[go: up one dir, main page]

JPH01240502A - Method for producing styrenic polymers and their catalysts - Google Patents

Method for producing styrenic polymers and their catalysts

Info

Publication number
JPH01240502A
JPH01240502A JP63066908A JP6690888A JPH01240502A JP H01240502 A JPH01240502 A JP H01240502A JP 63066908 A JP63066908 A JP 63066908A JP 6690888 A JP6690888 A JP 6690888A JP H01240502 A JPH01240502 A JP H01240502A
Authority
JP
Japan
Prior art keywords
group
water
catalyst
titanium
styrenic polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63066908A
Other languages
Japanese (ja)
Other versions
JPH0813851B2 (en
Inventor
Hiroshi Maezawa
浩士 前澤
Norio Tomotsu
典夫 鞆津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP63066908A priority Critical patent/JPH0813851B2/en
Priority to US07/274,022 priority patent/US4978730A/en
Priority to AU26403/88A priority patent/AU607827B2/en
Priority to SU884613041A priority patent/RU2086563C1/en
Priority to MYPI88001443A priority patent/MY104071A/en
Priority to DE3889721T priority patent/DE3889721T2/en
Priority to AT88120973T priority patent/ATE106090T1/en
Priority to EP88120973A priority patent/EP0322663B1/en
Priority to ES88120973T priority patent/ES2056886T3/en
Priority to CA000586303A priority patent/CA1325005C/en
Priority to FI885974A priority patent/FI93845C/en
Priority to KR1019880017471A priority patent/KR930010923B1/en
Publication of JPH01240502A publication Critical patent/JPH01240502A/en
Priority to US07/591,417 priority patent/US5023222A/en
Publication of JPH0813851B2 publication Critical patent/JPH0813851B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Polymerization Catalysts (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

PURPOSE:To efficiently produce a styrene-based polymer with a high syndiotacticity with an economical advantage, by using a catalyst consisting of a Ti compound and a product prepared by contacting a specified organoaluminum compound with water. CONSTITUTION:Styrene and/or a styrene derivative is polymerized using a catalyst consisting (A) a Ti compound (e.g., methyltitanium trichloride, TiBr4 or cyclopentadienyltitanium dichloride) and (B) a product prepared by contacting trimethyl aluminum and a tribranched alkyl aluminum (e.g., triisobutyl alumi num) of the formula AlR3 (R is 3-10C branched alkyl) with water to provide the objective polymer preferably composed of a syndiotactic structure as the main structure.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、スチレン系重合体の製造方法及び該方法に用
いる触媒に関し、詳しくは重合体連鎖の立体化学構造が
主としてシンジオタクチック構造を有するスチレン系重
合体を効率よく製造する方法及び該方法に用いる触媒に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing a styrenic polymer and a catalyst used in the method. The present invention relates to a method for efficiently producing a styrenic polymer and a catalyst used in the method.

〔従来の技術及び発明が解決しようとする課題〕従来、
スチレンやスチレン誘導体を重合してシンジオタクチッ
ク構造を有するスチレン系重合体を製造するにあたって
、(A)チタン化合物及び(B)有機アルミニウム化合
物と水との接触生成物からなる触媒を用いることは知ら
れている(特開昭62−187708号公報)。
[Problems to be solved by conventional techniques and inventions] Conventionally,
It is known that a catalyst consisting of a contact product of water with (A) a titanium compound and (B) an organoaluminum compound is used to polymerize styrene or styrene derivatives to produce a styrenic polymer having a syndiotactic structure. (Japanese Unexamined Patent Publication No. 187708/1983).

上記の触媒においては、(B)成分としてトリメチルア
ルミニウムと水との接触生成物が用いられているが、原
料のトリメチルアルミニウムが高価であるため、触媒コ
ストが非常に高いという欠点があった。しかし、このト
リメチルアルミニウムの一部を他の直鎖アルキルアルミ
ニウムで置換すると、重合活性が低下するという問題が
あった。
In the above catalyst, a contact product of trimethylaluminum and water is used as the component (B), but since trimethylaluminum as a raw material is expensive, the catalyst cost is extremely high. However, when part of this trimethylaluminum is replaced with other linear alkylaluminum, there is a problem in that the polymerization activity decreases.

そこで、本発明者らは、主としてシンジオタクチック構
造を有するスチレン系重合体を一層効率よく製造する方
法ならびに安価で高活性の重合触媒を開発すべく、鋭意
研究を重ねた。
Therefore, the present inventors have conducted extensive research in order to develop a method for more efficiently producing a styrenic polymer mainly having a syndiotactic structure, as well as an inexpensive and highly active polymerization catalyst.

〔課題を解決するための手段〕[Means to solve the problem]

その結果、(B)成分の原料としてトリメチルアルミニ
ウムとともに特定の有機アルミニウム化合物を組み合わ
せ使用することによって、上記の課題を解決しうること
を見出した。本発明は、かかる知見に基いて完成したも
のである。
As a result, it has been found that the above problems can be solved by using trimethylaluminum in combination with a specific organic aluminum compound as a raw material for component (B). The present invention was completed based on this knowledge.

すなわち、本発明は、(A)チタン化合物及び(B)有
機アルミニウム化合物と水との接触生成物とからなるス
チレン系重合体の製造用触媒において、(B)成分の有
機アルミニウム化合物と水との接触生成物として、トリ
メチルアルミニウム及び一般式 %式% 〔式中、Rは炭素数3〜10の分岐アルキル基を示す。
That is, the present invention provides a catalyst for producing a styrenic polymer comprising (A) a titanium compound and (B) a contact product of an organoaluminum compound and water. As a contact product, trimethylaluminum and the general formula % formula % [wherein R represents a branched alkyl group having 3 to 10 carbon atoms] are used.

〕 で表わされるトリ分岐アルキルアルミニウムと水との接
触生成物を用いることを特徴とするスチレン系重合体の
製造用触媒を提供するものである。
] The present invention provides a catalyst for producing a styrenic polymer, which is characterized by using a contact product of a tribranched alkyl aluminum represented by the following formula and water.

本発明の触媒は、上記の(A)及び(B)成分を主成分
とするものであるが、ここで(A)成分であるチタン化
合物については、各種のものがある。例えば一般式 %式%() 〔式中、R1,Rz、R:l及びR4はそれぞれ水素原
子、炭素数1〜20のアルキル基、炭素数1〜20のア
ルコキシ基、炭素数6〜20の了り−ル基。
The catalyst of the present invention has the above-mentioned components (A) and (B) as main components, and there are various kinds of titanium compounds as component (A). For example, the general formula % formula % () [wherein R1, Rz, R:l and R4 are each a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, and a carbon number 6 to 20 Okay-ru group.

アルキルアリール基、アリールアルキル基、炭素数1〜
20のアシルオキシ基、シクロペンタジェニルi、i換
シクロペンタジェニル基、インデニル基あるいはハロゲ
ン原子を示す。a、b、cはそれぞれ0〜4の整数を示
し、d、eはそれぞれ0〜3の整数を示す。] で表わされるチタン化合物及びチタンキレート化合物よ
りなる群から選ばれた少なくとも一種の化合物である。
Alkylaryl group, arylalkyl group, carbon number 1-
20 acyloxy group, cyclopentagenyl i, i-substituted cyclopentagenyl group, indenyl group, or halogen atom. a, b, and c each represent an integer of 0 to 4, and d and e each represent an integer of 0 to 3. ] At least one compound selected from the group consisting of titanium compounds and titanium chelate compounds represented by the following.

この一般式(I)又は(II)中のR1,RZ、 R3
及びR4はそれぞれ水素原子、炭素数1〜20のアルキ
ル基(具体的にはメチル基、エチル基、プロピル基、ブ
チル基、アミル基、イソアミル基。
R1, RZ, R3 in this general formula (I) or (II)
and R4 are each a hydrogen atom or an alkyl group having 1 to 20 carbon atoms (specifically, a methyl group, an ethyl group, a propyl group, a butyl group, an amyl group, an isoamyl group).

イソブチル基、オクチル基、2−エチルヘキシル基など
)、炭素数1〜20のアルコキシ基(具体的にはメトキ
シ基、エトキシ基、プロポキシ基。
isobutyl group, octyl group, 2-ethylhexyl group), alkoxy groups having 1 to 20 carbon atoms (specifically methoxy group, ethoxy group, propoxy group).

ブトキシ基、アミルオキシ基、ヘキシルオキシ基。Butoxy group, amyloxy group, hexyloxy group.

フェノキシ基、2−エチルへキシルオキシ基など)。phenoxy group, 2-ethylhexyloxy group, etc.).

炭素数6〜20のアリール基、アルキルアリール基、ア
リールアルキル基(具体的にはフェニル基。
Aryl groups, alkylaryl groups, and arylalkyl groups having 6 to 20 carbon atoms (specifically, phenyl groups).

[・リル基、キシリル基、ベンジル基など)、炭素数1
〜20のアシルオキシ基(具体的にはヘプタデシルカル
ボニルオキシ基など)、シクロペンタジェニル基、置換
シクロペンタジェニル基(具体的にはメチルシクロペン
タジエニル基1  t、2−ジメチルシクロペンタジェ
ニル基、ペンタメチルシクロペンタジェニル基など)、
インデニル基あるいはハロゲン原子(塩素、臭素、沃素
、弗素)を示す。これらR’、RZ、R3及びR4は同
一のものであっても、異なるものであってもよい。さら
にa、b、cはそれぞれ0〜4の整数を示し、またd、
eはそれぞれ0〜3の整数を示す。
[・Ryl group, xylyl group, benzyl group, etc.), carbon number 1
~20 acyloxy groups (specifically heptadecylcarbonyloxy groups, etc.), cyclopentadienyl groups, substituted cyclopentadienyl groups (specifically methylcyclopentadienyl groups 1 t, 2-dimethylcyclopentadienyl groups) group, pentamethylcyclopentagenyl group, etc.),
Indicates an indenyl group or a halogen atom (chlorine, bromine, iodine, fluorine). These R', RZ, R3 and R4 may be the same or different. Further, a, b, and c each represent an integer of 0 to 4, and d,
e each represents an integer of 0 to 3.

このような一般式(1)で表わされる四価チタン化合物
およびチタンキレート化合物の具体例としては、メチル
チタニウムトリクロライド、チタニウムテトラメトキシ
ド、チタニウムテトラエトキシド、チタニウムモノイソ
プロポキシトリクロライド、チタニウムジイソプロポキ
シジクロライド、チタニウムトリイソプロボキシモノク
ワラ・イド、テトラ(2−エチルへキシルオキシ)チタ
ニウム、シクロペンタジェニルチタニウムトリクロライ
ド、ビスシクロペンタジェニルチタニウムジクロライド
、シクロペンタジェニルチタニウムトリメトキサイド、
シクロペンタジエニルトリメチルチタニウム、ペンクメ
チルシク口ペンタジェニルチタニウムトリメトキサイド
、ペンタメチルシクロペンタジェニルトリメチルチタニ
ウム、四塩化チタン、四臭化チタン、ビス(2,4−ペ
ンタンジオナート)チタニウムオキサイド、ビス(2゜
4−ペンタンジオナート)チタニウムジクロライド、ビ
ス(2,4−ペンタンジオナート)チタニウムジブトギ
シドなどが挙げられる。(A)成分のチタン化合物とし
ては、上述のほか、一般式 〔式中、R5,R6はそれぞれハロゲン原子、炭素数1
〜20のアルコキシ基、アシロキシ基を示し、kは2〜
20を示す。〕 で表わされる縮合チタン化合物を用いてもよい。
Specific examples of the tetravalent titanium compound and titanium chelate compound represented by the general formula (1) include methyltitanium trichloride, titanium tetramethoxide, titanium tetraethoxide, titanium monoisopropoxy trichloride, and titanium diisopropoxytrichloride. Propoxy dichloride, titanium triisoproboxy monoquala ide, tetra(2-ethylhexyloxy) titanium, cyclopentadienyl titanium trichloride, biscyclopentajenyl titanium dichloride, cyclopentadienyl titanium trimethoxide,
Cyclopentadienyltrimethyltitanium, pentamethylcyclopentadienyltitanium trimethoxide, pentamethylcyclopentadienyltrimethyltitanium, titanium tetrachloride, titanium tetrabromide, bis(2,4-pentanedionato)titanium oxide, bis( Examples include 2°4-pentanedionato) titanium dichloride and bis(2,4-pentanedionato) titanium dibutogide. In addition to the above-mentioned titanium compounds as component (A), the general formula [wherein R5 and R6 are each a halogen atom and carbon number 1]
~20 alkoxy group, acyloxy group, k is 2~
20 is shown. ] You may use the condensed titanium compound represented by these.

さらに、上記チタン化合物は、エステルやエーテルなど
と錯体を形成させたものを用いてもよい。
Furthermore, the titanium compound may be a complex formed with an ester, an ether, or the like.

(A)成分の他の種類である一般式(U)で表わされる
三価チタン化合物は、典型的には三塩化チタンなどの三
ハロゲン化チタン、シクロペンタジェニルチタニウムジ
クロリドなどのシクロペンタジェニルチタン化合物があ
げられ、このほか四価チタン化合物を還元して得られる
ものがあげられる。これら三価チタン化合物はエステル
、エーテルなどと錯体を形成したものを用いてもよい。
The trivalent titanium compound represented by the general formula (U), which is another type of component (A), is typically a titanium trihalide such as titanium trichloride, or a cyclopentadienyl titanium compound such as cyclopentadienyl titanium dichloride. Examples include titanium compounds, and those obtained by reducing tetravalent titanium compounds. These trivalent titanium compounds may be complexed with esters, ethers, etc.

一方、上記(A)チタン化合物成分とともに、触媒の主
成分を構成する(B)成分としては、ト・リメチルアル
ミニウム及び一般式 %式%() 〔式中、Rは炭素数3〜10の分岐アルキル基を示す。
On the other hand, as the component (B) which constitutes the main component of the catalyst together with the titanium compound component (A), trimethylaluminum and the general formula % formula % () [wherein R is a carbon number of 3 to 10] are used. Indicates a branched alkyl group.

〕 で表わされるトリ分岐アルキルアルミニウムと水との接
触生成物が用いられる。上記一般式(IV)において、
Rは炭素数3〜10の分岐アルキル基、例えばイソプロ
ピル基9、イソブチルa、 5ee−ブチル%、 te
rt−ブチル基、イソペンチル基、ネオペンチル基、2
−メチルペンチル基、2−メチルヘキシル基、2−エチ
ルヘキシル基等であり、一般式(IV)で表わされるト
リ分岐アルキルアルミニウムは、具体的にはトリイソプ
ロピルアルミニウム、トリイソブチルアルミニウム、ト
リtert−ブチルアルミニウム、トリイソペンチルア
ルミニウム、トリ(2−メチルペンチル)アルミニウム
、トリ(2−メチルヘキシル)アルミニウム。
] A contact product of tribranched alkyl aluminum and water is used. In the above general formula (IV),
R is a branched alkyl group having 3 to 10 carbon atoms, such as isopropyl group 9, isobutyl a, 5ee-butyl%, te
rt-butyl group, isopentyl group, neopentyl group, 2
- methylpentyl group, 2-methylhexyl group, 2-ethylhexyl group, etc., and the tribranched alkylaluminum represented by the general formula (IV) is specifically triisopropylaluminum, triisobutylaluminum, tritert-butylaluminum , triisopentylaluminum, tri(2-methylpentyl)aluminum, tri(2-methylhexyl)aluminum.

トリ(2−エチルヘキシル)アルミニウム等があげられ
、中でもトリイソブチルアルミニウムが好ましい。
Examples include tri(2-ethylhexyl)aluminum, among which triisobutylaluminum is preferred.

(B)成分である接触生成物を調製するにあたって、ト
リメチルアルミニウムと一般式(IV)で表わされるト
リ分岐アルキルアルミニウムとは、様々な割合で使用で
きるが、−aにはトリメチルアルミニウムニトリ分岐ア
ルキルアルミニウム;99.9:0.1〜50:50(
モル比)、好ましくは98:2〜75:25(モル比)
の割合で併用する。トリ分岐アルキルアルミニウムの割
合が大きすぎると、得られる水との接触生成物が重合溶
媒である炭化水素溶媒に対して不溶性となり、充分な活
性が発現しない。逆に、トリ分岐アルキルアルミニウム
の割合が小さいと、トリメチルアルミニウムの使用量が
多くなって経済的に不利になると同時に、活性の向上も
不充分となる。
In preparing the contact product which is component (B), trimethylaluminum and the tribranched alkyl aluminum represented by the general formula (IV) can be used in various ratios; ;99.9:0.1~50:50(
molar ratio), preferably 98:2 to 75:25 (molar ratio)
Use in combination at a ratio of If the proportion of the tribranched alkyl aluminum is too large, the resulting contact product with water will become insoluble in the hydrocarbon solvent that is the polymerization solvent, and sufficient activity will not be expressed. On the other hand, if the proportion of tribranched alkylaluminum is small, the amount of trimethylaluminum used becomes large, which is economically disadvantageous, and at the same time, the improvement in activity becomes insufficient.

本発明の触媒の(B)成分は、上述した如くトリメチル
アルミニウム及びトリ分岐アルキルアルミニウムと水と
の接触生成物であるが、ここで水としては、通常の水、
氷又は各種の含水化合物、例えば溶媒飽和水、無機物の
吸着水あるいはCu5O,・5H,O等の金属塩含有結
晶水等が充当される。
Component (B) of the catalyst of the present invention is a contact product of trimethylaluminum and tribranched alkylaluminum with water as described above, and water here includes ordinary water,
Ice or various water-containing compounds, such as solvent-saturated water, water adsorbed by inorganic substances, or crystal water containing metal salts such as Cu5O, .5H, O, etc., can be used.

トリメチルアルミニウム及びトリ分岐アルキルアルミニ
ウムと水との接触生成物は、種々の方法により調製する
ことができ、例えば、■トリメチ   ′ルアルミニウ
ム及びトリ分岐アルキルアルミニウムを有機溶剤に溶解
しておき、これを水と接触させる方法、■重合時に当初
トリメチルアルミニウム及びトリ分岐アルキルアルミニ
ウムを加えておき、後に水を添加する方法、さらには■
金属塩などに含有されている結晶水、無機物や有機物へ
の吸着水をトリメチルアルミニウム及びトリ分岐アルキ
ルアルミニウムと反応させるなどの方法がある。
The contact product of trimethylaluminum and tribranched alkyl aluminum with water can be prepared by various methods. (2) a method in which trimethylaluminum and tribranched alkylaluminum are initially added during polymerization, and then water is added;
There are methods such as reacting water of crystallization contained in metal salts and water adsorbed to inorganic or organic substances with trimethylaluminum and tribranched alkylaluminum.

本発明の触媒は、前記の(A)、(B)成分を主成分と
するものであり、前記の他さらに所望により他の触媒成
分、例えば一般弐 AlR73〔式中、R7は炭素数1
〜8のアルキル基を示す。〕で表わされるトリアルキル
アルミニウムや他の有機金属化合物などを加えることも
できる。この触媒を使用するにあたっては、触媒中の(
A)成分と(B)成分との割合は、各種の条件により異
なり一義的に定められないが、通常は(B)成分中のア
ルミニウムと(A)成分中のチタンとの比、即ちアルミ
ニウム/チタン(モル比)として1〜106、好ましく
は10〜10’である。
The catalyst of the present invention has the above-mentioned components (A) and (B) as main components, and in addition to the above-mentioned components, if desired, other catalyst components, such as general AlR73 [wherein R7 has 1 carbon number]
~8 alkyl group is shown. ] Trialkylaluminum or other organometallic compounds can also be added. When using this catalyst, the (
The ratio of component A) to component (B) varies depending on various conditions and cannot be unambiguously determined, but it is usually determined by the ratio of aluminum in component (B) to titanium in component (A), that is, aluminum/ The titanium (mole ratio) is 1 to 106, preferably 10 to 10'.

上記のような本発明の触媒は、主としてシンジオタクチ
ック構造を有するスチレン系重合体の製造において高い
活性を示す。
The catalyst of the present invention as described above exhibits high activity mainly in the production of styrenic polymers having a syndiotactic structure.

したがって、本発明はさらに上記触媒を用いてスチレン
系重合体を製造する方法をも提供するものである。
Therefore, the present invention further provides a method for producing a styrenic polymer using the above catalyst.

本発明の方法によりスチレン系重合体を製造するには、
前記(A)、(B)成分を主成分とする触媒の存在下で
、スチレン及び/又はスチレン誘導体(アルキルスチレ
ン、アルコキシスチレン、ハロゲン化スチレン、ビニル
安息香酸エステルなど)等のスチレン系モノマーを重合
(あるいは共重合)するが、この重合は塊状でもよく、
ペンタン、ヘキサン、ヘプタン等の脂肪族炭化水素、シ
クロヘキサン等の脂環族炭化水素あるいはヘンゼン、ト
ルエン、キシレン等の芳香族炭化水素溶媒中で行っても
よい。また、重合温度は特に制限はないが、一般には−
30゛C〜+120°C1好ましくは=10°C〜+1
00°Cである。
To produce a styrenic polymer by the method of the present invention,
Polymerization of styrenic monomers such as styrene and/or styrene derivatives (alkyl styrene, alkoxystyrene, halogenated styrene, vinyl benzoate, etc.) in the presence of a catalyst containing the components (A) and (B) as main components. (or copolymerization), but this polymerization may be in bulk,
The reaction may be carried out in an aliphatic hydrocarbon solvent such as pentane, hexane or heptane, an alicyclic hydrocarbon solvent such as cyclohexane, or an aromatic hydrocarbon solvent such as Hensen, toluene or xylene. In addition, the polymerization temperature is not particularly limited, but generally -
30°C to +120°C1 preferably =10°C to +1
00°C.

さらに、得られるスチレン系重合体の分子量を調節する
には、水素の存在下で重合反応を行うことが効果的であ
る。
Furthermore, in order to control the molecular weight of the obtained styrenic polymer, it is effective to carry out the polymerization reaction in the presence of hydrogen.

このようにして得られるスチレン系重合体は、主として
シンジオタクチック構造を有するものである。ここで、
スチレン系重合体における主としてシンジオタクチック
構造とは、立体化学構造が主としてシンジオタクチック
構造、即ち炭素−炭素結合から形成される主鎖に対して
側鎖であるフェニル基や置換フェニル基が交互に反対方
向に位置する立体構造を有することを意味し、そのタフ
ティシティ−は同位体炭素による核磁気共鳴法(”C−
NMR法)により定量される。13c  NMR法によ
り測定されるタフティシティ−は、連続する複数個の構
成単位の存在割合、例えば2個の場合はダイアツド、3
個の場合はトリアット。
The styrenic polymer thus obtained mainly has a syndiotactic structure. here,
A mainly syndiotactic structure in a styrenic polymer means that the stereochemical structure is mainly a syndiotactic structure, that is, the main chain formed from carbon-carbon bonds has alternate phenyl groups or substituted phenyl groups as side chains. It means that it has a three-dimensional structure located in the opposite direction, and its toughness is determined by nuclear magnetic resonance method using carbon isotope ("C-
Quantified by NMR method). 13c Toughness measured by NMR method is determined by the proportion of consecutive constituent units, e.g.
Triat for pieces.

5個の場合はペンタッドによって示すことができるが、
本発明に言う「主としてシンジオタクチック構造を有す
るスチレン系重合体」とは、通常はダイアツドで75%
以上、好ましくは85%以上、若しくはペンタッド(ラ
セミペンタッド)で30%以上、好ましくは50%以上
のシンジオタクテイシテイ−を有するポリスチレン、ポ
リ(アルキルスチレン)、ポリ(ハロゲン化スチレン)
、ポリ(アルコキシスチレン)、ポリ(ビニル安息香酸
エステル及びこれらの混合物、あるいはこれらを主成分
とする共重合体を意味する。なお、ここでポリ(アルキ
ルスチレン)としては、ポリ(メチルスチレン)、ポリ
(エチルスチレン)、ポリ(イソプロピルスチレン)、
ポリ (ターシャリ−ブチルスチレン)等があり、ポリ
(ハロゲン化スチレン)としては、ポリ(クロロスチレ
ン)、ポリ(ブロモスチレン)、ポリ(フルオロスチレ
ン)等がある。また、ポリ(アルコキシスチレン)とし
ては、ポリ(メトキシスチレン)、ポリ (エトキシス
チレン)等がある。これらのうち特に好ましいスチレン
系重合体としては、ポリスチレン。
The case of 5 can be represented by a pentad, but
In the present invention, the term "styrenic polymer mainly having a syndiotactic structure" is usually 75% diad.
Polystyrene, poly(alkylstyrene), poly(halogenated styrene) having syndiotacticity of 85% or more, or 30% or more for pentads (racemic pentads), preferably 50% or more
, poly(alkoxystyrene), poly(vinyl benzoate), mixtures thereof, or copolymers containing these as main components. Here, poly(alkylstyrene) includes poly(methylstyrene), poly(methylstyrene), Poly(ethylstyrene), poly(isopropylstyrene),
Examples include poly(tert-butylstyrene), and examples of poly(halogenated styrene) include poly(chlorostyrene), poly(bromostyrene), poly(fluorostyrene), and the like. Furthermore, examples of poly(alkoxystyrene) include poly(methoxystyrene) and poly(ethoxystyrene). Among these, a particularly preferred styrenic polymer is polystyrene.

ポリ(p−メチルスチレン)、ポリ(m−メチルスチレ
ン)、ポリ(P−ターシャリ−ブチルスチレン)、ポリ
(p−クロロスチレン)、ポリ(m−クロロスチレン)
、ポリ(p−フルオロスチレン)、さらにはスチレンと
P−メチルスチレンとの共重合体をあげることができる
Poly(p-methylstyrene), poly(m-methylstyrene), poly(p-tert-butylstyrene), poly(p-chlorostyrene), poly(m-chlorostyrene)
, poly(p-fluorostyrene), and copolymers of styrene and p-methylstyrene.

本発明の方法により製造されるスチレン系重合体は、一
般に数平均分子量1,000〜5,000,000、好
ましくは50.000〜4.000.000のものであ
り、上記のようにジンジオクタティシティ−の高いもの
であるが、重合後、必要に応じて塩酸等を含む洗浄液で
脱灰処理し、さらに洗浄、減圧乾燥を経てメチルエチル
ケトン等の溶媒で洗浄して可溶分を除去し、得られる不
溶分をさらにクロロホルム等を用いて処理すれば、極め
てシンジオタクテイシテイ−の大きい高純度のスチレン
系重合体が入手できる。
The styrenic polymer produced by the method of the present invention generally has a number average molecular weight of 1,000 to 5,000,000, preferably 50,000 to 4,000,000. After polymerization, it is deashed with a cleaning solution containing hydrochloric acid, etc., if necessary, and then washed and dried under reduced pressure, and then washed with a solvent such as methyl ethyl ketone to remove soluble components. If the resulting insoluble matter is further treated with chloroform or the like, a highly purified styrenic polymer with extremely high syndiotacticity can be obtained.

〔実施例〕〔Example〕

次に、本発明を実施例によりさらに詳しく説明する。 Next, the present invention will be explained in more detail with reference to Examples.

実施例1 (1)アルミニウム化合物と水との接触生成物の調製 アルゴン置換した内容積500/dのガラス製容器に、
トルエン200成、硫酸銅5水塩(CuSO=・5Hz
O)23.7 g (95ミリモル)及びトリメチルア
ルミニウム21.5d(225ミリモル)とトリイソブ
チルアルミニウム6.3d(25ミリモル)を入れ、4
0°Cで24時間反応した。
Example 1 (1) Preparation of contact product of aluminum compound and water In a glass container with an internal volume of 500/d and replaced with argon,
Toluene 200%, copper sulfate pentahydrate (CuSO=・5Hz
O) 23.7 g (95 mmol), 21.5 d (225 mmol) of trimethylaluminum, and 6.3 d (25 mmol) of triisobutylaluminum, and 4
The reaction was carried out at 0°C for 24 hours.

その後、固体成分を除去して得られた溶液から、更に減
圧下、110°Cで2時間熱処理を加え、無色の固体(
接触生成物)6.12gを得た。これをトルエン50t
rllに溶解し、触媒溶液とした。
After that, the solution obtained by removing the solid component was further heat-treated at 110°C for 2 hours under reduced pressure to form a colorless solid (
6.12 g of contact product) was obtained. Add this to 50t of toluene
It was dissolved in .rll to prepare a catalyst solution.

(2)スチレンの重合 内容積5001dの反応容器に、ヘプタン25m1゜上
記(1)で得られた接触生成物をアルミニウム原子とし
て6ミリモル、ペンタメチルシクロペンタジェニルチタ
ニウムトリメトキサイド12X10−’ミリモル及びス
チレン225Idを入れ、70°Cで3時間重合反応を
行った。
(2) In a reaction vessel with a styrene polymerization internal volume of 5001 d, 25 ml of heptane, 6 mmol of the contact product obtained in (1) above as aluminum atoms, 12×10 mmol of pentamethylcyclopentadienyl titanium trimethoxide, and Styrene 225Id was added and a polymerization reaction was carried out at 70°C for 3 hours.

反応終了後、生成物を塩酸−メタノール混合液で洗浄し
て触媒成分を分解除去し、乾燥して重合体48.1gを
得た。重合活性は297 g/g−Alであった。この
重合体のラセミペンタッドでのシンジオタクテイシテイ
−は”C−NMR測定から96%であることがわかった
After the reaction was completed, the product was washed with a hydrochloric acid-methanol mixture to decompose and remove the catalyst component, and dried to obtain 48.1 g of a polymer. The polymerization activity was 297 g/g-Al. The racemic pentad syndiotacticity of this polymer was found to be 96% by C-NMR measurement.

実施例2〜4及び比較例1〜3 (1)アルミニウム化合物と水との接触生成物の調製 実施例1(1)において、トリメチルアルミニウムの量
を変え、またトリイソブチルアルミニウム6.3mj!
(25ミリモル)に代えて、表に示す所定量のアルミニ
ウム化合物を用いたこと以外は、実施例1(1)と同様
の操作を行って、接触生成物を得、これをトルエンに溶
解して触媒溶液とした。
Examples 2 to 4 and Comparative Examples 1 to 3 (1) Preparation of contact product of aluminum compound and water In Example 1 (1), the amount of trimethylaluminum was changed, and the amount of triisobutylaluminum was 6.3 mj!
A contact product was obtained by carrying out the same operation as in Example 1 (1), except that the predetermined amount of aluminum compound shown in the table was used instead of (25 mmol), and this was dissolved in toluene. This was used as a catalyst solution.

(2)スチレンの重合 上記(1)で得られた触媒溶液を用いたこと以外は、実
施例1(2)と同様にして重合体(ポリスチレン)を得
た。結果を表に示す。
(2) Polymerization of styrene A polymer (polystyrene) was obtained in the same manner as in Example 1 (2) except that the catalyst solution obtained in (1) above was used. The results are shown in the table.

(以下余白) 〔発明の効果〕 以上の如く、本発明の触媒は、水との接触生成物におけ
る有機アルミニウム化合物としてトリメチルアルミニウ
ムのみを用いたものより、安価であり、しかも、著しく
高い活性を有するものである。したがって、この触媒を
用いてスチレン系モノマーを重合すれば、シンジオタク
テイシテイ−の高いスチレン系重合体を経済的に有利に
、かつ効率よく製造することができる。
(The following is a blank space) [Effects of the Invention] As described above, the catalyst of the present invention is cheaper and has significantly higher activity than a catalyst using only trimethylaluminum as the organoaluminum compound in the contact product with water. It is something. Therefore, if a styrenic monomer is polymerized using this catalyst, a styrenic polymer with high syndiotacticity can be produced economically and efficiently.

このようにして得られるシンジオタクチック構造のスチ
レン系重合体は、耐熱性、耐薬品性等の各種物性にすぐ
れたものであり、様々な用途に幅広くかつ有効に利用さ
れる。
The styrenic polymer having a syndiotactic structure thus obtained has excellent physical properties such as heat resistance and chemical resistance, and is widely and effectively used in various applications.

Claims (4)

【特許請求の範囲】[Claims] (1)(A)チタン化合物及び(B)有機アルミニウム
化合物と水との接触生成物とからなるスチレン系重合体
の製造用触媒において、(B)成分の有機アルミニウム
化合物と水との接触生成物として、トリメチルアルミニ
ウム及び一般式 AlR_3 〔式中、Rは炭素数3〜10の分岐アルキル基を示す。 〕 で表わされるトリ分岐アルキルアルミニウムと水との接
触生成物を用いることを特徴とするスチレン系重合体の
製造用触媒。
(1) In a catalyst for producing a styrenic polymer comprising (A) a titanium compound and (B) a contact product between an organoaluminum compound and water, the contact product between the organoaluminum compound (B) and water; As, trimethylaluminum and the general formula AlR_3 [wherein, R represents a branched alkyl group having 3 to 10 carbon atoms]. ] A catalyst for producing a styrenic polymer, characterized in that it uses a contact product of a tribranched alkyl aluminum represented by the following formula and water.
(2)トリ分岐アルキルアルミニウムがトリイソブチル
アルミニウムである請求項1記載の触媒。
(2) The catalyst according to claim 1, wherein the tribranched alkyl aluminum is triisobutyl aluminum.
(3)スチレン及び/又はスチレン誘導体を重合するに
あたり、請求項1又は2記載の触媒を用いることを特徴
とするスチレン系重合体の製造方法。
(3) A method for producing a styrenic polymer, which comprises using the catalyst according to claim 1 or 2 in polymerizing styrene and/or a styrene derivative.
(4)スチレン系重合体が、主としてシンジオタクチッ
ク構造を有するスチレン系重合体である請求項3記載の
製造方法。
(4) The manufacturing method according to claim 3, wherein the styrenic polymer is a styrenic polymer mainly having a syndiotactic structure.
JP63066908A 1987-12-24 1988-03-19 Method for producing styrene polymer and its catalyst Expired - Fee Related JPH0813851B2 (en)

Priority Applications (13)

Application Number Priority Date Filing Date Title
JP63066908A JPH0813851B2 (en) 1988-03-19 1988-03-19 Method for producing styrene polymer and its catalyst
US07/274,022 US4978730A (en) 1987-12-24 1988-11-21 Process for producing styrene-based polymers and catalyst for use therein
AU26403/88A AU607827B2 (en) 1987-12-24 1988-11-30 Process for producing styrene-based polymers and catalyst for use therein
SU884613041A RU2086563C1 (en) 1987-12-24 1988-12-13 Method for production of polystyrene and catalytic system for its production
MYPI88001443A MY104071A (en) 1987-12-24 1988-12-13 Process for producing styrene-based polymers and catalyst for use therein
EP88120973A EP0322663B1 (en) 1987-12-24 1988-12-15 Process for producing styrene-based polymers and catalyst for use therein
AT88120973T ATE106090T1 (en) 1987-12-24 1988-12-15 PROCESS FOR PRODUCTION OF STYRENE BASED POLYMERS AND CATALYST FOR USE IN THIS PROCESS.
DE3889721T DE3889721T2 (en) 1987-12-24 1988-12-15 Process for the preparation of polymers based on styrene and catalyst for use in this process.
ES88120973T ES2056886T3 (en) 1987-12-24 1988-12-15 PROCEDURE FOR PRODUCING STYRENE BASED POLYMERS FOR USE THEREIN.
CA000586303A CA1325005C (en) 1987-12-24 1988-12-19 Process for producing styrene-based polymers and catalyst for use therein
FI885974A FI93845C (en) 1987-12-24 1988-12-23 Process for the preparation of styrene-based polymers and in these useful catalysts
KR1019880017471A KR930010923B1 (en) 1987-12-24 1988-12-24 Process for producing styrene-based polymers and catalyst for use therein
US07/591,417 US5023222A (en) 1987-12-24 1990-10-01 Catalyst for producing syndiotactic configuration styrene-based polymers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63066908A JPH0813851B2 (en) 1988-03-19 1988-03-19 Method for producing styrene polymer and its catalyst

Publications (2)

Publication Number Publication Date
JPH01240502A true JPH01240502A (en) 1989-09-26
JPH0813851B2 JPH0813851B2 (en) 1996-02-14

Family

ID=13329530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63066908A Expired - Fee Related JPH0813851B2 (en) 1987-12-24 1988-03-19 Method for producing styrene polymer and its catalyst

Country Status (1)

Country Link
JP (1) JPH0813851B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62187708A (en) * 1985-11-11 1987-08-17 Idemitsu Kosan Co Ltd Production of styrene polymer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62187708A (en) * 1985-11-11 1987-08-17 Idemitsu Kosan Co Ltd Production of styrene polymer

Also Published As

Publication number Publication date
JPH0813851B2 (en) 1996-02-14

Similar Documents

Publication Publication Date Title
US4680353A (en) Process for production of styrene polymers
US5023222A (en) Catalyst for producing syndiotactic configuration styrene-based polymers
US5276117A (en) Process for producing styrene-based polymers and catalysts for use therein
US5391661A (en) Process for producing a styrenic polymer and a catalyst for use therein
US4990580A (en) Process for production of styrene polymers
US5252693A (en) Syndiotactic styrene polymers
EP0505890A2 (en) Process for producing a styrenic polymer and a catalyst for use therein
EP0389981B1 (en) Process for producing styrene-based polymer
JP2531583B2 (en) Styrene-based copolymer and method for producing the same
JPH04252207A (en) Method for purifying styrenic polymers
JPH01240502A (en) Method for producing styrenic polymers and their catalysts
JP3057791B2 (en) Method for producing styrenic polymer
USRE35289E (en) Process for production of styrene polymers
JPH01240504A (en) Production of styrene-based polymer and catalyst therefor
JPH0813852B2 (en) Method for producing styrene polymer and its catalyst
CA1305825B (en) Process for production of styrene polymers
JPH01207304A (en) Method for producing styrenic polymer and its catalyst
JPH04366108A (en) Method for producing styrenic polymer and its catalyst
JPH02252705A (en) Method for producing styrenic polymer and its catalyst
JPH01185302A (en) Manufacture of styrene polymer and catalyst
JPH1067814A (en) Method for producing polymer
JPH05247132A (en) Method for producing styrene polymer and catalyst thereof
JPH0372504A (en) Styrenic polymer

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees