JPH01242780A - Thin film-forming equipment and method for cleaning same - Google Patents
Thin film-forming equipment and method for cleaning sameInfo
- Publication number
- JPH01242780A JPH01242780A JP7092388A JP7092388A JPH01242780A JP H01242780 A JPH01242780 A JP H01242780A JP 7092388 A JP7092388 A JP 7092388A JP 7092388 A JP7092388 A JP 7092388A JP H01242780 A JPH01242780 A JP H01242780A
- Authority
- JP
- Japan
- Prior art keywords
- reactor
- thin film
- gas
- deposits
- temperature region
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims description 22
- 238000004140 cleaning Methods 0.000 title claims description 17
- 238000005530 etching Methods 0.000 claims description 23
- 239000010409 thin film Substances 0.000 claims description 21
- 239000007789 gas Substances 0.000 description 29
- 239000010408 film Substances 0.000 description 18
- 238000005229 chemical vapour deposition Methods 0.000 description 14
- 239000000758 substrate Substances 0.000 description 13
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 9
- 239000010453 quartz Substances 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 7
- 239000012495 reaction gas Substances 0.000 description 4
- 229910052785 arsenic Inorganic materials 0.000 description 3
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 3
- 229910000413 arsenic oxide Inorganic materials 0.000 description 3
- 229960002594 arsenic trioxide Drugs 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- KTTMEOWBIWLMSE-UHFFFAOYSA-N diarsenic trioxide Chemical compound O1[As](O2)O[As]3O[As]1O[As]2O3 KTTMEOWBIWLMSE-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000001020 plasma etching Methods 0.000 description 2
- 231100000614 poison Toxicity 0.000 description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 2
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 2
- 238000005979 thermal decomposition reaction Methods 0.000 description 2
- 239000003440 toxic substance Substances 0.000 description 2
- 101100215641 Aeromonas salmonicida ash3 gene Proteins 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- RBFQJDQYXXHULB-UHFFFAOYSA-N arsane Chemical compound [AsH3] RBFQJDQYXXHULB-UHFFFAOYSA-N 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- GQGKWSAYNSDSDR-UHFFFAOYSA-N hexachloro-lambda6-sulfane Chemical compound ClS(Cl)(Cl)(Cl)(Cl)Cl GQGKWSAYNSDSDR-UHFFFAOYSA-N 0.000 description 1
- 229910000040 hydrogen fluoride Inorganic materials 0.000 description 1
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- GVGCUCJTUSOZKP-UHFFFAOYSA-N nitrogen trifluoride Chemical compound FN(F)F GVGCUCJTUSOZKP-UHFFFAOYSA-N 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 239000013049 sediment Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 150000003377 silicon compounds Chemical class 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- SFZCNBIFKDRMGX-UHFFFAOYSA-N sulfur hexafluoride Chemical compound FS(F)(F)(F)(F)F SFZCNBIFKDRMGX-UHFFFAOYSA-N 0.000 description 1
- 229960000909 sulfur hexafluoride Drugs 0.000 description 1
- TXEYQDLBPFQVAA-UHFFFAOYSA-N tetrafluoromethane Chemical compound FC(F)(F)F TXEYQDLBPFQVAA-UHFFFAOYSA-N 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
Landscapes
- Chemical Vapour Deposition (AREA)
Abstract
Description
【発明の詳細な説明】
[発明の目的]
(産業上の利用分野)
本発明は、化学的気相成長法等を利用した薄膜形成装置
およびそのクリーニング方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a thin film forming apparatus using chemical vapor deposition or the like and a cleaning method thereof.
(従来の技術)
化学的気相成長(CVD)法は、半導体工業を中心に広
く用いられている。特に集積回路の製造工程においては
、薄膜形成法の一つとして不可欠である。CVD法には
、大気圧下で膜形成を行・う常圧CVDと、減圧下で膜
形成を行う減圧C■Dとがある。一般に生産性や段差被
覆性に優れた減圧CVDが多く用いられる。(Prior Art) Chemical vapor deposition (CVD) is widely used mainly in the semiconductor industry. Particularly in the manufacturing process of integrated circuits, it is essential as one of the thin film forming methods. CVD methods include normal pressure CVD, which forms a film under atmospheric pressure, and reduced pressure CVD, which forms a film under reduced pressure. Generally, low pressure CVD is often used because of its excellent productivity and step coverage.
CVD法を用いた膜形成装置は、通常反応炉として真空
排気機能を備えた管状容器を用いて構成される。この反
応炉内に薄膜を形成すべき基板を装填して真空排気した
侵、反応管の外周に設けられた抵抗加熱器により所定温
度まで基板を加熱し、反応性ガスをここに導入すること
により、膜形成が行われる。こ゛の様なCVD装置では
、基板を加熱する際に同時に反応炉内壁も加熱されるが
、反応炉の排気系との接続部には真空バッキングとして
通常ゴム製のOリングが用いられている関係で、この部
分を余り高い温度に加熱することができない。バッキン
グの耐熱温度である約250℃以上に反応炉を加熱する
場合には、反応炉と排気系の接続部近くには加熱器を配
置しないで、この部分を基板加熱を行う部分より低温に
保つ必要がある。A film forming apparatus using the CVD method is usually constructed using a tubular container equipped with a vacuum evacuation function as a reaction furnace. The substrate on which a thin film is to be formed is loaded into the reactor, the vacuum is evacuated, the substrate is heated to a predetermined temperature by a resistance heater installed around the outer periphery of the reaction tube, and a reactive gas is introduced into the reactor. , film formation takes place. In such CVD equipment, the inner wall of the reactor is heated at the same time as the substrate is heated, but a rubber O-ring is usually used as a vacuum backing at the connection to the reactor exhaust system. Therefore, this part cannot be heated to a very high temperature. When heating the reactor above the backing's heat-resistant temperature of approximately 250°C, do not place a heater near the connection between the reactor and the exhaust system to keep this area at a lower temperature than the area where the substrate is heated. There is a need.
このようなCVD装置では、反応ガスと膜形成条件によ
っては、ガスが反応炉の高温領域で基板や反応炉内壁に
全て堆積せず、排気系に近い低温部に不要な堆積物が生
成されることがある。例えば、シラン(SiH+>ガス
とアルシン(ASH3)ガスを用いてヒ素ドープ多結晶
シリコン膜を形成する場合、低温領域には固体のヒ素が
堆積する。有機シリコン(例えば、
Si (OC2H5)4 )!:有機ヒ素(例えば、A
s (OC2Hs13)の混合ガスを用いてヒ素ドープ
トガラス膜を形成する場合には、低温領域にはヒ素酸化
物が堆積する。In such CVD equipment, depending on the reaction gas and film formation conditions, the gas may not be completely deposited on the substrate or the inner wall of the reactor in the high-temperature region of the reactor, and unnecessary deposits may be generated in the low-temperature region near the exhaust system. Sometimes. For example, when forming an arsenic-doped polycrystalline silicon film using silane (SiH+> gas and arsine (ASH3) gas), solid arsenic is deposited in the low temperature region.Organosilicon (e.g., Si(OC2H5)4)! :Organic arsenic (e.g. A
When forming an arsenic-doped glass film using a mixed gas of s (OC2Hs13), arsenic oxide is deposited in the low temperature region.
CVD装置の反応炉内の堆積物は、放置すると様々な悪
影響を及ぼす。例えば、厚くなって剥がれて反応炉内の
ゴミとなり、基板上に形成する喚の特性や歩留り劣化の
原因となる。また排気系に近い低温領域での堆積物は、
もともと細い排気系に近い部分の断面積をより小さくす
る。このため、膜形成時の圧力変化をもたらし、膜形成
の均一性の劣化、再現性の低下等をもたらす。上記の例
の様な場合は、低温領域の堆積物は有毒物質であり、操
作上危険を伴う。例えば膜形成した基板を取出・す作業
は、真空を破って反応炉内が大気に晒されるのが通常で
あるが、この場合有毒な堆積物の蒸発の危険がある。ま
た装置の保守管理上反応管を洗浄すると、有毒物質が洗
浄液中に溶解して、その処理が問題になる。Deposits in the reactor of a CVD device have various adverse effects if left untreated. For example, the film becomes thick and peels off, becoming dust in the reactor, causing deterioration in the characteristics and yield of the film formed on the substrate. In addition, deposits in the low-temperature area near the exhaust system are
The cross-sectional area of the part near the exhaust system, which is already thin, is made smaller. This causes a pressure change during film formation, resulting in deterioration of uniformity of film formation, reduction in reproducibility, and the like. In cases such as the above example, the deposits in the low-temperature region are toxic substances and pose operational risks. For example, when removing a substrate on which a film has been formed, the vacuum is usually broken and the inside of the reactor is exposed to the atmosphere, but in this case there is a risk of evaporation of toxic deposits. Furthermore, when the reaction tube is cleaned for equipment maintenance, toxic substances are dissolved in the cleaning solution, which poses a problem in how to dispose of them.
最近、反応炉内の堆積物を簡便に除去するクリーニング
方法として、エッチング・ガスを導入してこれをプラズ
マ化し、堆積物と反応させる方法が行われている。とこ
ろが従来の方法は、加熱器で加熱される高温領域の堆積
部を除去することが目的であり、上述した様に排気系に
近い低温領域の堆積物除去に単純に適用すると、問題が
ある。Recently, as a cleaning method for easily removing deposits in a reactor, a method has been used in which an etching gas is introduced, turned into plasma, and reacted with the deposits. However, the purpose of the conventional method is to remove deposits in a high-temperature region heated by a heater, and as described above, there are problems when simply applying the method to remove deposits in a low-temperature region near the exhaust system.
即ち、反応炉の高温部に堆積した薄膜状の反応物を除去
するに適した条件では、低温領域の多口の堆積物を除去
するには不足がある。逆に、低温領域の堆積物除去に相
応しい条件に設定すると、高温領域ではオーバーエツチ
ングになり、反応炉の石英管にピンホールや亀裂を生じ
る原因となる。That is, conditions suitable for removing thin film-like reactants deposited in the high-temperature region of the reactor are insufficient to remove large deposits in the low-temperature region. On the other hand, if conditions are set suitable for removing deposits in the low temperature region, overetching will occur in the high temperature region, causing pinholes and cracks in the quartz tube of the reactor.
(発明が解決しようとする課題)
以上の様に従来のCVD装置のプラズマ・クリーニング
方法では、膜堆積の条件が異なる高温部と低温部の堆積
物を効果的に除去することができない、という問題があ
った。(Problems to be Solved by the Invention) As described above, the conventional plasma cleaning method for CVD equipment is unable to effectively remove deposits in the high-temperature and low-temperature regions, where film deposition conditions are different. was there.
本発明は、この様な問題を解決した、効果的にクリーニ
ングを行ない得る薄膜形成装置を提供することを目的と
する。SUMMARY OF THE INVENTION An object of the present invention is to provide a thin film forming apparatus that solves these problems and can perform effective cleaning.
本発明はまた、効果的な薄膜形成装置のクリーニング方
法を提供することを目的とする。Another object of the present invention is to provide an effective method for cleaning a thin film forming apparatus.
[発明の構成]
(課題を解決するための手段)
本発明は、第1に、加熱器を備えた反応炉、薄膜形成用
のガス導入系、および排気系を有する薄膜形成装置にお
いて、反応炉の排気系との接続部に近い部分に、炉内堆
積物を除去するためのプラズマ発生用N極を設けたこと
を特徴とする。[Structure of the Invention] (Means for Solving the Problems) The present invention provides, firstly, a thin film forming apparatus having a reactor equipped with a heater, a gas introduction system for forming a thin film, and an exhaust system. A plasma generating N pole for removing deposits in the furnace is provided near the connection with the exhaust system.
本発明は、第2に、エッチング・ガスを反応炉内に導入
してプラズマ化して炉内堆積物を除去するa ll形成
装ごのクリーニング方法において、反6炉の加熱器て・
加熱される高温領域と排気系との接続部近くの低温領域
どに対して、それぞれ独立に制御されるプラズマを立て
るようにしたことを特徴とする。Second, the present invention provides a method for cleaning an all-forming equipment in which etching gas is introduced into a reactor and turned into plasma to remove deposits in the reactor.
It is characterized in that plasma is generated which is controlled independently in each of the low temperature regions near the connection between the high temperature region to be heated and the exhaust system.
本発明は、第3に、エッチング・ガスを反応炉内に導入
して炉内堆積物を除去する薄膜形成装置のクリーニング
方法において、導入したエッチング・ガスを反応炉の加
熱器で加熱して熱分解させて活性化し、その活性化した
ガスを、排気系との接続部に近い低温領域導いてこの低
温領域の堆積物エツチングを行うようにしたことを特徴
とする。Thirdly, the present invention provides a cleaning method for a thin film forming apparatus in which an etching gas is introduced into a reactor to remove deposits in the reactor. It is characterized in that it is decomposed and activated, and the activated gas is guided to a low-temperature region near the connection with the exhaust system to perform deposit etching in this low-temperature region.
(作用)
本発明の装置によれば、反応炉の排気系との接続部に近
い低温領域に着目してここにプラズマ生成用の電極を設
けることにより、高温領域とは別の条件で低温領域の堆
積物除去を行うことができる。例えば、低温領域、高温
領域にそれぞれ別々にプラズマ発生用の電極を設けて、
これらをそれぞれ独立に制御できるようにして構成ずれ
ば、各部の堆積物の物質および厚みに応じて、それぞれ
の領域に相応しい条例で反応炉のクリーニングができる
。(Function) According to the apparatus of the present invention, by focusing on the low-temperature region near the connection part with the exhaust system of the reactor and providing an electrode for plasma generation there, the low-temperature region can be controlled under different conditions from the high-temperature region. Deposits can be removed. For example, by providing separate electrodes for plasma generation in the low-temperature region and the high-temperature region,
If these are configured so that they can be controlled independently, the reactor can be cleaned according to regulations suitable for each area, depending on the substance and thickness of the deposit in each area.
また、高温領域と低温領域にそれぞれ独立の条件でプラ
ズマを生成する方法を用いれば、高温領域でオーバーエ
ツチング等を生じることなく、低温領域の厚い堆積物を
効果的に除去することができる。Further, by using a method of generating plasma under independent conditions in the high-temperature region and the low-temperature region, thick deposits in the low-temperature region can be effectively removed without overetching or the like occurring in the high-temperature region.
高温領域でエッチング・ガスを熱分解し、これを低温領
域に導いてそこの堆積物をエツチングする方法によって
も同様に、高温領域でオーバーエツチング等を生じるこ
となく、低温領域の厚い堆積物を効果的に除去すること
ができる。Similarly, by thermally decomposing the etching gas in a high-temperature region and guiding it to a low-temperature region to etch the deposits there, it is possible to effectively remove thick deposits in the low-temperature region without over-etching in the high-temperature region. can be removed.
(実施例) 以下、本発明の実施例を図面を参照して説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.
第1図は本発明の一実施例のCVD¥A置である。石英
管1とこの周囲に設けられた抵抗加熱方式によるゾーン
加熱器2が反応炉本体を構成する。FIG. 1 shows a CVD\A arrangement according to an embodiment of the present invention. A quartz tube 1 and a resistance heating zone heater 2 provided around the quartz tube 1 constitute a reactor main body.
石英管1は例えば、8インチ対応(内径30cm>であ
る。石英管1の一端部には、基板の出入れを行う扉12
があり、また膜形成用の反応ガス導入管3が設けられて
いる。石英管1の他端部はゲートバルブ4を介してメカ
ニカルブースターポンプ5、ロータリーポンプ6等から
なる排気系が接続されている。図は、訴12を開けた状
態を示しており、多数枚の基板1をボート13に装填し
、これをカンチレバー14によって反応炉内に挿入する
ようになっている。The quartz tube 1 is, for example, compatible with 8 inches (inner diameter 30 cm).At one end of the quartz tube 1, there is a door 12 for taking in and out substrates.
A reaction gas introduction pipe 3 for film formation is also provided. The other end of the quartz tube 1 is connected via a gate valve 4 to an exhaust system consisting of a mechanical booster pump 5, a rotary pump 6, and the like. The figure shows the boat 12 opened, and a large number of substrates 1 are loaded into the boat 13 and inserted into the reactor using a cantilever 14.
この様なCVD装置においてこの実施例では、反し6炉
の加熱器2で加熱される高温領域と、排気系との接続点
に近い低温領域にそれぞれ、独立に制量されるプラズマ
発生用電極8.9が設けられている。これらの電極8.
9は、RF主電源含む制御回路10により制御される。In this embodiment, in such a CVD apparatus, plasma generation electrodes 8 are separately controlled in a high temperature region heated by the heater 2 of the six furnaces and a low temperature region near the connection point with the exhaust system. .9 is provided. These electrodes8.
9 is controlled by a control circuit 10 including an RF main power source.
また反応炉には、反応ガス導入管3とは別に、炉内堆積
物を除去するためのエッチング・ガスを導入するガス導
入管7が設けられている。In addition to the reaction gas introduction pipe 3, the reactor is also provided with a gas introduction pipe 7 for introducing an etching gas for removing deposits in the reactor.
薄膜形成は、基板1を反応炉内に挿入して真空排気した
(変、ガス導入管3から所望の反応ガスを導入し、基板
11を加熱しながら行う。例えば、シリコン化合物ガス
とヒ素等の不純物ガスを導入して、不純物を含む多結晶
シリコン膜を堆積させる。あるいは、シリコン化合物ガ
スと同時に酸素ガスを導入して、1=シリコン酸化膜を
堆積する。Thin film formation is carried out by inserting the substrate 1 into a reactor and evacuating it. An impurity gas is introduced to deposit a polycrystalline silicon film containing impurities.Alternatively, an oxygen gas is introduced simultaneously with a silicon compound gas to deposit a 1=silicon oxide film.
このとき、反応炉内壁には不要の堆積物16゜15が生
成する。通常高温領域の堆積物16は、基板上に形成し
ようとする薄膜と同質の膜状の反応生成物であり、低温
領域の堆積物15はこれと異質の未反応ガスからの固化
物である。1!10形成工程を繰返し、堆積物15.1
6の争がある厚み以上になった後、反応炉のクリーニン
グを行う。At this time, unnecessary deposits 16.15 are formed on the inner wall of the reactor. Usually, the deposit 16 in the high temperature region is a film-like reaction product of the same quality as the thin film to be formed on the substrate, and the deposit 15 in the low temperature region is a solidified product from unreacted gas, which is different from the thin film to be formed on the substrate. 1!Repeat the 10 formation steps to form a deposit 15.1
After the thickness reaches a certain level, the reactor is cleaned.
この反応炉のクリーニング工程は、次の通りである。反
応炉内を空にした状態で真空排気し、ガス導入管7から
所定のエツチングガスを導入する。The cleaning process for this reactor is as follows. The interior of the reactor is evacuated and a predetermined etching gas is introduced from the gas introduction pipe 7.
高温領域では、電極8により導入ガスをプラズマ化し、
堆積物16と反応させてガス化して除去する。低温領域
については電極9により高温領域とは別の条件でエツチ
ングガスをプラズマ化し、堆積物15と反応させてこれ
をガス化して除去する。In the high temperature region, the introduced gas is turned into plasma by the electrode 8,
It reacts with the deposit 16 to gasify and remove it. In the low temperature region, the etching gas is turned into plasma by the electrode 9 under conditions different from those in the high temperature region, and reacts with the deposit 15 to gasify and remove it.
これらの工程の順序はいずれが先でもよいし、同時でも
よい。要は、低温領域と高温領域との堆積物15.16
の物質および厚みを考慮して、制御回路10によりそれ
ぞれについて独立にプラズマ状態を最適設定すればよい
。These steps may be performed in any order or may be performed simultaneously. In short, deposits in the low temperature region and high temperature region 15.16
Taking into account the material and thickness of each material, the control circuit 10 may independently optimally set the plasma state for each material.
この実施例によれば、高温領域と低温領域の堆積物をそ
れぞれ独立に制御される条件でプラズマエツチングする
ことにより、反応炉を損傷することなく、完全なりリー
ニングが可能になる。According to this embodiment, by plasma etching the deposits in the high-temperature region and the low-temperature region under independently controlled conditions, it is possible to completely clean the reactor without damaging it.
第2因は、本発明の他の実施例である。第1図と対応す
る部分にはM1図と同一符号を付して詳細な説明は省略
する。先の実施例では、反応炉の高温領域と低温領域に
それぞれプラズマ生成用の電極8,9を固定的に設けた
のに対し、この実施例では、高温領域のプラズマ発生用
電極17を、反応炉の内径より小さい径の石英管に内蔵
した形で、クリーニング時のみ反応炉内に挿入するよう
にしている。これにより、先の実施例と同様に、高mm
域と低温領域の堆積物16.15をそれぞれ独立の条件
でプラズマエツチングして除去する。The second factor is another embodiment of the invention. Portions corresponding to those in FIG. 1 are given the same reference numerals as in FIG. M1, and detailed explanations are omitted. In the previous embodiment, the plasma generation electrodes 8 and 9 were fixedly provided in the high temperature region and the low temperature region of the reactor, respectively, whereas in this embodiment, the plasma generation electrode 17 in the high temperature region was fixedly provided in the high temperature region and the low temperature region. It is built into a quartz tube with a diameter smaller than the inner diameter of the reactor, and is inserted into the reactor only during cleaning. As a result, similar to the previous embodiment, high mm
The deposits 16 and 15 in the high temperature and low temperature regions are removed by plasma etching under independent conditions.
この実施例によっても、先の実施例と同様に効果的に反
応炉のクリーニングが行われる。In this embodiment as well, the reactor can be effectively cleaned as in the previous embodiment.
第3図は、更に他の実施例である。第1図と対応する部
分にはやはり第1図と同一符号を付して詳細な説明は省
略する。この実施例では、クリーニングに際して、エッ
チング・ガスのプラズマ化によらず、熱分解を利用して
高温領域と低温領域とでやはり異なるエツチング条件を
与える。即ち反応炉のクリーニング工程は、エッチング
・ガス導入管7から所定のエッチング・ガスを反応炉に
導入し、これを加熱器2によって加熱して熱分解させる
。熱分解により生じた活性なガスを低1m域に導くこと
により、高温領域の堆積物16と低温領域の堆積物15
を異なるエツチング条件でエツチングすることできる。FIG. 3 shows yet another embodiment. Portions corresponding to those in FIG. 1 are given the same reference numerals as in FIG. 1, and detailed description thereof will be omitted. In this embodiment, during cleaning, different etching conditions are provided in the high-temperature region and the low-temperature region by utilizing thermal decomposition instead of converting the etching gas into plasma. That is, in the reactor cleaning process, a predetermined etching gas is introduced into the reactor from the etching gas introduction pipe 7, and is heated by the heater 2 to thermally decompose it. By guiding the active gas generated by thermal decomposition to the low 1m area, the deposits 16 in the high temperature area and the deposits 15 in the low temperature area are removed.
can be etched under different etching conditions.
例えば反応ガスとして、S i (OC2H5)4ガス
とAS (OC2H5)3ガスを用いてヒ素ガラス(A
s S G ) 膜を形成する場合を説明する。For example, arsenic glass (A
The case of forming a s S G ) film will be explained.
このとき、高温領域の堆積物16は主としてAs5GI
I!であり、低温領域の堆積物15はヒ素酸化物である
。この場合、クリーニングには、エッチング・ガスとし
てフッ化窒素(NF3)を導入し、これを加熱器2で加
熱して熱分解させて、多量のフッ素ラジカルを低温領域
に導くことにより、ヒ素酸化物と反応させて堆積物15
をエツチング除去する。エツチングガスとして他のフッ
素系ガス、例えばフッ化水素、フッ化イオウ、フッ化炭
素等を用いることができ、四塩化炭素、六塩化イオウな
どの塩素系ガスを用いることもできる。At this time, the deposit 16 in the high temperature region is mainly As5GI.
I! The deposit 15 in the low temperature region is arsenic oxide. In this case, for cleaning, nitrogen fluoride (NF3) is introduced as an etching gas, and it is heated with heater 2 to thermally decompose it, leading a large amount of fluorine radicals to a low temperature region, thereby removing arsenic oxide. Deposit 15 by reacting with
Remove by etching. Other fluorine-based gases such as hydrogen fluoride, sulfur fluoride, and carbon fluoride can be used as the etching gas, and chlorine-based gases such as carbon tetrachloride and sulfur hexachloride can also be used.
この実施例でも、高温領域と低温領域とで異なる条件で
堆積物エツチングを行うことができるから、先の各実施
例と同様の効果が得られる。In this embodiment as well, since deposit etching can be performed under different conditions in the high temperature region and the low temperature region, the same effects as in the previous embodiments can be obtained.
本発明は上記実施例に限られるものではなく、その趣旨
を逸脱しない範囲で種々変形して実施することができる
。The present invention is not limited to the above embodiments, and can be implemented with various modifications without departing from the spirit thereof.
[発明の効果〕
以上述べたように本発明の装置および方法によれば、W
JIll形成装置内の高温領域と低温領域における膜質
や膜厚の異なる堆積物を、反応炉に損傷を与えることな
く、それぞれ最適条件でエツチング除去することができ
る。[Effects of the Invention] As described above, according to the apparatus and method of the present invention, W
Deposits having different film quality and thickness in the high-temperature region and the low-temperature region in the JIll forming apparatus can be etched and removed under optimal conditions without damaging the reactor.
第1図は本発明の一実施例のCVD装置を示す図、第2
図は他の実施例を説明するための図、第3図は更に他の
実施例を説明するための図である。
1・・・石英管、2・・・ゾーン加熱器、3・・・反応
ガス導入管、4・・・ゲートバルブ、5・・・メカニカ
ルブースターポンプ、6・・・ロータリーホーンブ、7
・・・エッチング・ガス導入管、8.9・・・プラズマ
発生用電極、10・・・制御回路、11・・・基板、1
2・・・師、13・・・ボート、14・・・カンチレバ
ー、15.j6・・・堆積物。
出願人代理人 弁理士 鈴 江 武 彦第3図
手続ネ市正書(方式)
昭和6へ7・7β 日
特許庁長官 古 1)文 毅 殿
1、事件の表示
特願昭63−70923号
2、発明の名称
薄膜形成装置およびそのクリーニング方法3、補正をす
る者
事件との関係 特許出願人
(307)株式会社 東 芝
4、代理人
東京都千代田区霞が関3丁目7番2号Unビル6、補正
の対象
明細書全文
7、補正の内容
願よに最初に添附した明細書の浄書・FIG. 1 is a diagram showing a CVD apparatus according to an embodiment of the present invention, and FIG.
The figure is a diagram for explaining another embodiment, and FIG. 3 is a diagram for explaining still another embodiment. DESCRIPTION OF SYMBOLS 1... Quartz tube, 2... Zone heater, 3... Reaction gas introduction pipe, 4... Gate valve, 5... Mechanical booster pump, 6... Rotary horn bulb, 7
... Etching gas introduction pipe, 8.9 ... Plasma generation electrode, 10 ... Control circuit, 11 ... Substrate, 1
2... Master, 13... Boat, 14... Cantilever, 15. j6... Sediment. Applicant's representative Patent attorney Suzue Takehiko Figure 3 Procedure Nei City Official Book (Method) 1938 to 7/7β Japan Patent Office Commissioner Furu 1) Moon Yi 1, Case Indication Patent Application No. 1983-70923 2 , Name of the invention Thin film forming device and its cleaning method 3, Relationship with the amended case Patent applicant (307) Toshiba Corporation 4, Agent Un Building 6, 3-7-2 Kasumigaseki, Chiyoda-ku, Tokyo; Full text of the specification subject to amendment 7, engraving of the specification originally attached to the request for amendment
Claims (3)
用ガスを導入するガス導入系と、前記反応炉内を排気す
る排気系とを有する薄膜形成装置において、前記反応炉
の前記排気系との接続部に近い部分に、炉内堆積物を除
去するためのプラズマ発生用電極を設けたことを特徴と
する薄膜形成装置。(1) In a thin film forming apparatus having a reactor equipped with a heater, a gas introduction system for introducing a thin film forming gas into the reactor, and an exhaust system for exhausting the inside of the reactor, the A thin film forming apparatus characterized in that a plasma generating electrode for removing in-furnace deposits is provided in a portion near a connection with an exhaust system.
用ガスを導入するガス導入系と、前記反応炉内を排気す
る排気系とを有する薄膜形成装置に、エッチング・ガス
を導入してプラズマ化し、前記反応炉の内部堆積物を除
去する方法において、前記反応炉の前記加熱器で加熱さ
れる高温領域と前記排気系との接続部に近い低温領域と
でそれぞれ独立に制御されるプラズマを生成するように
したことを特徴とする薄膜形成装置のクリーニング方法
。(2) Introducing etching gas into a thin film forming apparatus that has a reactor equipped with a heater, a gas introduction system that introduces a thin film forming gas into the reactor, and an exhaust system that exhausts the inside of the reactor. In the method of removing internal deposits of the reactor by converting the reactor into plasma, a high temperature region heated by the heater of the reactor and a low temperature region near a connection with the exhaust system are each independently controlled. 1. A method for cleaning a thin film forming apparatus, characterized in that the method generates plasma.
用ガスを導入するガス導入系と、前記反応炉内を排気す
る排気系とを有する薄膜形成装置に、エッチング・ガス
を導入して前記反応炉の内部堆積物を除去する方法にお
いて、導入されたエッチング・ガスを前記加熱器で加熱
して熱分解させて活性化し、その活性化ガスを前記排気
系との接続部に近い低温領域に導いてこの低温領域の反
応炉内堆積物を除去することを特徴とする薄膜形成装置
のクリーニング方法。(3) Introducing etching gas into a thin film forming apparatus that has a reactor equipped with a heater, a gas introduction system that introduces a thin film forming gas into the reactor, and an exhaust system that exhausts the inside of the reactor. In the method for removing internal deposits from the reactor, the introduced etching gas is heated in the heater to thermally decompose and activate the etching gas, and the activated gas is transferred to a point near the connection with the exhaust system. 1. A method for cleaning a thin film forming apparatus, comprising introducing the reactor into a low temperature region and removing deposits within the reactor in the low temperature region.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7092388A JPH01242780A (en) | 1988-03-25 | 1988-03-25 | Thin film-forming equipment and method for cleaning same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7092388A JPH01242780A (en) | 1988-03-25 | 1988-03-25 | Thin film-forming equipment and method for cleaning same |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01242780A true JPH01242780A (en) | 1989-09-27 |
Family
ID=13445511
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7092388A Pending JPH01242780A (en) | 1988-03-25 | 1988-03-25 | Thin film-forming equipment and method for cleaning same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01242780A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08218173A (en) * | 1995-02-14 | 1996-08-27 | Nec Corp | Atmospheric cvd device |
-
1988
- 1988-03-25 JP JP7092388A patent/JPH01242780A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08218173A (en) * | 1995-02-14 | 1996-08-27 | Nec Corp | Atmospheric cvd device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7156923B2 (en) | Silicon nitride film forming method, silicon nitride film forming system and silicon nitride film forming system precleaning method | |
JP4430918B2 (en) | Thin film forming apparatus cleaning method and thin film forming method | |
JP2002334869A (en) | Method and device for forming silicon nitride film, and method for preprocessing of cleaning thereof | |
JPH0752718B2 (en) | Thin film formation method | |
KR100855597B1 (en) | Sulfur hexafluoride remote plasma source clean | |
WO2004095559A1 (en) | Method for removing silicon oxide film and processing apparatus | |
JP3657942B2 (en) | Method for cleaning semiconductor manufacturing apparatus and method for manufacturing semiconductor device | |
JP4039385B2 (en) | Removal method of chemical oxide film | |
JP5197554B2 (en) | Thin film forming apparatus cleaning method and thin film forming method | |
JPH01242780A (en) | Thin film-forming equipment and method for cleaning same | |
JPS592374B2 (en) | Plasma vapor phase growth equipment | |
US20040045576A1 (en) | Plasma cleaning gas with lower global warming potential than SF6 | |
JP3440685B2 (en) | Wafer processing apparatus and processing method | |
KR102512325B1 (en) | Film forming method and substrate processing apparatus | |
JPH0331479A (en) | Heat treatment | |
TWI831046B (en) | Substrate processing apparatus and operation method for substrate processing apparatus | |
KR100362906B1 (en) | Method of treating solid surface, substrate and semiconductor manufacturing apparatus, and manufacturing method of semiconductor device using the same | |
JPH0494117A (en) | Vapor growth device | |
JPS6128371B2 (en) | ||
JP3399124B2 (en) | Method for forming oxide film and apparatus for forming oxide film | |
JPH09275100A (en) | Film forming device of thin film and method of forming thin film | |
WO2020235596A1 (en) | Film formation method, film formation apparatus, and method for cleaning treatment vessel | |
JPH02268433A (en) | Manufacture of semiconductor device | |
JPH0468526A (en) | Manufacture of semiconductor device | |
JPH06204139A (en) | Manufacture of silicon crystal film by thermal cvd |