[go: up one dir, main page]

JPH0331479A - Heat treatment - Google Patents

Heat treatment

Info

Publication number
JPH0331479A
JPH0331479A JP16722589A JP16722589A JPH0331479A JP H0331479 A JPH0331479 A JP H0331479A JP 16722589 A JP16722589 A JP 16722589A JP 16722589 A JP16722589 A JP 16722589A JP H0331479 A JPH0331479 A JP H0331479A
Authority
JP
Japan
Prior art keywords
reaction tube
tube
heat treatment
reaction
etching gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16722589A
Other languages
Japanese (ja)
Inventor
Naruhito Ibuka
井深 成仁
Chitoshi Nogami
千俊 野上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Iwatani Corp
Original Assignee
Tokyo Electron Ltd
Iwatani International Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd, Iwatani International Corp filed Critical Tokyo Electron Ltd
Priority to JP16722589A priority Critical patent/JPH0331479A/en
Publication of JPH0331479A publication Critical patent/JPH0331479A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)
  • ing And Chemical Polishing (AREA)

Abstract

PURPOSE:To prevent the generation of dust in a reaction tube by introducing an etching gas contg. halogen compds. into the reaction tube after heat treatment to remove the reaction product depositing on the legion except the soaking region. CONSTITUTION:The reaction tube 1 after heat treatment is evacuated, and an etching gas contg. a halogen compd. such as ClF3, oxygen, etc., is introduced from its source 9b to fill the tube. The deposit 14 on the inner wall surface 13 of the tube 1 except the soaking region 7 formed in the film forming stage is etched by the ClF3 in the etching gas, and the generation of particles in the tube 1 is prevented. The etching product is discharged to the outside of the tube 1 along with the exhaust. Consequently, the generation of dust due to the deposit on the inner wall of the tube 1 after heat treatment is prevented with easy operation without disturbing the temp. profile.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は熱処理方法に関する。[Detailed description of the invention] [Purpose of the invention] (Industrial application field) The present invention relates to a heat treatment method.

(従来の技、術) 従来、半導体ウェハ製造工程におい5て、半導体ウェハ
(以下ウェハと略−記する)表面にドライ処理により成
膜処理する工程がある。この工程において、ウェハ表面
に成膜する反応物質は反応管内壁面にも付着する。この
付着物質は反応管内壁面から離脱してパーティクル状態
となりやすくウェハにも付着しやすい、上記反応管内壁
に付着した付着物をクリーニングする手段として例えば
、特開昭64−17857号、特開平1−92385号
公報等多数に記載されている。即ちドライエツチングに
より、反応管内壁面に付着した反応物質を除去洗浄する
ものである。
(Prior art) Conventionally, in step 5 of a semiconductor wafer manufacturing process, there is a step of forming a film on the surface of a semiconductor wafer (hereinafter abbreviated as wafer) by dry processing. In this step, the reactant that forms a film on the wafer surface also adheres to the inner wall surface of the reaction tube. This adhered substance tends to separate from the inner wall surface of the reaction tube and become particles, and is likely to adhere to the wafer. Examples of methods for cleaning the adhered substance attached to the inner wall of the reaction tube include, for example, JP-A-64-17857 and JP-A-1-1. It is described in many publications such as No. 92385. That is, dry etching is used to remove and clean the reactants adhering to the inner wall surface of the reaction tube.

(発明が解決しようとする課題) しかしながら、従来の反応管の洗浄方法では。(Problem to be solved by the invention) However, with conventional reaction tube cleaning methods.

下記に示す欠点があった。It had the following drawbacks.

反応管の周囲にプラズマを生起させるためのプラズマ用
コイルやプラズマ発生用電極を設けるため、成膜の時に
均熱領域の形成に大きな支障となり1反応管を成膜装置
から取説して洗浄しなければならない欠点があった。
Plasma coils and plasma generation electrodes are installed around the reaction tube to generate plasma, which poses a major hindrance to forming a soaking area during film formation. There was a drawback that it had to be.

この反応管は荷重が重く、反応後常温に降温したのち取
外す必要があり、洗浄操作時間が長時間に亘る欠点があ
った。
This reaction tube had a heavy load and had to be removed after the temperature had cooled down to room temperature after the reaction, resulting in a long cleaning operation time.

さらに、IJF、ガスを用いてクリーニングする手段な
どがある。しかし、熱処理をした場合には、熱処理時に
付着した反応付着物はClF2ガスを用いても総てクリ
ーニングできない欠点があった。
Further, there are IJF, means for cleaning using gas, and the like. However, in the case of heat treatment, there was a drawback that all the reaction deposits deposited during the heat treatment could not be cleaned even by using ClF2 gas.

そこで1本発明者等が詳査した結果、被処理体例えば2
00枚の半導体ウェハ列の形成される均熱領域における
反応管の内壁に付着した反応付着物は剥がれにくく、強
固であることが判明した。
As a result of detailed investigation by the present inventors, the object to be processed, for example, 2
It was found that the reaction deposits adhering to the inner wall of the reaction tube in the soaking area where rows of 00 semiconductor wafers were formed were hard to peel off and were strong.

本発明の目的は、上記問題点に鑑みなされたもので、熱
処理後の反応管の内壁付着物によるゴミの発生を防止し
た熱処理方法を提供するものである。
The object of the present invention was made in view of the above problems, and it is an object of the present invention to provide a heat treatment method that prevents the generation of dust due to deposits on the inner wall of a reaction tube after heat treatment.

C発明の構成〕 (課題を解決するための手段) 本発明は反応管に均熱領域を形成し、この均熱領域に被
処理体を設けて熱処理することにより反応管内壁に付着
した反応付着物を除去するに際し、上記反応管内を予め
定められた真空度に排気した後1反応管内に少なくとも
CjlF3等ハロゲン元素化合物を含んだエツチングガ
スを導入し充満させて上記均熱領域以外に付着した反応
付着物を除去することを特徴としている。
C Structure of the Invention] (Means for Solving the Problems) The present invention forms a soaking area in a reaction tube, and heat-treats the object to be treated by providing the object to be treated in the soaking area. When removing the kimono, the inside of the reaction tube is evacuated to a predetermined degree of vacuum, and then an etching gas containing at least a halogen element compound such as CjlF3 is introduced into one reaction tube, and the reaction tube is filled with the reaction tube to remove the reaction adhered outside the soaking area. It is characterized by removing deposits.

(作用効果) 少なくとも(jlF、等のハロゲン元素化合物が含まれ
たエツチングガスを反応管内部に導入し、充満させるの
で、反応管内の均熱領域外の内壁面に付着した剥がれて
ゴミとなる生成付着物質を除去し、ゴミの発生を防止し
た熱処理方法を得るものである。
(Function and Effect) Since an etching gas containing at least a halogen element compound such as The present invention provides a heat treatment method that removes adhering substances and prevents the generation of dust.

従って、プラズマ作用を施すことなく反応付着物を除去
することが可能であるため1反応管を取り外すことなく
被処理体の熱処理後の適宜のタイミングでクリーニング
工程を実行できる。
Therefore, since it is possible to remove reaction deposits without applying plasma action, the cleaning step can be performed at an appropriate timing after the heat treatment of the object to be processed without removing one reaction tube.

(実施例) 以下、本発明方法を半導体ウェハのバッチ式熱処理工程
に適用した一実施例について図面を参照して説明する。
(Example) Hereinafter, an example in which the method of the present invention is applied to a batch heat treatment process for semiconductor wafers will be described with reference to the drawings.

まず、熱処理装置について第21i1を参照して説明す
る。横型反応管■からなる処理部■と、この処理部■内
に挿入される多数枚被処理体1例えばウェハ■を収納し
た収納台、例えばウェハボートに)を予め定められた位
置にロード・アンロードするローディング機構■とから
構成されている。
First, the heat treatment apparatus will be explained with reference to No. 21i1. A processing section ■ consisting of a horizontal reaction tube ■ and a storage table (for example, a wafer boat) containing a large number of processed objects 1 such as wafers inserted into this processing section ■ are loaded and unloaded at predetermined positions. It consists of a loading mechanism■.

上記処理部■は耐熱性で処理ガスに対して反応しにくい
材質例えば石英からなる反応管■と、この反応管のと同
軸的に囲繞される如く筒状加熱機構、例えばコイル状に
巻回されたヒーター0とから構成されている。
The processing section (2) has a reaction tube (2) made of a material that is heat resistant and does not easily react with the processing gas, such as quartz, and a cylindrical heating mechanism, such as a coil wound around the reaction tube, coaxially surrounding the reaction tube. It consists of a heater 0.

このヒーター0は反応管ω内に収容される複数枚例えば
200枚のウェハ■の配列部分が均一に加熱、例えば8
00℃加熱されるようにコイルを反応管外に巻回されて
いる0通常、上記ウェハの配列される領域を均熱領域に
設定される。この均熱領域はウェハ配列位置より広めに
形成されるのが一般的である。
This heater 0 uniformly heats the arrayed portion of a plurality of wafers, for example 200 wafers, housed in the reaction tube ω.
A coil is wound outside the reaction tube so that the wafers are heated to 00° C. Usually, the area where the wafers are arranged is set as a soaking area. This soaking area is generally formed wider than the wafer arrangement position.

また、上記反応管ωの開口部■側の端には反応ガス、例
えばSiH,ガスとN、0ガス等を反応管ω内に供給す
るガス供給口■が設けられている。また、上記反応管ω
の開口部■と反対側には排気口(10)が設けられてい
る。また、排気系には反応ガスの導入分だけ排気するよ
うに排気量が適宜に調整される機構が設けられている。
Furthermore, a gas supply port (2) is provided at the end of the reaction tube (ω) on the opening (2) side for supplying a reaction gas, such as SiH gas, N, O gas, etc., into the reaction tube (ω). In addition, the reaction tube ω
An exhaust port (10) is provided on the opposite side of the opening (2). Further, the exhaust system is provided with a mechanism for appropriately adjusting the exhaust amount so that the amount of introduced reaction gas is exhausted.

さらに、上記ガス供給口■と接続した配管系には切換え
弁(11)を設け、二系統のガスが選択可能に導入する
ようになっている。即ち、一系統の配管系からは反応ガ
ス、例えばモノシラン(SiH4)と、亜酸化窒素(S
ZO)を反応管■に導入する如く反応ガス供給源(9a
)に配管されている。
Furthermore, a switching valve (11) is provided in the piping system connected to the gas supply port (1), so that two systems of gas can be selectively introduced. That is, from one piping system, reactive gases such as monosilane (SiH4) and nitrous oxide (S
The reaction gas supply source (9a
).

また、他方の一系統は成膜工程で付着した反応物質をエ
ツチングするガスとして1例えば三弗化塩素(CIF3
)と酸素(01)とからなるエツチングガスを反応管ω
内に導入する如くエツチングガス供給源(9b)に配管
されている。
The other system uses a gas such as chlorine trifluoride (CIF3) to etch the reactants attached during the film forming process.
) and oxygen (01) into the reaction tube ω
The etching gas supply source (9b) is connected to the etching gas supply source (9b) so as to be introduced into the etching gas.

また、上記反応管ω内を気密にする蓋体(12)はロー
ディング機構■と連動して設けられており、このローデ
ィング機構■の先端に複数枚のウェハ■を収納したウェ
ハボートに)を設け、こ−のウェハボート(至)を反応
管ω内の所定位置にローディングすると同時に、上記蓋
体(12)は反応管ω内を気密に蓋するように構成され
ている。
In addition, a lid (12) that makes the inside of the reaction tube ω airtight is provided in conjunction with the loading mechanism ■, and a wafer boat (12) containing a plurality of wafers ■ is installed at the tip of the loading mechanism ■. The lid body (12) is configured to airtightly cover the inside of the reaction tube ω at the same time as this wafer boat is loaded into a predetermined position inside the reaction tube ω.

次に上述した熱処理装置による成膜処理、洗浄工程につ
いて説明する。
Next, a film forming process and a cleaning process using the above-mentioned heat treatment apparatus will be explained.

先ずヒーター0に電流を流し、発熱させると、予め定め
られた期間後には第2図に示す温度プロファイルが反応
管内に形成される。
First, when a current is applied to heater 0 to generate heat, a temperature profile shown in FIG. 2 is formed in the reaction tube after a predetermined period of time.

一方、ウェハ移し替え機構(図示せず)により多数枚の
ウェハ■を自動的にウェハボートに)に移し替え、この
ウェハボートに)をローディング機構■の先端部に載置
する。
On the other hand, a large number of wafers (2) are automatically transferred to a wafer boat (2) by a wafer transfer mechanism (not shown), and the wafer (2) is placed on the tip of the loading mechanism (4).

そして、上記ウェハボートに)を載置したローディング
機構■を駆動して、ウェハ■を反応管ω内の所定位置、
即ちウェハ配置領域にローディングする。
Then, by driving the loading mechanism ■ that places the wafer ( ) on the wafer boat, the wafer ■ is placed at a predetermined position in the reaction tube ω.
That is, the wafer is loaded into the wafer placement area.

その後、切換え弁(11)を選択して1反応ガス供給源
(9a)から1例えばモノシラン(SiH4)を300
ccZ分で導入し、しかもキャリアガスとして酸化窒素
(Neo)を20a/分で導入させる。この反応ガスを
予め定められた期間の供給によりウニ4■表面に熱反応
でアモルファス(Sin、)層が成長する。
Thereafter, select the switching valve (11) to supply 1, for example, monosilane (SiH4) at 300% from the 1 reaction gas supply source (9a).
It is introduced at a rate of ccZ minutes, and nitrogen oxide (Neo) is introduced at a rate of 20 a/min as a carrier gas. By supplying this reaction gas for a predetermined period of time, an amorphous (Sin) layer grows on the surface of the sea urchin 4 due to a thermal reaction.

このプロセスをHTOプロセスと呼んでいる。This process is called the HTO process.

この時1反応管■の内壁面(13)にも反応付着物の膜
が付着する。即ち、反応管■のウェハ周辺領域■には、
アモルファス(Sin、 )層が付着する。また1反応
管中のウェハ周辺領域(均熱領域)■以外の内壁面(1
3)にはポリ・シリコン(poj!y−8L)またはア
モルファスシリコン(Si)が比較的多量に付着してし
まう。
At this time, a film of reaction deposits also adheres to the inner wall surface (13) of one reaction tube (1). That is, in the area around the wafer ■ of the reaction tube ■,
An amorphous (Sin, ) layer is deposited. In addition, the inner wall surface (1
3) A relatively large amount of polysilicon (poj!y-8L) or amorphous silicon (Si) is attached.

ここでポリ・シリコン(pony−Si)及びアモルフ
ァスシリコン(Si)の線膨張係数が反応管■との線膨
張係数と大幅に異なることと、均熱領域外に付着してい
て膜質が低級なことから、付着物質(14)は反応管ω
の内壁面(13)から離脱し易くパーティクル化しやす
い状態であることを見出した。このパーティクルの発生
を防止するのがこの実施例の特徴である。
Here, the linear expansion coefficient of poly-silicon (pony-Si) and amorphous silicon (Si) is significantly different from that of the reaction tube ■, and the film quality is poor because it is attached outside the soaking area. Therefore, the attached substance (14) is the reaction tube ω
It has been found that the particles are easily separated from the inner wall surface (13) of the inner wall surface (13) and easily formed into particles. A feature of this embodiment is to prevent the generation of particles.

以上の熱処理が終了したのちに、反応管ω内を窒素(N
2)の雰囲気ガスに置換し大気圧に戻し、ウェハボート
に)を反応管■からアンロードする。
After the above heat treatment is completed, the inside of the reaction tube ω is filled with nitrogen (N
The atmosphere is replaced with the atmosphere gas of 2) to return it to atmospheric pressure, and unloaded from the reaction tube (2) to the wafer boat.

次に、−回の熱処理後または予め定められた熱処理回数
の後、反応管ωの内壁面(13)に付着した剥がれやす
いポリ・シリコン(pony−SL)または。
Next, after - times of heat treatment or after a predetermined number of heat treatments, the easily peeled polysilicon (pony-SL) attached to the inner wall surface (13) of the reaction tube ω is removed.

アモルファスシリコン(Si)等の付着物質(14)を
除去する工程について述べる。先ず、第1図に示すよう
に反応管中を加熱する必要がないので、ヒーター0の電
源をオフ(OFF)にする0反応−管■内を気密にする
ために、ウェハボートに)を載置させない状態でローデ
ィング機構■を駆動させてローディング機構■を搬入さ
せ、反応管ωの開口部(へ)を蓋体(12)で気密封止
する。
The process of removing the attached substance (14) such as amorphous silicon (Si) will be described. First, as shown in Figure 1, since there is no need to heat the inside of the reaction tube, turn off the power to heater 0. The loading mechanism (2) is driven to carry the loading mechanism (2) into the reactor tube (2), and the opening of the reaction tube (ω) is hermetically sealed with the lid (12).

この気密封止した反応管ω内を0.ITorr程度の真
空に排気する。上記反応管中のガス供給口0と接続した
配管系の切換え弁(11)でエツチングガス供給源(9
b)側を選択する。この供給源(9b)からエツチング
ガス例えば三弗化塩素(CaF3)ガスと。
The inside of this hermetically sealed reaction tube ω is 0. Evacuate to about ITorr. The etching gas supply source (9) is connected to the switching valve (11) of the piping system connected to the gas supply port 0 in the reaction tube.
b) Select side. From this source (9b) an etching gas such as chlorine trifluoride (CaF3) gas is supplied.

5%程度の酸素を含んだエツチングガスを常温の上記反
応管内に流速、例えば500cc 7分で反応管ω内に
導入して充満させる。この時、適当な排気量で排気工程
が継続されている。この排気流はエツチングレートと関
係して選択が可能である。このエツチングガスの三弗化
塩素(caps)は反応管■の内壁面及びローディング
機構に付着したアモルファスシリコン(SL)と接触し
てエツチングする。このエツチング物は排気と共に反応
管ω外に排出することになる。換言すれば、上記成膜工
程において、ウェハ周辺領域■では反応管ωの内壁面(
13)にアモルファス(Sins)が付着するが、均熱
領域■以外の反応管■の内壁面(13)にはポリ・シリ
コン(poffiy−8i)やアモルファスシリコン(
Si)が多量に付着している。これら均熱領域■以外の
内壁面(13)に付着した付着物質(14)は三弗化塩
素(CaF、 )を含むエツチングガス(16)でエツ
チングして反応管ω内でのパーティクルの発生を防止す
る。この時アモルファス(Sin、 )は殆どエツチン
グされないことから剥がれ易いpoffiy−5i、ア
モルファスシリコン(Si)のみが選択時にエツチング
され、パーティクルの発生のみが防止され、均熱部分の
温度特性に変化を与えることがない、上記実施例の効果
は従来の洗浄方法と比較するとエツチングガスをプラズ
マ化させ、炭素を分解し、この分解された化合物で反応
管ω内の付着物質(14)を除去するのと異なり、プラ
ズマ生起電源の配設等により温度プロファイルを乱すこ
ともなく、シかも操作が容易である。また、この方法を
用いた装置では、プラズマ装置を設ける必要がない。
An etching gas containing about 5% oxygen is introduced into the reaction tube ω at a flow rate of, for example, 500 cc for 7 minutes at room temperature to fill the reaction tube. At this time, the exhaust process is continued at an appropriate exhaust amount. This exhaust flow can be selected in relation to the etching rate. The chlorine trifluoride (CAPS) of this etching gas contacts and etches the amorphous silicon (SL) adhered to the inner wall surface of the reaction tube (1) and the loading mechanism. This etched product is discharged to the outside of the reaction tube ω along with the exhaust gas. In other words, in the film formation process described above, in the wafer peripheral region ■, the inner wall surface of the reaction tube ω (
13), but polysilicon (poffiy-8i) and amorphous silicon (
A large amount of Si) is attached. Substances (14) adhering to the inner wall surface (13) other than the soaking area (2) are etched with an etching gas (16) containing chlorine trifluoride (CaF) to prevent particle generation in the reaction tube ω. To prevent. At this time, since amorphous (Sin, ) is hardly etched, only poffiy-5i, which easily peels off, and amorphous silicon (Si) are etched when selected, preventing only the generation of particles and changing the temperature characteristics of the soaking part. Compared to the conventional cleaning method, the effect of the above embodiment is that the etching gas is turned into plasma, carbon is decomposed, and the decomposed compound is used to remove the deposited substance (14) inside the reaction tube ω. The temperature profile is not disturbed by the arrangement of a plasma generating power source, and the operation is easy. Further, in the apparatus using this method, there is no need to provide a plasma device.

上記実施例では常温(25℃)で説明したが、高温1例
えば25℃〜800℃であっても洗浄可能である。又、
縦型炉でも同一の洗浄性能が得られる。
Although the above embodiments have been explained at room temperature (25°C), cleaning can be performed even at a high temperature, for example, 25°C to 800°C. or,
The same cleaning performance can be obtained with a vertical furnace.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法を熱処理工程に適用した一実施例を
説明するための反応炉説明図、第2図は第1図の熱処理
装置を説明する構成説明図である。 1・・・反応管       7・・・ウェハ周辺領域
9・・・ガス供給口     9a・・・反応ガス供給
源9b・・・エツチングガス供給源
FIG. 1 is an explanatory diagram of a reactor for explaining one embodiment in which the method of the present invention is applied to a heat treatment process, and FIG. 2 is an explanatory diagram of the configuration of the heat treatment apparatus of FIG. 1. 1... Reaction tube 7... Wafer peripheral area 9... Gas supply port 9a... Reaction gas supply source 9b... Etching gas supply source

Claims (1)

【特許請求の範囲】[Claims] 反応管に均熱領域を形成し、この均熱領域に被処理体を
設けて熱処理することにより反応管内壁に付着した反応
付着物を除去するに際し、上記反応管内を予め定められ
た真空度に排気した後、反応管内に少なくともClF_
2等ハロゲン元素化合物を含んだエッチングガスを導入
し、充満させて上記均熱領域以外に付着した反応付着物
を除去することを特徴とする熱処理方法。
A soaking area is formed in the reaction tube, and when the object to be treated is placed in the soaking area and the reaction deposits attached to the inner wall of the reaction tube are removed by heat treatment, the inside of the reaction tube is kept at a predetermined degree of vacuum. After evacuation, at least ClF_
A heat treatment method characterized by introducing and filling an etching gas containing a secondary halogen element compound to remove reaction deposits that have adhered to areas other than the soaking area.
JP16722589A 1989-06-29 1989-06-29 Heat treatment Pending JPH0331479A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16722589A JPH0331479A (en) 1989-06-29 1989-06-29 Heat treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16722589A JPH0331479A (en) 1989-06-29 1989-06-29 Heat treatment

Publications (1)

Publication Number Publication Date
JPH0331479A true JPH0331479A (en) 1991-02-12

Family

ID=15845767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16722589A Pending JPH0331479A (en) 1989-06-29 1989-06-29 Heat treatment

Country Status (1)

Country Link
JP (1) JPH0331479A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5616208A (en) * 1993-09-17 1997-04-01 Tokyo Electron Limited Vacuum processing apparatus, vacuum processing method, and method for cleaning the vacuum processing apparatus
US5647945A (en) * 1993-08-25 1997-07-15 Tokyo Electron Limited Vacuum processing apparatus
JP2001089860A (en) * 1999-06-11 2001-04-03 Tokyo Electron Ltd Device and method for dry-cleaning of treating chamber
US6238488B1 (en) 1998-05-29 2001-05-29 Tokyo Electron Limited Method of cleaning film forming apparatus, cleaning system for carrying out the same and film forming system
US7727296B2 (en) 2006-10-10 2010-06-01 Tokyo Electron Limited Collecting unit for semiconductor process
JP2011035434A (en) * 2002-03-28 2011-02-17 Hitachi Kokusai Electric Inc Method of manufacturing semiconductor device, and cleaning method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6417857A (en) * 1987-07-13 1989-01-20 Central Glass Co Ltd Cleaning gas containing chlorine fluoride

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6417857A (en) * 1987-07-13 1989-01-20 Central Glass Co Ltd Cleaning gas containing chlorine fluoride

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5647945A (en) * 1993-08-25 1997-07-15 Tokyo Electron Limited Vacuum processing apparatus
US5616208A (en) * 1993-09-17 1997-04-01 Tokyo Electron Limited Vacuum processing apparatus, vacuum processing method, and method for cleaning the vacuum processing apparatus
US6238488B1 (en) 1998-05-29 2001-05-29 Tokyo Electron Limited Method of cleaning film forming apparatus, cleaning system for carrying out the same and film forming system
JP2001089860A (en) * 1999-06-11 2001-04-03 Tokyo Electron Ltd Device and method for dry-cleaning of treating chamber
JP4519280B2 (en) * 1999-06-11 2010-08-04 東京エレクトロン株式会社 Apparatus and method for dry cleaning a process chamber
JP2011035434A (en) * 2002-03-28 2011-02-17 Hitachi Kokusai Electric Inc Method of manufacturing semiconductor device, and cleaning method
US7727296B2 (en) 2006-10-10 2010-06-01 Tokyo Electron Limited Collecting unit for semiconductor process

Similar Documents

Publication Publication Date Title
US8309440B2 (en) Method and apparatus for cleaning a substrate surface
KR102245729B1 (en) Method and apparatus for precleaning a substrate surface prior to epitaxial growth
JPH04245627A (en) Cleaning method of processing vessel
JP2002261081A (en) Semiconductor wafer etcher and etching method
JP3047248B2 (en) Cleaning method
JPH07100865B2 (en) Cleaning method of low pressure CVD processing apparatus
JPH0331479A (en) Heat treatment
JP3326538B2 (en) Cold wall forming film processing equipment
JPS621565B2 (en)
JP3058909B2 (en) Cleaning method
JPH05326477A (en) Method for removal of halogen from semiconductor substrate surface
JP2002305190A (en) Heat treating apparatus and method for cleaning the same
JP4607347B2 (en) Method and apparatus for processing object
JPH09199424A (en) Epitaxial growth method
JP3576828B2 (en) Etching method and substrate processing apparatus
JPH0239523A (en) Method of forming film on semiconductor substrate
JP3201970B2 (en) Semiconductor film formation method
JP3067312B2 (en) Thin film forming equipment
JP4570186B2 (en) Plasma cleaning method
JPH04186615A (en) Manufacture of semiconductor device
JP2714576B2 (en) Heat treatment equipment
JP2721846B2 (en) Vertical heat treatment apparatus and treatment method by vertical heat treatment apparatus
JP2003183837A (en) Semiconductor device manufacturing method and substrate processing apparatus
JPH06163484A (en) Semiconductor manufacturing device
JPH0625859A (en) Cvd film forming device and plasma cleaning method