JPH01242477A - Formation of protective film on superconductor - Google Patents
Formation of protective film on superconductorInfo
- Publication number
- JPH01242477A JPH01242477A JP63069669A JP6966988A JPH01242477A JP H01242477 A JPH01242477 A JP H01242477A JP 63069669 A JP63069669 A JP 63069669A JP 6966988 A JP6966988 A JP 6966988A JP H01242477 A JPH01242477 A JP H01242477A
- Authority
- JP
- Japan
- Prior art keywords
- film
- superconducting
- protective film
- superconducting material
- superconductor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
Abstract
Description
【発明の詳細な説明】
〔概 要〕
超伝導体の保護膜形成方法に係わり、特にセラミック超
伝導材をレーザアニールすることにより結晶構造を変え
、その表面に保護膜を形成する方法と、ウェットエツチ
ングによりパターニングする方法、及び超伝導薄膜の表
面を絶縁体にすることにより伝導体パターンを形成する
方法に関し、超伝導材の表面に劣化を防止する保護膜を
形成した超伝導体の保護膜形成方法を提供し、また超伝
導膜のパターニングの際に劣化の影客を与えず製造が容
易な超伝導体のパターニング方法を提供することを目的
とし、
バルク状あるいは基板に膜状に形成した超伝導材の表面
にレーザ光を照射し、この超伝導材の表面を薄く溶融、
急冷することにより該表面上に結晶粒の細かい保護膜を
形成することを特徴とする超伝導体の保護膜形成方法、
基板上に超伝導膜を形成する工程と、前記超伝導膜の表
面に部分的にレーザ光を照射し、この超伝導膜の表面を
薄く溶融、急冷することにより、結晶粒の細かい保護膜
を形成する工程と、前記保護膜を形成しない超伝導膜を
ウェットエツチングする工程とを含むことを特徴とする
超伝導体のパターニング方法、及び、基板上に超伝導薄
膜を形成する工程と、前記超伝導薄膜の表面に部分的に
レーザ光を照射し、この超伝導薄膜を溶融、急冷するこ
とにより、絶縁膜に変える工程とを具備することを特徴
とする超伝導体のパターニング方法を含み構成する。[Detailed Description of the Invention] [Summary] It relates to a method for forming a protective film on a superconductor, in particular a method in which the crystal structure of a ceramic superconducting material is changed by laser annealing and a protective film is formed on the surface thereof, and Regarding the method of patterning by etching and the method of forming a conductor pattern by making the surface of a superconducting thin film an insulator, forming a protective film on a superconductor in which a protective film is formed on the surface of a superconducting material to prevent deterioration. The purpose of this study is to provide a method for patterning superconductors that is easy to manufacture and does not cause deterioration during patterning of superconducting films. The surface of the superconducting material is irradiated with a laser beam, and the surface of the superconducting material is melted into a thin layer.
A method for forming a protective film on a superconductor, the method comprising forming a protective film with fine crystal grains on the surface by rapid cooling;
A protective film with fine crystal grains is formed by forming a superconducting film on a substrate, partially irradiating the surface of the superconducting film with laser light, melting the surface of the superconducting film thinly, and rapidly cooling it. A method for patterning a superconductor, comprising the steps of: forming a superconducting thin film on a substrate; and wet etching a superconducting film on which the protective film is not formed; A method for patterning a superconductor, comprising a step of partially irradiating the surface of a conductive thin film with a laser beam, melting and rapidly cooling the superconducting thin film to convert it into an insulating film. .
本発明は、超伝導体の保護膜形成方法に係わり、特にセ
ラミック超伝導材をレーザアニールすることにより結晶
構造を変え、その表面に保護膜を形成する方法、その保
護膜をウェットエツチングによりパターニングする方法
、及び超伝導薄膜の表面を絶縁体にすることにより伝導
体パターンを形成する方法に関する。The present invention relates to a method for forming a protective film on a superconductor, and in particular a method for changing the crystal structure of a ceramic superconducting material by laser annealing and forming a protective film on the surface thereof, and a method for patterning the protective film by wet etching. The present invention relates to a method and a method of forming a conductor pattern by making the surface of a superconducting thin film an insulator.
液体窒素温度で超伝導状態を示すセラミック系高温超伝
導体が産業界に与えるインパクトは回り知れないものが
あり、最近、この高温超伝導体の開発が急速に進んでい
る。かかるセラミック系高温超伝導体を薄膜化し、回路
配線や電子デバイス等のエレクトロニクスの分野に応用
することが期待されている。The impact that ceramic-based high-temperature superconductors, which exhibit a superconducting state at liquid nitrogen temperatures, have on industry is immeasurable, and the development of these high-temperature superconductors has been progressing rapidly recently. It is expected that such ceramic-based high-temperature superconductors will be made into thin films and applied to electronics fields such as circuit wiring and electronic devices.
セラミック系高温超伝導材は、その製造工程において、
結晶成長を充分行うため、長時間のアニールが必要とな
る。例えば、バルク状または基板に薄膜状の超伝導体を
形成するには、900°C程度で、2〜10時間程度ア
ニールする。このように形成される超伝導体の表面は、
結晶粒が1μm〜数μm程度と大きく、表面に凹凸が形
成され、結晶部分と空間部分を持つポーラス状になる。In the manufacturing process of ceramic-based high-temperature superconducting materials,
Long-time annealing is required to achieve sufficient crystal growth. For example, to form a bulk or thin film superconductor on a substrate, annealing is performed at about 900° C. for about 2 to 10 hours. The surface of the superconductor formed in this way is
The crystal grains are large, about 1 μm to several μm, and the surface is uneven, forming a porous shape with crystal portions and space portions.
そのため、水、酸素、炭酸ガスなどが入りやすくなり、
溶解したり変質しやすいという劣化の問題点がある。Therefore, water, oxygen, carbon dioxide, etc. can easily enter,
There is a problem of deterioration in that it is easy to dissolve or change in quality.
また、上記セラミック系高温超伝導材を、回路配線や電
子デバイスなどのエレクトロニクスの分野に応用するた
めには、この超伝導薄膜のパターニングが不可欠である
が、上記のように溶解したり変質しやすいという性質の
ために、一般にパターニングに用いられているウェット
エツチングを使うことが困難である。In addition, in order to apply the ceramic-based high-temperature superconducting material to electronics fields such as circuit wiring and electronic devices, patterning of this superconducting thin film is essential, but as mentioned above, it is prone to melting and deterioration. Due to this property, it is difficult to use wet etching, which is generally used for patterning.
そこで本発明は、超伝導材の表面に劣化を防止する保護
膜を形成した超伝導体の保護膜を形成方法を提供し、ま
た超伝導膜のパターニングの際に劣化の影舌を与えるこ
となく製造が容易な超伝導体のパターニング方法を提供
することを目的とする。Therefore, the present invention provides a method for forming a protective film for a superconductor in which a protective film for preventing deterioration is formed on the surface of a superconducting material, and also provides a method for forming a protective film for a superconductor without causing any effects of deterioration during patterning of the superconducting film. An object of the present invention is to provide a method for patterning a superconductor that is easy to manufacture.
上記課題は、バルク状あるいは基板に膜状に形成した超
伝導材の表面にレーザ光を照射し、この超伝導材の表面
を薄く溶融、急冷することにより該表面上に結晶粒の細
かい保護膜を形成したことを特徴とする超伝導体の保護
膜形成方法、また、基板上に超伝導膜を形成する工程と
、前記超伝導膜の表面に部分的にレーザ光を照射し、こ
の超伝導膜の表面を薄く溶融、急冷することにより、結
晶粒の細かい保護膜を形成する工程と、前記保護膜を形
成しない超伝導膜をウェットエツチングする工程とを含
むことを特徴とする超伝導体のパターニング方法、
さらに、基板上に超伝導薄膜を形成する工程と、前記超
伝導薄膜の表面に部分的にレーザ光を照射し、この超伝
導薄膜を溶融、急冷することにより、絶縁膜に変える工
程とを具備することを特徴とする超伝導体のパターニン
グ方法によって解決される。The above problem was solved by irradiating the surface of a superconducting material formed in bulk or as a film on a substrate with laser light, melting the surface of this superconducting material thinly, and rapidly cooling it to form a protective film with fine crystal grains on the surface. A method for forming a protective film for a superconductor, the method comprising: forming a superconducting film on a substrate; and partially irradiating the surface of the superconducting film with a laser beam, A superconductor comprising the steps of: forming a protective film with fine crystal grains by melting and rapidly cooling the surface of the film; and wet-etching the superconducting film without forming the protective film. The patterning method further includes a step of forming a superconducting thin film on a substrate, and a step of converting the superconducting thin film into an insulating film by partially irradiating the surface of the superconducting thin film with laser light, melting and rapidly cooling the superconducting thin film. The problem is solved by a superconductor patterning method characterized by comprising the following steps.
セラミック超伝導材の特徴は、その結晶構造が焼結条件
に敏感であり、超伝導特性を持たすために、酸素雰囲気
中での高温徐冷を行う。このために、結晶粒が大きくな
り、表面に凹凸が形成され水、酸等で容易に劣化、分解
してしまう。そこで、焼結後のバルク状あるいは基板に
膜状に形成した超伝導材の表面にレーザ光を照射し、薄
く溶融、急冷すると、再結晶化で表面に薄い保護膜が形
成される。この保護膜は、結晶粒が細かく表面の凹凸が
無くなり緻密な層が形成され、水やフッ酸、硝酸に強い
難溶性を示し、結晶構造も安定であることが確認された
。従って、超伝導材の表面に保護膜を形成することによ
り、劣化に対して強い超伝導体が得られる。A feature of ceramic superconducting materials is that their crystal structure is sensitive to sintering conditions, and in order to have superconducting properties, they are slowly cooled at high temperatures in an oxygen atmosphere. For this reason, the crystal grains become large and unevenness is formed on the surface, which easily deteriorates and decomposes in water, acid, etc. Therefore, when the surface of a sintered superconducting material formed in bulk or in the form of a film on a substrate is irradiated with laser light to melt it thinly and rapidly cool it, a thin protective film is formed on the surface through recrystallization. It was confirmed that this protective film has fine crystal grains, eliminates surface irregularities, forms a dense layer, exhibits strong and low solubility in water, hydrofluoric acid, and nitric acid, and has a stable crystal structure. Therefore, by forming a protective film on the surface of a superconducting material, a superconductor that is resistant to deterioration can be obtained.
また、超伝導膜の表面に部分的にレーザ光を照射するこ
とにより、上記のように、保護膜が形成される。この保
護膜は、酸等に対して強く超伝導膜よりもエツチングレ
ートが非常に小さくなる。Furthermore, by partially irradiating the surface of the superconducting film with laser light, a protective film is formed as described above. This protective film is resistant to acids and has a much lower etching rate than a superconducting film.
従って、ウェットエツチングすることにより、保護膜が
形成されていない部分の超伝導膜が除去され、パターニ
ングされる。この保護膜は、劣化の防止にもなる。Therefore, by wet etching, the portions of the superconducting film where the protective film is not formed are removed and patterned. This protective film also prevents deterioration.
さらに、セラミック超伝導体の特徴は、その超伝導特性
が材料の酸素欠陥量に強く依存していることが知られて
いる。例えば、ペロブスカイト系超伝導材RBa zC
u 30X (R=イツトリウム(Y)、エルビウム(
Er)、ユーロピウム(Eu)、ホルミウム(Ho)な
どの希土類)の場合、超伝導相になるのは、Xが6.7
以上であり、それ以下では絶縁体になる。このとき超伝
導相は斜方晶、絶縁体は正方品の結晶構造を持つ。この
酸素量は、焼結時の雰囲気と温度条件によって変わり、
例えば、400°C〜500°C程度で徐冷すると斜方
晶、急冷すると正方晶となる。この性質を用いることに
より、基板上に形成した超伝導薄膜の表面に部分的にレ
ーザ光を照射し、この超伝導薄膜を溶融、急冷すること
により、絶縁膜に変え、直接に超伝導薄膜のパターニン
グができる。Furthermore, it is known that the superconducting properties of ceramic superconductors are strongly dependent on the amount of oxygen vacancies in the material. For example, perovskite superconducting material RBa zC
u 30X (R=yttrium (Y), erbium (
In the case of rare earths such as Er), europium (Eu), and holmium (Ho), the superconducting phase occurs when X is 6.7
Above that, below that it becomes an insulator. At this time, the superconducting phase has an orthorhombic crystal structure, and the insulator has a tetragonal crystal structure. This amount of oxygen varies depending on the atmosphere and temperature conditions during sintering.
For example, when slowly cooled at about 400°C to 500°C, it becomes orthorhombic, and when rapidly cooled, it becomes tetragonal. By using this property, the surface of a superconducting thin film formed on a substrate is partially irradiated with laser light, and this superconducting thin film is melted and rapidly cooled, turning it into an insulating film and directly forming a superconducting thin film. Can be patterned.
以下、本発明を図示の一実施例により具体的に説明する
。Hereinafter, the present invention will be specifically explained with reference to an illustrated embodiment.
第1図は本発明第1実施例の超伝導体の製造工程を示す
図である。FIG. 1 is a diagram showing the manufacturing process of a superconductor according to a first embodiment of the present invention.
まず、同図(a)に示す如く、バルク状材料を高温焼結
して超伝導特性を示す、超伝導材11を形成する。この
ような超伝導材11として、例えばY+Baz Cu3
0x焼結体(斜方晶ペロブスカイト、液体窒素温度で超
伝導となる)の作成方法は次のステップによる。First, as shown in FIG. 4A, a bulk material is sintered at high temperature to form a superconducting material 11 exhibiting superconducting properties. As such a superconducting material 11, for example, Y+Baz Cu3
The method for producing the 0x sintered body (orthorhombic perovskite, which becomes superconducting at liquid nitrogen temperature) is as follows.
−Y2O3+2 BaCO3+3Cu0を混合し、空気
中で850°C,10hr仮焼する。-Y2O3+2 BaCO3+3Cu0 is mixed and calcined in air at 850°C for 10 hours.
次いで、粉砕、混合、圧粉を300kgf/ cnlで
行い、空気中で950°C,10hr焼成する。次に、
0.5°C/minで冷却して、
’f 、 3a2C+gOx
の焼結体を得る。Next, pulverization, mixing, and powder compaction are performed at 300 kgf/cnl, followed by firing in air at 950°C for 10 hours. next,
Cooling is performed at 0.5°C/min to obtain a sintered body of 'f, 3a2C+gOx.
次に、第1図[有])に示す如く、上記超伝導材11の
表面に薄くレーザ光(アルゴン、エキシマなど)を照射
し、表面を溶融、急冷して、約1000人程度の膜厚の
保護膜12を形成する。このときの、レーザ光照射条件
は、例えば、レーザ出力が1.1ワット程度、走査速度
が150mm/sec程度で、表面にひび、泡が生じな
いようにする。Next, as shown in FIG. 1 [ex. A protective film 12 is formed. At this time, the laser beam irradiation conditions are, for example, a laser output of about 1.1 watts and a scanning speed of about 150 mm/sec, so that no cracks or bubbles are generated on the surface.
そして、第1図(C)に示す如く、レーザ光を照射し、
超伝導材11の全面に保護膜12を形成する。Then, as shown in FIG. 1(C), a laser beam is irradiated,
A protective film 12 is formed on the entire surface of the superconducting material 11.
上記のように形成される保護膜12は、急冷されるため
、結晶粒が非常に細かく、表面が緻密になり、水、フッ
酸、硝酸などに難溶性で、結晶構造も安定になる。従っ
て、内部の超伝導材11は、保護膜12により水、フッ
酸、硝酸などの溶解、変質などによる劣化が防止される
。また、上記保護膜12は、超伝導材11と組成が同じ
ため、下地からの拡散などの問題もない。上記保護膜1
2が形成された超伝導材11は、そのまま使用したり、
ペレット用などに用いることができ、水分などがあって
も長期間の保存ができ、経時変化に耐えることができる
。Since the protective film 12 formed as described above is rapidly cooled, the crystal grains are very fine, the surface is dense, it is hardly soluble in water, hydrofluoric acid, nitric acid, etc., and the crystal structure is stable. Therefore, the protective film 12 prevents the internal superconducting material 11 from deteriorating due to dissolution of water, hydrofluoric acid, nitric acid, etc., or deterioration. Furthermore, since the protective film 12 has the same composition as the superconducting material 11, there is no problem such as diffusion from the underlying layer. Above protective film 1
The superconducting material 11 on which 2 is formed can be used as is, or
It can be used for pellets, etc., and can be stored for a long time even in the presence of moisture, and can withstand changes over time.
第2図は本発明第2実施例の超伝導体のパターニング方
法を示す図である。FIG. 2 is a diagram showing a method of patterning a superconductor according to a second embodiment of the present invention.
まず、第2図(a)に示す如く、基板21上に比較的に
厚い約10μm程度の膜厚の超伝導膜22を形成する。First, as shown in FIG. 2(a), a relatively thick superconducting film 22 having a thickness of about 10 μm is formed on a substrate 21.
このような超伝導膜22は、上記のセラミック超伝導粉
末を溶剤に混ぜてスピンコードすることにより基板21
上に成膜後、焼結することにより形成される。基板21
としては、例えば、サファイア(R面) 、Mg0(1
00面) 、5rTiO3(110面)などを用いた。Such a superconducting film 22 is produced by mixing the above ceramic superconducting powder in a solvent and spin-coding it onto the substrate 21.
It is formed by forming a film on top and then sintering it. Substrate 21
For example, sapphire (R surface), Mg0 (1
00 plane), 5rTiO3 (110 plane), etc. were used.
次に、第2図(b)に示す如く、上記超伝導膜22の表
面に部分的にレーザ光を照射し、この超伝導膜22の表
面を薄く溶融、急冷することにより、保護膜23を形成
する。これにより、100μm程度の保護膜23のパタ
ーンを形成する。Next, as shown in FIG. 2(b), the surface of the superconducting film 22 is partially irradiated with a laser beam to melt and rapidly cool the surface of the superconducting film 22, thereby forming a protective film 23. Form. As a result, a pattern of the protective film 23 of about 100 μm is formed.
次に、第2図(C)に示す如(、リン酸などによりエツ
チングする。保護11!23のエツチングレートは低く
、保護膜23のない超伝導膜22部分が速く除去され、
パターニングされる。Next, as shown in FIG. 2(C), etching is performed using phosphoric acid or the like.The etching rate of the protection film 23 is low, and the portion of the superconducting film 22 without the protection film 23 is quickly removed.
patterned.
上記方法によれば、レーザ光を照射して形成した保護膜
23がリン酸などにより工・ノチングされにくいため、
保護膜23のない超伝導膜22部分を除去してパターニ
ングができる。また、残された保護膜23は、劣化防止
の役割を果たす。このようなパターニングにより回路配
線などを形成できる。According to the above method, the protective film 23 formed by laser beam irradiation is difficult to be etched or notched by phosphoric acid or the like.
Patterning can be performed by removing the portion of the superconducting film 22 that does not have the protective film 23. Further, the remaining protective film 23 plays a role in preventing deterioration. Through such patterning, circuit wiring and the like can be formed.
第3図は本発明第3実施例の超伝導体のパターニング方
法を示す図である。FIG. 3 is a diagram showing a method for patterning a superconductor according to a third embodiment of the present invention.
はじめに、第3図(a)に示す如く、基板31上にセラ
ミック超伝導材をスパッタ法、電子ビーム(EB)蒸着
法により、5000〜10000人程度堆積し、酸素中
において所定の温度で焼結を行い、超伝導薄膜32を形
成する。First, as shown in FIG. 3(a), about 5,000 to 10,000 ceramic superconducting materials are deposited on a substrate 31 by sputtering or electron beam (EB) evaporation, and then sintered at a predetermined temperature in oxygen. Then, a superconducting thin film 32 is formed.
例えば、スパッタ法による成膜のための上記に説明した
Y、Ba2Cu30x焼結体を作成するには、まず、前
記第1実施例に示した方法によって、Y、Bazcu3
0x焼結体を得る。For example, to create the above-described Y, Ba2Cu30x sintered body for film formation by sputtering, first, the Y, Ba2Cu30x sintered body is prepared by the method shown in the first embodiment.
A 0x sintered body is obtained.
次に、この焼結体を粉砕し、それにBaCO3粉(Yに
対して2の割合)とCuO粉(Yに対して2の割合)を
加え、Y 、 Ba、 Cuの比率を1:4:5にする
。この比率はスパッタ装置に応じて適宜変更する。Ba
CO3粉とCuO粉とを混合し、Y+Ba1Cu50X
の組成の粉体とする。Next, this sintered body was crushed, and BaCO3 powder (ratio of 2 to Y) and CuO powder (ratio of 2 to Y) were added to it, so that the ratio of Y, Ba, and Cu was 1:4: Make it 5. This ratio is changed as appropriate depending on the sputtering apparatus. Ba
CO3 powder and CuO powder are mixed to obtain a powder having a composition of Y+Ba1Cu50X.
次いで圧粉してターゲットにし、酸素中で500°Cl
2hr仮焼する。このターゲットよりスパッタ法で成膜
し、膜を第4図に示す如く、酸素(0□)雰囲気中で〔
900°C,、lhr ) + (400°C,2hr
)の条件でアニールしたところ、液体窒素温度で超伝
導状態を示す超伝導薄膜32が形成された。基板31に
は、サファイア、MgO、5rTiO+などを用いた。Then, it was compacted into a target and heated in oxygen at 500°Cl.
Calculate for 2 hours. A film was formed from this target by sputtering, and the film was deposited in an oxygen (0□) atmosphere as shown in Figure 4.
900°C, lhr ) + (400°C, 2hr
), a superconducting thin film 32 exhibiting a superconducting state at liquid nitrogen temperature was formed. For the substrate 31, sapphire, MgO, 5rTiO+, etc. were used.
次に、第3図(b)に示す如く、超伝導薄膜32上にア
ルゴンレーザを表面に焦点が合うように光学系を調整し
、レーザ光照射条件は、例えば、レーザ出力が1.1W
程度、走査速度が150mm/sec程度でパターン周
辺を走査するとレーザが照射された部分は膜厚方向すべ
てが溶融、急冷され、絶縁膜33に変わる。これは、上
述のようにセラミック超伝導体が酸素欠陥量に強く依存
しており、徐冷すると超伝導体として斜方晶、急冷する
と絶縁体として正方品となる性質による。この場合、絶
縁領域は塗り潰す必要がなく、周囲が絶縁体になってい
ればよい。Next, as shown in FIG. 3(b), the optical system is adjusted so that the argon laser is focused on the surface of the superconducting thin film 32, and the laser beam irradiation conditions are such that the laser output is 1.1 W.
When the periphery of the pattern is scanned at a scanning speed of about 150 mm/sec, the entire portion irradiated with the laser is melted and rapidly cooled in the film thickness direction, turning into an insulating film 33. This is due to the fact that, as mentioned above, the ceramic superconductor strongly depends on the amount of oxygen vacancies, and when slowly cooled, the superconductor becomes an orthorhombic crystal, and when rapidly cooled, the ceramic superconductor becomes a tetragonal insulator. In this case, the insulating area does not need to be filled in, and only needs to be surrounded by an insulator.
上記方法によれば、アルゴンレーザ光を照射して伝導薄
膜を溶融、2、冷し、絶縁膜33に変えることにより、
超伝導薄膜32を直接パターニングすることが可能にな
る。この実施例では、ウェットエツチングでなく、薬品
、溶剤などを使わないため、超伝導薄膜32の変質、劣
化がな(、またドライエツチングなどのように超伝導薄
膜32に与える汚染や損傷がなく、特性のよい薄膜パタ
ーンが得られる。また、レーザ照射部分の結晶粒は、緻
密で結晶構造も安定になる。さらに、この方法ではパタ
ーニング後の膜表面は、凹凸のない平面のままであり、
段差や平坦化の問題がなくなる利点があり、その表面に
他の保護膜の形成などが容易できるようになる。According to the above method, by irradiating the conductive thin film with argon laser light, melting it, cooling it, and converting it into an insulating film 33,
It becomes possible to directly pattern the superconducting thin film 32. In this embodiment, since wet etching is not used and no chemicals or solvents are used, there is no deterioration or deterioration of the superconducting thin film 32 (also, there is no contamination or damage to the superconducting thin film 32 unlike dry etching). A thin film pattern with good characteristics can be obtained.In addition, the crystal grains in the laser irradiated area are dense and the crystal structure is stable.Furthermore, with this method, the film surface after patterning remains flat without any unevenness.
This has the advantage of eliminating problems with steps and flattening, and it becomes easier to form other protective films on the surface.
上記パターニング方法により、超伝導体の回路配線や電
子デバイスなどの製造に応用できるようになる。The patterning method described above can be applied to the production of superconductor circuit wiring, electronic devices, etc.
なお、上記実施例では超伝導体をレーザ照射することに
より、溶融、急冷し、酸素欠陥量により斜方晶から正方
晶に転移することを説明しているが、その条件はアニー
ル条件、材料による結晶構造により変わり、実施例の条
件に限定されるものではない。In addition, in the above example, it is explained that by irradiating the superconductor with a laser, it is melted, rapidly cooled, and transformed from orthorhombic to tetragonal depending on the amount of oxygen defects, but the conditions depend on the annealing conditions and the material. The conditions vary depending on the crystal structure and are not limited to the conditions in the examples.
また、以上ではイツトリウム(Y)を例として説明した
が、本発明の適用範囲はその場合に限られるものでなく
、+3価の酸化状態をとるスカンジウム(Sc)、ラン
タン(La)、ネオジウム(Nd)、サマリウム(Sm
)、ガドリニウム(Gd)、ジスプロシウム(Dy)、
ホルミウム(Ho)、エルビウム(Er)、ツリウム(
Tm)、ルテチウム(Lu)、プロメチウム(Pm)、
ユーロピウム(Eu)、イッテルビウム(Yb)を用−
いる場合にも及ぶものである。In addition, although yttrium (Y) has been explained above as an example, the scope of application of the present invention is not limited to that case, but scandium (Sc), lanthanum (La), neodymium (Nd), which has a +3 valence oxidation state, ), samarium (Sm
), gadolinium (Gd), dysprosium (Dy),
Holmium (Ho), Erbium (Er), Thulium (
Tm), lutetium (Lu), promethium (Pm),
Using europium (Eu) and ytterbium (Yb)
This also applies to cases where there are
〔発明の効果]
以上のように本発明によれば、超伝導材表面をレーザア
ニールすることにより結晶構造を変え、その表面に保8
I膜を形成しているため、内部の超伝導材の劣化を防止
することができる。[Effects of the Invention] As described above, according to the present invention, by laser annealing the surface of a superconducting material, the crystal structure is changed and a
Since the I film is formed, deterioration of the superconducting material inside can be prevented.
また、この保護膜を部分的に表面に薄く形成することに
より、ウェットエツチングでパターニングすることがで
きる。Further, by forming this protective film thinly on the surface partially, patterning can be performed by wet etching.
さらに、超伝導薄膜の表面をレーザアニールし、絶縁体
にすることにより、膜に与える汚染、損傷がなく、表面
が平坦で特性の良い薄膜パターニングが形成される。Furthermore, by laser annealing the surface of the superconducting thin film to make it an insulator, a thin film patterning with a flat surface and good characteristics is formed without contaminating or damaging the film.
第1図は本発明第1実施例の超伝導体の製造工程図、
第2図は本発明第2実施例のパターニング方法を示す図
、
第3図は本発明第3実施例のパターニング方法を示す図
、
第4図は本発明第3実施例のアニール条件を示す図であ
る。
図中、
11は超伝導材、
12は保護膜、
21は基板、
22は超伝導膜、
23は保護膜、
31は基板、
32は超伝導薄膜、
33は絶縁膜
を示す。
特許出願人 富士通株式会社
代理人弁理士 久木元 彰
4−va月才1 欠才後3下りの黄I4云↓本奎−の1
2αL、ニーす7タコ第1図FIG. 1 is a diagram showing the manufacturing process of a superconductor according to the first embodiment of the present invention, FIG. 2 is a diagram showing the patterning method according to the second embodiment of the present invention, and FIG. 3 is a diagram showing the patterning method according to the third embodiment of the present invention. FIG. 4 is a diagram showing the annealing conditions of the third embodiment of the present invention. In the figure, 11 is a superconducting material, 12 is a protective film, 21 is a substrate, 22 is a superconducting film, 23 is a protective film, 31 is a substrate, 32 is a superconducting thin film, and 33 is an insulating film. Patent Applicant: Fujitsu Ltd. Representative Patent Attorney Akira Kukimoto 4-va Monthsai 1 3-Download Yellow I4un ↓ Honkei-no 1
2αL, Knees 7 Octopus Figure 1
Claims (1)
11)の表面にレーザ光を照射し、この超伝導材(11
)の表面を薄く溶融、急冷することにより該表面上に結
晶粒の細かい保護膜(12)を形成することを特徴とす
る超伝導体の保護膜形成方法。 2、基板(21)上に超伝導膜(22)を形成する工程
と、 前記超伝導膜(22)の表面に部分的にレーザ光を照射
し、この超伝導膜(22)の表面を薄く溶融、急冷する
ことにより、結晶粒の細かい保護膜(23)を形成する
工程と、 前記保護膜(23)を形成しない超伝導膜(22)をウ
ェットエッチングする工程とを含むことを特徴とする請
求項1記載の方法。 3、基板(31)上に超伝導薄膜(32)を形成する工
程と、 前記超伝導薄膜(32)の表面に部分的にレーザ光を照
射し、この超伝導薄膜(32)を溶融、急冷することに
より、絶縁膜(33)に変える工程とを具備することを
特徴とする請求項1記載の方法。[Claims] 1. Superconducting material formed in bulk or as a film on a substrate (
The surface of this superconducting material (11) is irradiated with laser light, and the surface of this superconducting material (11) is
1. A method for forming a protective film for a superconductor, characterized in that a protective film (12) with fine crystal grains is formed on the surface of a superconductor by melting the surface thinly and rapidly cooling the surface. 2. Forming a superconducting film (22) on the substrate (21), and partially irradiating the surface of the superconducting film (22) with a laser beam to thin the surface of the superconducting film (22). It is characterized by comprising a step of forming a protective film (23) with fine crystal grains by melting and rapid cooling, and a step of wet etching the superconducting film (22) on which the protective film (23) is not formed. The method according to claim 1. 3. Forming a superconducting thin film (32) on the substrate (31); partially irradiating the surface of the superconducting thin film (32) with laser light to melt and rapidly cool the superconducting thin film (32); Method according to claim 1, characterized in that it comprises the step of converting the insulating film (33) into an insulating film (33).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63069669A JPH01242477A (en) | 1988-03-25 | 1988-03-25 | Formation of protective film on superconductor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63069669A JPH01242477A (en) | 1988-03-25 | 1988-03-25 | Formation of protective film on superconductor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01242477A true JPH01242477A (en) | 1989-09-27 |
Family
ID=13409479
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63069669A Pending JPH01242477A (en) | 1988-03-25 | 1988-03-25 | Formation of protective film on superconductor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01242477A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01305879A (en) * | 1988-06-01 | 1989-12-11 | Semiconductor Energy Lab Co Ltd | Preparation of oxide superconductor |
JP2001110256A (en) * | 1999-10-14 | 2001-04-20 | Toshiba Corp | Superconductive complex and its manufacture |
-
1988
- 1988-03-25 JP JP63069669A patent/JPH01242477A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01305879A (en) * | 1988-06-01 | 1989-12-11 | Semiconductor Energy Lab Co Ltd | Preparation of oxide superconductor |
JP2001110256A (en) * | 1999-10-14 | 2001-04-20 | Toshiba Corp | Superconductive complex and its manufacture |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH01222488A (en) | Method of forming patterned layer of high tc oxide superconductor | |
US4891355A (en) | Method for producing superconducting circuit | |
JPH09306256A (en) | Bulk oxide superconductor, and production of wire rod and plate thereof | |
JPH01144689A (en) | Formation of superconducting circuit | |
JPH0649626B2 (en) | Oxide superconducting material | |
JPS6161556B2 (en) | ||
JPH027307A (en) | Barrier layer arrangement for conductive layer on silicon substrate | |
JPH01242477A (en) | Formation of protective film on superconductor | |
JPS63270450A (en) | Production of thick film oxide super conductor | |
JPS63273371A (en) | Manufacture of superconducting electric circuit | |
JPS63276822A (en) | Patterning method for superconductive thin film | |
EP0349444A2 (en) | High Tc superconducting Y-Ba-Cu-O thin films | |
EP0356352A2 (en) | Yttrium rich conductive articles and processes for their preparation | |
Azman et al. | Effects of Annealing Treatment and Elemental Composition on Bi^ sub 1.6^ P^ sub b0. 4^ Sr^ sub 2^ Ca^ sub 2^ Cu^ sub 3^ O^ sub y^ Thin Films Grown by Pulsed Laser Deposition | |
JPH01192720A (en) | Production of superconducting thin film | |
JP2683689B2 (en) | Method for producing oxide superconducting thin film | |
JP2654555B2 (en) | Superconducting device manufacturing method | |
JPH0580160B2 (en) | ||
JPH01164725A (en) | Oxide superconducting thin film for electronic device | |
KR0174383B1 (en) | Manufacturing method of superconducting thin film layer | |
JPH04317408A (en) | Oxide superconducting material | |
JPH01226183A (en) | Manufacture of ceramic superconductor | |
JPH01103975A (en) | Production of ceramic superconductor | |
JPH06183894A (en) | Method for forming surface of oxide single crystal | |
JPH01157480A (en) | Method for modifying oxide superconductor |