° C., the weight remains approximately 300 kg, and it is clear that the resin magnet structure is a resin magnet structure in which the resin magnet and the support member are sufficiently integrated and rigid.

第4図は上記樹脂磁石構造体の剪断破壊によって支持部
材と分離した樹脂磁石接合面の写真である。図から顆粒
状複合材をグリーン体成形する段階で結合剤成分である
マイクロカプセルが機械的に破壊した様子が伺える。こ
のようにしてマイクロカプセル外に溶出した内包物質、
ここでは粘度η25℃100〜160poisesのグ
リシジルエーテル型エポキシ樹脂が直接支持体を濡らす
ことが明白である。
FIG. 4 is a photograph of the bonded surface of the resin magnet separated from the support member due to shear failure of the resin magnet structure. From the figure, it can be seen that the microcapsules, which are the binder component, were mechanically destroyed during the step of forming the granular composite into a green body. In this way, the encapsulated substance eluted outside the microcapsule,
It is clear here that the glycidyl ether type epoxy resin having a viscosity η25°C of 100 to 160 poises directly wets the support.

実施例2゜ 液体急冷法により得た個有保磁力1Hc14〜15KO
e、粒子径53〜350μ−のNd14  Fe7eB
8薄片97重量部と下記構造を有し、且つ軟化温度16
0〜170℃のアルケニルフェノール重合体であるポリ
ーP−ビニフェノールの50%アセトン溶液 1.6重量部とを混合し、粉砕し、脱溶媒することによ
り5′3〜350μmに粒度調整した顆粒状中間体とし
た。この顆粒状中間体に実施例1で使用したマイクロカ
プセル2.2重量部、 BF3 :2−メチルイミダゾ
ール錯体0.05重量部、ステアリン酸カルシウム0.
05重量部を混合し、Fe−B−R系顆粒状複合材(I
I)を調整した。次に実施例1と同様な外径47.9m
、内径8++nの環状であって、厚さ0.5mの電磁鋼
板を11枚積層した支持部材を金型部材に装填し、該支
持部材の外周に径50.2+msの環状キャビティを形
成した。この環状キャビティに顆粒状複合材(n)を充
填し、室温下で圧縮し、環状グリーン体を成形した。次
に上記環状グリーン体と支持体とを一体的に脱型し、然
るのち結合剤を160℃で1時間熱重合した。得られた
環状グリーン体は支持部材と一体的に剛体化していた。
Example 2゜Unique coercive force 1Hc14-15KO obtained by liquid quenching method
e, Nd14Fe7eB with a particle size of 53 to 350 μ-
8 flakes, 97 parts by weight, and the following structure, and a softening temperature of 16
Granules whose particle size is adjusted to 5'3 to 350 μm by mixing with 1.6 parts by weight of a 50% acetone solution of poly P-vinyphenol, an alkenylphenol polymer, at 0 to 170°C, pulverizing, and removing the solvent. It was used as an intermediate. This granular intermediate contains 2.2 parts by weight of the microcapsules used in Example 1, 0.05 parts by weight of BF3:2-methylimidazole complex, and 0.05 parts by weight of calcium stearate.
05 parts by weight to form a Fe-B-R based granular composite (I
I) was adjusted. Next, the outer diameter is 47.9 m, which is the same as in Example 1.
A supporting member having an annular inner diameter of 8++n and made of 11 laminated electromagnetic steel plates having a thickness of 0.5 m was loaded into a mold member, and an annular cavity with a diameter of 50.2+ms was formed around the outer periphery of the supporting member. This annular cavity was filled with the granular composite material (n) and compressed at room temperature to form an annular green body. Next, the annular green body and the support were demolded together, and then the binder was thermally polymerized at 160° C. for 1 hour. The obtained annular green body was made rigid integrally with the support member.

上記樹脂磁石構造体に軸をアッセンブルし、100℃雰
囲気で8000rpm6時間高速回転したが環状樹脂磁
石の遠心力による機械的な破壊や、支持部材からの離脱
は認められなかった。
A shaft was assembled to the above resin magnet structure and rotated at a high speed of 8,000 rpm for 6 hours in an atmosphere of 100° C., but no mechanical breakage of the annular resin magnet due to centrifugal force or separation from the support member was observed.

比較例1゜ 溶体化処理を経て得た個有保磁力1Hc9.5K Oe
 e粒子径32〜106μmのSs (Co 0.68
8゜C1o、tot、 p6 o、2目* Zr 01
017) 7粒子97重量部、粘度η25℃100〜1
60poisesのグリシジルエーテル型エポキシ樹脂
/1−ベンジル・2−メチルイミダゾール(重量比10
:1)混合物3重量部とを混合して圧縮成形グレードの
R(Co、 Cu、 Fee M) n樹脂磁石原料を
調整した。
Comparative Example 1 Unique coercive force obtained through solution treatment: 1Hc9.5K Oe
e Ss (Co 0.68
8゜C1o, tot, p6 o, 2nd * Zr 01
017) 7 particles 97 parts by weight, viscosity η25℃100-1
60 poises of glycidyl ether type epoxy resin/1-benzyl 2-methylimidazole (weight ratio 10
:1) 3 parts by weight of the mixture to prepare a compression molding grade R(Co, Cu, Fee M)n resin magnet raw material.

次に実施例1および2と同様な方法で外径47゜9−2
内径8−の環状であって、厚さ0.5mの電磁鋼板を2
2枚積層した支持部材を金型部材に装填し、該支持部材
の外周に径50.2閣の環状キャビティを形成した。こ
の環状キャビティにR(Co、Cu、Fee M)n樹
脂磁石原料を充填し、室温下で圧縮し、環状グリーン体
を成形した。しかし、このものはキャビティ内への材料
充填が困難なばかりか、環状に成形したグリーン体と支
持部材とを一体的に脱型することも困難であり、グリー
ン体のスプリングバックによって当該グリーン体は支持
体と離脱してしまうのである。
Next, in the same manner as in Examples 1 and 2, the outer diameter was 47°9-2.
Two electromagnetic steel plates with an inner diameter of 8 mm and a thickness of 0.5 m are
Two laminated support members were loaded into a mold member, and an annular cavity with a diameter of 50.2 mm was formed around the outer periphery of the support member. This annular cavity was filled with R(Co, Cu, Fee M)n resin magnet raw material and compressed at room temperature to form an annular green body. However, with this method, it is not only difficult to fill the material into the cavity, but also difficult to remove the annularly molded green body and supporting member from the mold together, and the green body is damaged due to springback of the green body. This results in separation from the support.

比較例2゜ 溶体化処理を経て得た個有保磁力1Hc9.5KOeの
Sl (Co o、sea、 (:uo、tot、 )
’e O,2目。
Comparative Example 2 Sl with a unique coercive force of 1Hc9.5KOe obtained through solution treatment (Co o, sea, (:uo, tot, )
'e O, 2nd eye.

Zr  0−017) ?粒子92重量部と、下記構造
を有する相対粘度1.6(0,5%−mクレゾール溶液
を25℃でオストワルド粘度計により測定)H(NH(
CH2)tlo)nOH の12−ポリアミド8重量部とを混練して得た射出成形
グレードのR(Co、Cu、Fe、M)n樹脂磁石原料
を調整した。
Zr 0-017)? 92 parts by weight of particles and a relative viscosity of 1.6 (measured with a 0.5%-m cresol solution at 25°C using an Ostwald viscometer) having the following structure: H(NH(
An injection molding grade R(Co, Cu, Fe, M)n resin magnet raw material was prepared by kneading CH2)tlo)nOH with 8 parts by weight of 12-polyamide.

次に実施例1および2と同様な方法で外径47゜9 w
m 、内径8IIIIlの環状であって厚さ0.5mm
の電磁鋼板を11枚積層した支持部材を金型部材に装填
し、該支持部材の外周に径50.2nmの環状キャビテ
ィを形成した。この環状キャビティの一方の端部に設け
たリングゲートからR(Co、 Cu、 Fe。
Next, in the same manner as in Examples 1 and 2, the outer diameter was 47°9w.
m, annular with an inner diameter of 8IIIl and a thickness of 0.5 mm
A supporting member in which 11 electromagnetic steel sheets were laminated was loaded into a mold member, and an annular cavity with a diameter of 50.2 nm was formed around the outer periphery of the supporting member. R(Co, Cu, Fe) from a ring gate provided at one end of this annular cavity.

M)n樹脂磁石原料を溶融射出し、当該、キャビティ内
で充填固化した。しかし、この樹脂磁石は薄肉環状キャ
ビティ内への充填が困難なばかりでなく、充填したもの
であっても溶融固化による体積収縮によって環状樹脂磁
石に全て亀裂が発生してしまうのである。
M) N resin magnet raw material was melted and injected, and filled and solidified in the cavity. However, it is not only difficult to fill the thin-walled annular cavity with this resin magnet, but even when it is filled, cracks occur in all the annular resin magnets due to volume shrinkage due to melting and solidification.

比較例3゜ 第5図は肉厚方向へ磁気異方化した4、2MGOeのフ
ェライト焼結磁石を厚さ0.5w*の電磁鋼板積層支持
部材の外周面に接着固定したロータ部材の斜視図である
。但し図中4は支持部材、5は支持部材4の外周面に接
着剤で固定した焼結磁石、3は支持部材4にアッセンブ
ルした軸である。ここでロータ部材の外径は50.2−
であり第2図で示した本発明にかかる樹脂磁石構造体と
同水準である。しかし磁石の長さは第2図で示した本発
明にかかる樹脂磁石構造体の場合に比べて1.5倍、体
積比は4倍となるものである。第2表は両者を永久磁石
モータの代表であるブラシレスDCファンモータとした
ときの特性表である。
Comparative Example 3゜Figure 5 is a perspective view of a rotor member in which sintered ferrite magnets of 4,2MGOe, which are magnetically anisotropic in the thickness direction, are adhesively fixed to the outer peripheral surface of a 0.5w* thick electromagnetic steel sheet laminated support member. It is. However, in the figure, 4 is a support member, 5 is a sintered magnet fixed to the outer peripheral surface of the support member 4 with adhesive, and 3 is a shaft assembled to the support member 4. Here, the outer diameter of the rotor member is 50.2-
This is on the same level as the resin magnet structure according to the present invention shown in FIG. However, the length of the magnet is 1.5 times that of the resin magnet structure according to the present invention shown in FIG. 2, and the volume ratio is 4 times that of the resin magnet structure according to the present invention shown in FIG. Table 2 is a characteristic table when both motors are brushless DC fan motors, which are representative permanent magnet motors.

第2表 但し、表中のトルクおよび出力は1420rpIIlで
のファン負荷時である。尚、定格電圧7〜35Vの範囲
での最大負荷電流値は両者ともにIA以下の同水準であ
った。表から明らかなように本発明にかかる樹脂磁石構
造体は、従来一般に環状磁石の適用が困難であった分野
であっても対応することが可能である。
Table 2: However, the torque and output in the table are at a fan load of 1420 rpm. Note that the maximum load current values in the range of rated voltages of 7 to 35 V were both at the same level below IA. As is clear from the table, the resin magnet structure according to the present invention can be used even in fields where it has been generally difficult to apply annular magnets.

発明の効果 以上のように本発明は形状任意性の乏しさに起因した環
状樹脂磁石の小形化、薄肉化への障害を除去し、同時に
アッセンブル性の向上を果たし得る樹脂磁石構造体を提
供することができる。
Effects of the Invention As described above, the present invention provides a resin magnet structure that can eliminate the obstacles to miniaturization and thinning of annular resin magnets due to the lack of shape arbitrariness, and at the same time improve assemblability. be able to.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a) 、 (b)は顆粒状複合材の粒子構造を
示す写真、第2図は樹脂磁石構造体の斜視図、第3図は
樹脂磁石と支持部材との剪断強度を示す特性図、第4図
は樹脂磁石の支持部材との接合面の粒子構造を示す写真
、第5図(a) 、 (b)は比較例のロータ部材を示
す斜視図及び平面図である。 代理人の氏名 弁理士 中尾敏男 ほか1名第2図 ″′   づ 第3図 雰囲気温度°C 第5図 (a) (b) 手続補正書く方式) 1 事件の表示 昭和63年特許願第  63976  号2 発明の名
称 樹脂磁石構造体の製造方法 3 補正をする者 事件との関係  特 許 出 顯 大 佐 所  大阪府門真市大字門真1006番地名 称 
 (582)  松下電器産業株式会社代表者    
  谷  井  昭  雄4代理人 〒571 住 所  大阪府門真市大字門真1006番地5 補正
命令の日付 平成 1年 3月28日 6 補正の対象 明細書の発明の詳細な説明の欄 7 補正の内容 (1)明細書第14頁下から第9行目の「写真」を「模
式図」に補正します。 (2)同第17頁第2行目の「写真」を「模式図」に補
正します。 (3)同第22頁第20行目の「写真」を「模式図」に
補正します。 ■同第23頁第3行目の「写真」を「模式図」に補正し
ます。 (5)図面第1図を別紙の通り補正します。 (6)図面第4図を別紙の通り補正します。
Figures 1 (a) and (b) are photographs showing the particle structure of the granular composite material, Figure 2 is a perspective view of the resin magnet structure, and Figure 3 is the characteristics showing the shear strength of the resin magnet and supporting member. 4 are photographs showing the particle structure of the joint surface of the resin magnet with the supporting member, and FIGS. 5(a) and 5(b) are a perspective view and a plan view showing a rotor member of a comparative example. Name of agent: Patent attorney Toshio Nakao and one other person Figure 2″’ Figure 3 Atmospheric temperature °C Figure 5 (a) (b) Procedure amendment method) 1 Indication of case Patent Application No. 63976, filed in 1988 2 Name of the invention Method for manufacturing a resin magnet structure 3 Relationship with the case of the person making the amendment Patent Issued by Colonel Akane Address 1006 Kadoma, Kadoma City, Osaka Name Name
(582) Representative of Matsushita Electric Industrial Co., Ltd.
Akio Tanii 4 Agent 571 Address 1006-5 Kadoma, Kadoma-shi, Osaka Date of amendment order March 28, 1999 6 Detailed explanation of the invention in the specification subject to amendment 7 Contents of amendment ( 1) Correct the "photo" in the 9th line from the bottom of page 14 of the specification to "schematic diagram." (2) Correct "photo" in the second line of page 17 to "schematic diagram". (3) Correct "Photograph" on page 22, line 20 of the same page to "schematic diagram." ■Correct "photo" in the third line of page 23 to "schematic diagram". (5) Revise Figure 1 of the drawing as shown in the attached sheet. (6) Revise Figure 4 of the drawing as shown in the attached sheet.

Claims (3)

【特許請求の範囲】[Claims] (1)熱重合性樹脂構成成分を内包物質としたマイクロ
カプセルの1種または2種以上を結合剤成分とし、該結
合剤とFe−B−R系磁石素材(但しRはNdまたは/
およびPr)とで形成した顆粒状複合材をキャビティ内
で圧縮することにより、マイクロカプセル内包物質を溶
出せしめながら直接支持部材と一体的な構造のグリーン
体を成形し、然るのち結合剤成分の熱重合で剛体化する
樹脂磁石構造体の製造方法。
(1) One or more types of microcapsules containing thermopolymerizable resin components as binder components, and the binder and Fe-B-R magnet material (where R is Nd or /
By compressing the granular composite material formed with (Pr) and Pr) in the cavity, a green body having a structure that is directly integrated with the supporting member is formed while the microcapsule-encapsulated substance is eluted, and then the binder component is A method for manufacturing a resin magnet structure that becomes rigid through thermal polymerization.
(2)顆粒状複合材はマイクロカプセル以外の結合剤成
分の1種または2種以上とFe−B−R系磁石素材とで
顆粒状中間体とし、然るのちマイクロカプセルおよび必
要に応じて加える各種添加剤を混合したものである特許
請求の範囲第1項記載の樹脂磁石構造体の製造方法。
(2) The granular composite material is made into a granular intermediate by one or more binder components other than microcapsules and Fe-B-R magnet material, and then added to microcapsules and as necessary. The method for manufacturing a resin magnet structure according to claim 1, which is a mixture of various additives.
(3)支持部材は積層した電磁鋼板であり、該支持部材
の外周に環状グリーン体を直接一体的に成形する特許請
求の範囲第1項記載の樹脂磁石構造体の製造方法。
(3) The method for manufacturing a resin magnet structure according to claim 1, wherein the supporting member is a laminated electromagnetic steel plate, and the annular green body is directly integrally formed on the outer periphery of the supporting member.
JP6397688A 1988-02-29 1988-03-17 Method for manufacturing resin magnet structure Expired - Lifetime JP2615781B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP6397688A JP2615781B2 (en) 1988-03-17 1988-03-17 Method for manufacturing resin magnet structure
DE68912157T DE68912157T2 (en) 1988-02-29 1989-02-25 Process for the production of resin-bonded magnets.
EP93100979A EP0540503B1 (en) 1988-02-29 1989-02-25 Method for making a resin bonded magnet article
EP93100980A EP0540504B1 (en) 1988-02-29 1989-02-25 Method for making a resin bonded magnet article
DE68922911T DE68922911T2 (en) 1988-02-29 1989-02-25 Process for the production of resin-bonded magnetic objects.
DE68922748T DE68922748T2 (en) 1988-02-29 1989-02-25 Process for the production of a plastic bonded magnetic object.
EP89103336A EP0331055B1 (en) 1988-02-29 1989-02-25 Methods for producing a resinbonded magnet
US07/316,967 US4981635A (en) 1988-02-29 1989-02-28 Methods for producing a resin-bonded magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6397688A JP2615781B2 (en) 1988-03-17 1988-03-17 Method for manufacturing resin magnet structure

Publications (2)

Publication Number Publication Date
JPH01243405A true JPH01243405A (en) 1989-09-28
JP2615781B2 JP2615781B2 (en) 1997-06-04

Family

ID=13244823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6397688A Expired - Lifetime JP2615781B2 (en) 1988-02-29 1988-03-17 Method for manufacturing resin magnet structure

Country Status (1)

Country Link
JP (1) JP2615781B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006100560A (en) * 2004-09-29 2006-04-13 Neomax Co Ltd Rare earth bonded magnet and method for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006100560A (en) * 2004-09-29 2006-04-13 Neomax Co Ltd Rare earth bonded magnet and method for manufacturing the same

Also Published As

Publication number Publication date
JP2615781B2 (en) 1997-06-04

Similar Documents

Publication Publication Date Title
EP0540504B1 (en) Method for making a resin bonded magnet article
US8853908B2 (en) Magnet rotor assembly including a vacuum impregnated bonded magnet having increased crush strength at high temperatures
KR100981218B1 (en) Permanent magnet rotor and motor using it
JP2780422B2 (en) Method for manufacturing resin magnet structure
JP7477745B2 (en) Field element and its manufacturing method
JP4311063B2 (en) Anisotropic rare earth bonded magnet and motor
JPH01243405A (en) Manufacture of resin magnet structure body
US5190684A (en) Rare earth containing resin-bonded magnet and its production
JP6029205B2 (en) Iron yoke integral fitting outer rotor and method for producing the magnet
JP7623600B2 (en) Manufacturing method of compression bonded magnets
WO2023053307A1 (en) Rotor and electric motor
JP2568615B2 (en) Method for manufacturing resin magnet structure
JP3024436B2 (en) Method for manufacturing resin magnet structure
US7828988B2 (en) Anisotropic rare earth bonded magnet having self-organized network boundary phase and permanent magnet motor utilizing the same
KR920002258B1 (en) Resin-bonded magnet and making method thereof
JP2558790B2 (en) Resin magnet manufacturing method
JPH0993845A (en) Surface magnet type rotor
JP4089220B2 (en) Permanent magnet motor
JP2839264B2 (en) permanent magnet
JP7640843B2 (en) Manufacturing method of compression bonded magnets
JP2002329628A (en) Method for manufacturing annular magnet structure and motor
JPH0444302A (en) Manufacture of rare-earth element iron resin magnet structure body
WO2024028989A1 (en) Preform, preforming method, and method of producing compression-bonded magnet
JP2005344142A (en) Manufacturing method of radial anisotropic ring magnet
JP2004296872A (en) Method of manufacturing heat shrinkable rare earth magnet and permanent magnet motor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080311

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090311

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090311

Year of fee payment: 12