[go: up one dir, main page]

JPH01242419A - Bi-pb-ca-sr-cu-o based superconducting material - Google Patents

Bi-pb-ca-sr-cu-o based superconducting material

Info

Publication number
JPH01242419A
JPH01242419A JP63069002A JP6900288A JPH01242419A JP H01242419 A JPH01242419 A JP H01242419A JP 63069002 A JP63069002 A JP 63069002A JP 6900288 A JP6900288 A JP 6900288A JP H01242419 A JPH01242419 A JP H01242419A
Authority
JP
Japan
Prior art keywords
superconducting material
superconducting
chemical composition
electrical resistance
mechanical strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63069002A
Other languages
Japanese (ja)
Inventor
Toshio Takada
高田 利夫
Mikio Takano
幹夫 高野
Yoshinari Miura
嘉也 三浦
Jun Takada
潤 高田
Kiichi Oda
小田 喜一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Institute for Production Development
Original Assignee
Research Institute for Production Development
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Institute for Production Development filed Critical Research Institute for Production Development
Priority to JP63069002A priority Critical patent/JPH01242419A/en
Publication of JPH01242419A publication Critical patent/JPH01242419A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To obtain the title superconducting material having a high superconductive critical temp., a uniform composition, and high density and mechanical strength from the material contg. Bi, Pb, Sr, Ca, and Cu and having a specified chemical composition. CONSTITUTION:The Bi-Pb-Ca-Sr-Cu-O based superconducting material has a chemical composition shown by the formula (0.1<=x<=0.75, n=1-2, and 0<=y<=2). The Bi2O3, SrCO3, CaCO3, CuO, and PbO as the starting materials are weighed, mixed in a desired ratio, and heated in the air at 800 deg.C for 24hr in an electric furnace to cause a solid-phase reaction. The product is then crushed, pressed at about 1000kg/cm<2> into pellets, and further calcined at 830-880 deg.C for >=24hr to produce the superconducting material. The calcined pellet has <=130K superconductivity transition initiating temp. and 110-77K superconductivity transition ending tamp.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は近時、液体窒素温度である77に以上、場合に
よって更に高温の100に以上で超電導を示す可能性が
あるとして注目されているB1−Ca−Sr −Cu 
−0系物質のBiを一部pbで置換した超電導物質に関
するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention has recently attracted attention as it has the potential to exhibit superconductivity at liquid nitrogen temperatures of 77 or higher, and in some cases even higher temperatures of 100 or higher. B1-Ca-Sr-Cu
This invention relates to a superconducting material in which Bi in a -0-based material is partially replaced with Pb.

〔従来の技術〕[Conventional technology]

最近、金属材料研究所よりB i 、 Sr 、 Ca
 、 Cu 2の組成の焼結体が120にで電気抵抗が
減少しはじめ、約107Kまで急激に電気抵抗が落ちた
後、約75にで電気抵抗がゼロになるとの発表があった
Recently, the Institute of Metals Materials has introduced B i , Sr, Ca
It was announced that the electrical resistance of a sintered body with a composition of Cu 2 begins to decrease at 120 K, and after the electrical resistance rapidly drops to about 107 K, the electrical resistance becomes zero at about 75 K.

この発表によれば、この物質には電気抵抗がゼロになる
超電導遷移終了点が約105K(実験データから外挿し
て得た値)の超電導相(高Tc相)と約75にの超電導
相(低Tc相)の2種類の超電導相が存在していて、全
体が完全に高Tc相の試料とはなっていないとのことで
あるが、この物質には、完全反磁性(マイスナー効果)
が認められるとのことであった。
According to this announcement, this material has a superconducting transition end point at which electrical resistance becomes zero: a superconducting phase (high Tc phase) at about 105 K (value obtained by extrapolating from experimental data) and a superconducting phase (high Tc phase) at about 75 K. It is said that there are two types of superconducting phases: a low Tc phase), and the sample is not completely a high Tc phase, but this material has complete diamagnetism (Meissner effect).
It was said that this would be approved.

また、この物質は希土類を含まない超電導物質であり、
かつY −Ba−Cu −0系に比して水等に安定であ
る点も特徴があると報じられた。
Additionally, this material is a superconducting material that does not contain rare earth elements.
It was also reported that it is more stable in water etc. than the Y-Ba-Cu-0 system.

この発表があった後、日、米のみならず世界各国で、そ
の追試が行われたが、その−例は次のとおりである。
After this announcement, follow-up tests were held not only in Japan and the United States, but also in other countries around the world. Examples of such tests are as follows.

即ち、無機材研等は、B12(Ca、Sr)3cuzo
q或いはBi2 (Ca、 Sr) 3−axcLIz
oq−ayの組成の焼結体が約110により電気抵抗が
低下し始め約70〜40にでゼロとなることを発表した
That is, inorganic materials research, etc., B12 (Ca, Sr) 3cuzo
q or Bi2 (Ca, Sr) 3-axcLIz
It was announced that the electrical resistance of a sintered body having a composition of 110 oq-ay starts to decrease at about 110 oq-ay and becomes zero at about 70-40 oq.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

現在上に発表された3i−CB−Sr  Cu  O系
物質は高Tc相、低Tc相が混在するものが多く、その
化学組成も種々異なる。
Many of the 3i-CB-Sr Cu O-based materials currently published include a mixture of high Tc phase and low Tc phase, and their chemical compositions also vary.

また、本発明者の追試によれば、この物質は製法的にも
、試料の融点ぎりぎりの熱処理温度で処理しなければ高
臨界温度物質とならず、而もその温度制御の巾が例えば
880°Cで±2°C位の許容範囲しかない等、合成が
極めて困難であることが判明している。
Further, according to additional tests conducted by the present inventors, this material does not become a high critical temperature material unless it is processed at a heat treatment temperature close to the melting point of the sample, and the width of the temperature control is, for example, 880°. It has been found that synthesis is extremely difficult, as the tolerance range is only about ±2°C.

更に問題は、この焼結体は焼結密度が低く、また往々に
して表面層と内部で組織が不均一で、脆弱な焼結体であ
り、製造過程の焼成中においても膨張する等の現象が起
こるという点であり、これを解決しなければ実用材料と
はなり得ないものである。
A further problem is that this sintered body has a low sintered density, and the structure is often uneven between the surface layer and the inside, making it a brittle sintered body, and there are phenomena such as expansion during firing during the manufacturing process. occurs, and unless this problem is solved, it cannot be used as a practical material.

本発明者等はこの様な欠点を克服すべく、Biの一部を
pbで置換するとともに、Bi、 Cuの組成比を種々
変える等の研究を重ね、超電導臨界温度が少なくとも液
体窒素の沸点77に以上で、条件次第では110に以上
にも達する物質の合成に成功し、同時にこの物質がpb
を含まないBi −Sr−Ca−Cu −0系のそれに
比しMi熾が均一で密度が高く機械的強度も極めて高く
なることを見出し、本発明に到達したものである。
In order to overcome these drawbacks, the inventors of the present invention have repeatedly conducted research such as replacing a part of Bi with PB and variously changing the composition ratio of Bi and Cu, and have found that the superconducting critical temperature is at least as high as the boiling point of liquid nitrogen, 77. Based on the above, we succeeded in synthesizing a substance that can reach 110 or more depending on the conditions, and at the same time this substance has a pb
The present invention was achieved based on the discovery that the Mi layer is uniform, has a high density, and has extremely high mechanical strength compared to that of the Bi-Sr-Ca-Cu-0 system which does not contain any of the following.

〔課題を解決するための手段〕[Means to solve the problem]

即ち、本発明は金属材料研究所の発表したBi。 That is, the present invention is based on Bi announced by the Institute for Metal Materials.

Sr、Ca、Cu40.Hにおいて、Biの一部をpb
で置換した物質、更にはこれに加うるに構成各元素の組
成比をも変化させた物質を提供するものであり、更に詳
しくは、化学組成比が(Bi+−x Pbx )n (
Sr、Ca)zCu、  (式中、x、  n、  y
は0.1≦χ≦0.75.  n−1〜2.0≦y≦2
の値を示す。)で表される、少なくとも77に以上の超
電導臨界温度をもち、機械的強度の高いBi −Pb−
Ca−Sr−Cu−0系超電導物質を提供するものであ
る。
Sr, Ca, Cu40. In H, part of Bi is converted into pb
The present invention provides a substance in which the chemical composition ratio is (Bi+-xPbx)n (Bi+-xPbx)n(
Sr, Ca)zCu, (where x, n, y
is 0.1≦χ≦0.75. n-1~2.0≦y≦2
indicates the value of ), which has a superconducting critical temperature of at least 77 or higher and has high mechanical strength.
A Ca-Sr-Cu-0 based superconducting material is provided.

本発明は、この様に従来の旧−Sr−Ca−Cu −0
系のBiの一部をpbで置換するものであるが、この際
pbの置換量、即ち式中のX値が0.75より大きいと
、物質が半導体になることが多く、逆に0.1より小さ
いと物質が従来のものに比較して大差のないものとなる
The present invention thus overcomes the conventional old -Sr-Ca-Cu -0
Part of the Bi in the system is replaced with pb, but if the amount of pb substituted, that is, the X value in the formula, is larger than 0.75, the substance often becomes a semiconductor; If it is smaller than 1, the substance will not be much different from the conventional one.

上記の化合物は下記する方法によって製造することがで
きる。
The above compound can be produced by the method described below.

即ち、原料としてB1z03+SrCO:++CaC0
z、CuO及びpboを出発原料としてそれぞれを所望
の比に秤量混合した後、第1段階で800°Cで24時
間空気中、電気炉中で加熱固相反応を行わせ、これを粉
砕して約1000 kg/cl+で加圧しペレットとし
た後、更に830°C〜880°Cで24時間以上焼成
すればよい。
That is, B1z03+SrCO:++CaC0 as a raw material
After weighing and mixing each of Z, CuO, and PBO as starting materials in the desired ratio, in the first step, a heating solid phase reaction was performed at 800°C for 24 hours in the air in an electric furnace, and this was pulverized. After pressurizing at about 1000 kg/cl+ to form pellets, the pellets may be further calcined at 830°C to 880°C for 24 hours or more.

この焼成ペレットの密度は、pbを含まない同様の製法
によって得たペレットに比して表面、裏面、内部とも均
一でかつ高く、床上に落下させても高い金属音を発して
飛び上がり、これを繰り返しても破壊せず、実用的用途
に耐える機械的強度を有している。
The density of these fired pellets is more uniform and higher on the front, back, and inside than pellets obtained by a similar manufacturing method that does not contain PB, and even when dropped on the floor, they fly up with a high-pitched metallic sound and repeat this process repeatedly. It has the mechanical strength to withstand practical use without breaking even when exposed to heat.

またこの焼成ペレットは超電導遷移開始温度が約130
に或いはそれ以下で超電導遷移終了温度が約110に或
いはそれ以下で少なくとも77に以上である。
In addition, this fired pellet has a superconducting transition initiation temperature of approximately 130
or less, the superconducting transition end temperature is about 110 or less and at least 77 or more.

〔実施例〕〔Example〕

実施例1 原料粉末としてBizO:+、PbO,SrCOi+C
aCO3及びCuOを化学組成比がBio、 q Pb
o、 3 Sr+ Cat Cut、 nとなるように
秤量し、これを乳鉢にて充分混合粉砕した後、アルミナ
ボート中に入れ、800°C24時間 電気炉中、空気
中で加熱固相反応を行わせて黒色粉末を得た。この粉末
を乳鉢で再び充分混合粉砕した後、約1000 kg/
cfflのプレスで直径約1cm、厚さ約1mmの圧粉
体ペレットとなし、これを845°Cで87時間電気炉
中加熱焼成した。
Example 1 BizO:+, PbO, SrCOi+C as raw material powder
The chemical composition ratio of aCO3 and CuO is Bio, q Pb
o, 3 Sr + Cat Cut, n, was thoroughly mixed and pulverized in a mortar, placed in an alumina boat, and heated at 800°C for 24 hours in an electric furnace in air to perform a solid phase reaction. A black powder was obtained. After thoroughly mixing and pulverizing this powder in a mortar, it weighs about 1000 kg/
A compacted powder pellet having a diameter of about 1 cm and a thickness of about 1 mm was formed using a cffl press, and this was fired in an electric furnace at 845° C. for 87 hours.

このものの電気抵抗の温度変化は第1図に示す通りであ
る。本図からも明らかな通り、この物質の電気抵抗は1
30により落下し始め、120により急激に落下し約1
12にでゼロとなっており、この物質が極めて超伝導特
性に優れていることを認めた。
The temperature change in electrical resistance of this material is as shown in FIG. As is clear from this figure, the electrical resistance of this material is 1
It started to fall by 30, then rapidly fell by 120, and about 1
12, and it was recognized that this material has extremely excellent superconducting properties.

また、マイスナー効果測定結果は、第2図に示す通り、
100に以上で超電導体となることが確認された。
In addition, the Meissner effect measurement results are as shown in Figure 2.
It was confirmed that a superconductor is formed when the concentration is 100 or more.

更に、本物質は実用上機械的強度の充分な焼結体となっ
ていた。
Furthermore, this material was a sintered body with sufficient mechanical strength for practical use.

実施例2 実施例1における845°Cでの焼成時間を143時間
と変更し、他は同様に実施した。
Example 2 The firing time at 845°C in Example 1 was changed to 143 hours, and the other procedures were the same.

本実施例で得た物質の、電気抵抗の温度変化は第3図に
示す通りである。本図からも明らかな通り、この物質の
電気抵抗は140により落下し始め、130により急激
に落下し約120にでゼロとなっており、この物質が極
めて超電導特性に優れていることを認めた。
The temperature change in electrical resistance of the material obtained in this example is as shown in FIG. As is clear from this figure, the electrical resistance of this material begins to drop at 140, rapidly drops at 130, and reaches zero at about 120, confirming that this material has extremely excellent superconducting properties. .

実施例3 原料粉末としてBizO:++ PbO,SrCO,、
、CaC0:+及びCuOを、その焼成後の化学組成比
がBio、s Pbc、5 Sr、 Ca、 Cab、
e となるように秤量し、これを乳鉢で充分混合した後
、アルミナボート中に入れ800°C24時間 電気炉
中、空気中で加熱固相反応を行って黒色粉末を得た。こ
の黒色粉末を再び乳鉢で混合粉砕した後、約1000k
g/c111のプレスで直径約1 cm、厚さ約1値の
圧粉体ペレットとなし、これを845°C93時間電気
炉中加熱焼成した。
Example 3 BizO as raw material powder: ++ PbO, SrCO, .
, CaC0:+ and CuO, the chemical composition ratio after firing is Bio, s Pbc, 5 Sr, Ca, Cab,
After mixing thoroughly in a mortar, the mixture was placed in an alumina boat and subjected to a heating solid-phase reaction in air at 800° C. for 24 hours to obtain a black powder. After mixing and pulverizing this black powder in a mortar again, approximately 1000 kg
A compacted powder pellet having a diameter of approximately 1 cm and a thickness of approximately 1 value was formed by pressing at g/c 111, and this was heated and fired in an electric furnace at 845° C. for 93 hours.

このものの電気抵抗の温度変化は第4図に示す通りであ
る。図に示す通り電気抵抗は約130により急激に落下
し115にでゼロとなる。
The temperature change in electrical resistance of this material is as shown in FIG. As shown in the figure, the electrical resistance suddenly drops at about 130 and becomes zero at 115.

また、本物質のマイスナー効果及び機械的強度は、実施
例1の場合と略同様の結果を示した。
Furthermore, the Meissner effect and mechanical strength of this material showed substantially the same results as in Example 1.

実施例4及び5 原料粉末を、その化学組成比がBio、 s Pbo、
 ITSr6. sa Cab、 +b Cu2となる
ように秤量したもの、及びBio、b6Pbo、66S
ro、bb Cab、xx CLI+、711となるよ
うに秤量したものの2種類を用意することとした以外は
、実施例3と同様にして2種類の焼結体を得た。
Examples 4 and 5 The chemical composition ratio of raw material powder was Bio, s Pbo,
ITSr6. sa Cab, weighed to be +b Cu2, and Bio, b6Pbo, 66S
Two types of sintered bodies were obtained in the same manner as in Example 3, except that two types were prepared by weighing ro, bb Cab, xx CLI+, and 711.

これら物質は、超電導特性、機械的強度とも、実施例1
と略同様の結果を示した。
These materials had excellent superconducting properties and mechanical strength in Example 1.
Almost the same results were obtained.

〔発明の効果〕〔Effect of the invention〕

本発明によるBi −Pb  Ca  Sr  Cu−
0系物質は少なくとも液体窒素沸点77に以上に超伝導
臨界温度があり、Y −Ba −Cu −0系と同程度
の88にやさらに高温の110に以上に臨界温度をもつ
超電導物質である。
Bi-PbCaSrCu- according to the present invention
The 0-series material is a superconducting material that has a superconducting critical temperature at least above the liquid nitrogen boiling point of 77, and has a critical temperature of 88, which is about the same as that of the Y-Ba-Cu-0 system, and even higher than 110.

この物質の製法は上記の如く容易であり、かつ再現性が
ある特徴をもっている。
The method for producing this substance is easy and reproducible as described above.

しかも化合物の密度は表面、裏面、内部とも均一で緻密
であり、pbを含まないBi −Sr−Ca−Cu −
0系の焼成物が密度が低く、脆弱であるに対して密度が
高く実用上充分な機械的強度をもち、しかも水に対して
はもちろん安定であるという特長を有しており、これは
実用材料として用いる場合極めて重要な点である。
Moreover, the density of the compound is uniform and dense on the surface, back surface, and inside, and Bi-Sr-Ca-Cu-
Unlike the 0-series fired products, which have a low density and are brittle, it has a high density and sufficient mechanical strength for practical use, and is also stable against water, which makes it suitable for practical use. This is an extremely important point when used as a material.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、実施例1で得た物質の電気抵抗−温度相関図
であり、第2図は同物質の交流帯磁率−温度相関図であ
る。 第3図は、実施例2で得た物質の、また第4図は、実施
例3で′得た物質の、夫々電気抵抗−温度相関図である
FIG. 1 is an electrical resistance-temperature correlation diagram of the material obtained in Example 1, and FIG. 2 is an AC magnetic susceptibility-temperature correlation diagram of the same material. FIG. 3 is an electrical resistance-temperature correlation diagram of the material obtained in Example 2, and FIG. 4 is an electrical resistance-temperature correlation diagram of the material obtained in Example 3.

Claims (1)

【特許請求の範囲】[Claims] (1)化学組成比が(Bi_1_−_xPb_x)n(
Sr,Ca)_2Cu_y(式中、x,n,yは0.1
≦x≦0.75,n=1〜2,0≦y≦2の値を示す。 )で表されるBi−Pb−Ca−Sr−Cu−O系超電
導物質。
(1) The chemical composition ratio is (Bi_1_-_xPb_x)n(
Sr, Ca)_2Cu_y (where x, n, y are 0.1
The values are ≦x≦0.75, n=1 to 2, and 0≦y≦2. ) Bi-Pb-Ca-Sr-Cu-O based superconducting material.
JP63069002A 1988-03-23 1988-03-23 Bi-pb-ca-sr-cu-o based superconducting material Pending JPH01242419A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63069002A JPH01242419A (en) 1988-03-23 1988-03-23 Bi-pb-ca-sr-cu-o based superconducting material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63069002A JPH01242419A (en) 1988-03-23 1988-03-23 Bi-pb-ca-sr-cu-o based superconducting material

Publications (1)

Publication Number Publication Date
JPH01242419A true JPH01242419A (en) 1989-09-27

Family

ID=13389955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63069002A Pending JPH01242419A (en) 1988-03-23 1988-03-23 Bi-pb-ca-sr-cu-o based superconducting material

Country Status (1)

Country Link
JP (1) JPH01242419A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01290530A (en) * 1988-05-14 1989-11-22 Sumitomo Electric Ind Ltd Multiple oxides superconducting material and production thereof
JPH01308803A (en) * 1988-06-08 1989-12-13 Mitsubishi Electric Corp Production of oxide superconductor
JPH029721A (en) * 1988-03-25 1990-01-12 Canon Inc Metal oxide material
JPH0226879A (en) * 1988-07-13 1990-01-29 Toray Ind Inc Superconducting material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH029721A (en) * 1988-03-25 1990-01-12 Canon Inc Metal oxide material
JPH01290530A (en) * 1988-05-14 1989-11-22 Sumitomo Electric Ind Ltd Multiple oxides superconducting material and production thereof
JPH01308803A (en) * 1988-06-08 1989-12-13 Mitsubishi Electric Corp Production of oxide superconductor
JPH0226879A (en) * 1988-07-13 1990-01-29 Toray Ind Inc Superconducting material

Similar Documents

Publication Publication Date Title
JPH01242419A (en) Bi-pb-ca-sr-cu-o based superconducting material
JP2767283B2 (en) Bi-Pb-Sr-Ba-Ca-Cu-O based superconducting material
JP2893405B2 (en) Bi-Pb-Sr-Ca-Cu-o based superconducting material
US5378682A (en) Dense superconducting bodies with preferred orientation
US5145836A (en) Method for producing shaped parts from high temperature oxide metal superconductive composites
JP3021639B2 (en) Dense superconductor with suitable orientation
JP2978538B2 (en) Superconducting material with high density crystal structure
JP2648524B2 (en) Ceramics and their manufacturing method
EP0400666A2 (en) Bi-Pb-Sr-Ca-Cu-O system superconductors
US5229035A (en) Bi-Pb-Sr-Ca-Cu-O system superconductors
JPH0360457A (en) Production of y-ba-cu-based oxide superconductor
JP3314102B2 (en) Manufacturing method of oxide superconductor
JP2757876B2 (en) Ca &lt;bottom 0&gt;. Bottom 8 Bottom 6 Sr Bottom 0 Bottom 1 Bottom 4 Single phase ceramics of CuO Bottom 2
JPH02120227A (en) Production of bi-based oxide superconductor
JPH04139026A (en) Oxide superconducting material and its production
JP2821568B2 (en) Method for producing superconducting whisker composite
JP2879447B2 (en) Bi-Pb-Sr-Ca-Cu-O based superconducting material
JP2969221B2 (en) Manufacturing method of oxide superconductor
JP3164640B2 (en) Manufacturing method of oxide superconductor
Tan et al. A precursor method for reacting and aligning Bi2Sr2Ca2Cu3O10
JPH06256059A (en) Production of superconductor whisker composite material
JPH01179752A (en) Production of superconducting ceramic
JPH03131521A (en) Oxide superconductor and production thereof
JPH0292827A (en) Production of bi oxide superconductor
JPH01212227A (en) Oxide superconducting material