JPH01239091A - Diamond modification method - Google Patents
Diamond modification methodInfo
- Publication number
- JPH01239091A JPH01239091A JP63064863A JP6486388A JPH01239091A JP H01239091 A JPH01239091 A JP H01239091A JP 63064863 A JP63064863 A JP 63064863A JP 6486388 A JP6486388 A JP 6486388A JP H01239091 A JPH01239091 A JP H01239091A
- Authority
- JP
- Japan
- Prior art keywords
- diamond
- resistance value
- substrate
- oxygen
- resistance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000010432 diamond Substances 0.000 title claims description 53
- 229910003460 diamond Inorganic materials 0.000 title claims description 50
- 238000002715 modification method Methods 0.000 title claims 4
- 239000000758 substrate Substances 0.000 claims description 16
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 14
- 229910052760 oxygen Inorganic materials 0.000 claims description 14
- 239000001301 oxygen Substances 0.000 claims description 14
- 238000010438 heat treatment Methods 0.000 claims description 13
- 239000012298 atmosphere Substances 0.000 claims description 12
- 239000007789 gas Substances 0.000 claims description 7
- 238000001308 synthesis method Methods 0.000 claims description 6
- 239000012808 vapor phase Substances 0.000 claims description 6
- 238000000034 method Methods 0.000 description 12
- 239000013078 crystal Substances 0.000 description 8
- 239000000463 material Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 239000012535 impurity Substances 0.000 description 4
- 239000002994 raw material Substances 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000002230 thermal chemical vapour deposition Methods 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 241000237502 Ostreidae Species 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000012776 electronic material Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000012774 insulation material Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 235000020636 oyster Nutrition 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Landscapes
- Carbon And Carbon Compounds (AREA)
- Chemical Vapour Deposition (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、ダイヤモンドの電気的特性を改善する方法に
関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for improving the electrical properties of diamond.
ダイヤモンドは硬度が高く、化学的に安定しているので
従来から工具などへの応用が図られてさたが、最近では
エレクトロニクス材料としての用途も開発されつつある
。Diamond has high hardness and is chemically stable, so it has traditionally been used for tools, but recently it is also being developed for use as an electronics material.
例えば、ダイヤモンドは熱伝導率が2Q W/13−に
と物質中最高であることから、ヒートシンク材料として
既に応用されている。又、バンドギャップが5.5θV
と大きく、本来絶縁物であることから、絶縁材料やパッ
シベーション用材料として応用可能である。更に、不純
物として硼素を含有させるとP型半導体となるので、耐
熱性、耐環境性に優れた半導体材料としても期待されて
いる。For example, diamond has the highest thermal conductivity of all materials at 2QW/13-, so it has already been used as a heat sink material. Also, the band gap is 5.5θV
Because it is large and is originally an insulator, it can be used as an insulating material or a passivation material. Furthermore, when it contains boron as an impurity, it becomes a P-type semiconductor, so it is expected to be used as a semiconductor material with excellent heat resistance and environmental resistance.
これらエレクトロニクス材料としての用途に関する応用
研究は、近年ダイヤモンドの気相合成法が確立してから
一層盛んになっている。このダイヤモンドの気相合成法
は炭化水素と水素企原料ガスとし、これを活性化させ、
加熱した基板上にダイヤモンド膜を成長させるものであ
つ、原料ガスの活性化方法によって、例えば加熱した金
属フイラメントを用いる熱CVD法(特願昭56−18
9423号公報参照)、あるいはマイクロ波プラズマを
用いるマイクロ波プラズマOVD法(特願昭56−20
4321号公報参照)などがある。基板として金属やシ
リコン等分使用すればダイヤモンド多結晶膜が成長し、
ダイヤモンド単結晶基板上にはダイヤモンド単結晶膜を
成長させることができる。Applied research into the use of diamond as an electronic material has become more active in recent years since the vapor phase synthesis method for diamond was established. This diamond vapor phase synthesis method uses hydrocarbon and hydrogen as raw material gases, activates them,
A diamond film is grown on a heated substrate using a method of activating a raw material gas, such as thermal CVD using a heated metal filament (Japanese Patent Application No. 56-18).
9423) or the microwave plasma OVD method using microwave plasma (Japanese Patent Application No. 1983-20).
(See Publication No. 4321). If equal parts of metal and silicon are used as a substrate, a diamond polycrystalline film will grow.
A diamond single crystal film can be grown on a diamond single crystal substrate.
本来、不純物を含まないダイヤモンドの比抵抗は10
Ω・鋸である。然るに、人工的に合成したダイヤモン
ドの抵抗値は上記比抵抗より計算した値より低く、特に
上記の気相合成法により形成したダイヤモンドの抵抗値
は12桁以上低くなり、エレクトロニクス材料として用
いる場合の絶縁性に問題があった。加えて、これらのダ
イヤモンドの抵抗値は雰囲気や温度によって経時的に変
化し安定していないため、半導体デバイス等に応用でき
なかった。Originally, the specific resistance of diamond without impurities is 10.
Ω・It is a saw. However, the resistance value of artificially synthesized diamond is lower than the value calculated from the above-mentioned resistivity, and in particular, the resistance value of diamond formed by the above-mentioned vapor phase synthesis method is lower by more than 12 orders of magnitude, making it difficult to use as an insulation material when used as an electronics material. There was a problem with sexuality. In addition, the resistance value of these diamonds changes over time depending on the atmosphere and temperature and is not stable, so they cannot be applied to semiconductor devices and the like.
本発明はこのような従来の事情に鑑み、ダイヤモンドの
抵抗値を理論値近くに高め、且つその抵抗値を安定化さ
せること分目的とする。In view of the above-mentioned conventional circumstances, an object of the present invention is to increase the resistance value of diamond to near the theoretical value and to stabilize the resistance value.
上記目的を達成するため、本発明においては、(1)ダ
イヤモンドを0.01 torr以上の酸素含有雰囲気
中で150C以上に加熱することにより、又は(2)4
蛎ダイヤモンドを酸素分圧がI X 10 torr
以上の酸素含有ガスプラズマにさらすことにより、ダイ
ヤモンドの電気抵抗を高抵抗化し且つ安定化させる。In order to achieve the above object, in the present invention, (1) diamond is heated to 150C or more in an oxygen-containing atmosphere of 0.01 torr or more, or (2) 4
Oxygen partial pressure of oyster diamond is I x 10 torr
By exposing the diamond to the above oxygen-containing gas plasma, the electrical resistance of the diamond is increased and stabilized.
絶縁性に問題のあるダイヤモンドは天然でも合成でも全
て本方法により電気抵抗の高抵抗化及び安定化をなし得
る。なかでも温度差法などによるバルク単結晶ダイヤモ
ンドや気相合成法による単結晶又は多結晶ダイヤモンド
膜に対して効果的であり1特に気相合成法では成長時に
活性化された水素雰囲気中に置かれるため、アズグロウ
ンのダイヤモンド膜は必ず抵抗値が相当低く且つ不安定
であり、本方法による効果が大きい。又、ダイヤモンド
として不純物を含まないものだけでなく、N、 BXi
、 P、 As、 S、 Se、 C1等の不純物を含
有たダイヤモンドであっても、本方法により電気抵抗を
高抵抗化し安定化させることができる。Diamonds that have problems with insulation properties, whether natural or synthetic, can be made to have high electrical resistance and be stabilized by this method. It is especially effective for bulk single-crystal diamond produced by the temperature difference method, and single-crystal or polycrystalline diamond films produced by the vapor-phase synthesis method.1Especially, in the vapor-phase synthesis method, diamond is placed in an activated hydrogen atmosphere during growth. Therefore, an as-grown diamond film always has a considerably low resistance value and is unstable, and this method is highly effective. In addition, not only diamonds that do not contain impurities, but also N, BXi
Even if diamond contains impurities such as , P, As, S, Se, C1, etc., the electrical resistance can be increased and stabilized by this method.
本方法による効果は、
(1)ダイヤモンドを0.01 torr以上の酸素含
有雰囲気中で150C以上に加熱する方法では、酸素分
圧が高いほど又加熱温度が高いほど顕著で5つて、最大
10桁以上抵抗値を上げることができる。特に好ましい
態様としては、酸素分圧が10 torr以上であり、
大気中でも充分に目的を達成でさる利点がある。The effects of this method are as follows: (1) In a method in which diamond is heated to 150C or higher in an oxygen-containing atmosphere of 0.01 torr or higher, the higher the oxygen partial pressure and the higher the heating temperature, the more pronounced the effect is. It is possible to increase the resistance value. In a particularly preferred embodiment, the oxygen partial pressure is 10 torr or more,
It has the advantage of being able to achieve its purpose even in the atmosphere.
又、(2)ダイヤモンドを酸素分圧がI X 10−5
torr以上の酸素含有ガスプラズマにさらす方法は、
ダイヤモンドの温度によらず有効である利点があり、例
えば加熱なしに酸素分圧I X 10−’torr及び
Ar分圧5 X 10 torrのガスを13.56
MHz 、出力50Wの放電プラズマ中に10分間保
持するだけで効果が得られる。Also, (2) diamond has an oxygen partial pressure of I x 10-5
The method of exposing to oxygen-containing gas plasma at torr or higher is as follows:
It has the advantage of being effective regardless of the temperature of the diamond; for example, it can be used without heating to supply a gas with an oxygen partial pressure of I x 10 torr and an Ar partial pressure of 5 x 10 torr.
Effects can be obtained by simply holding the device in a discharge plasma of MHz and output of 50 W for 10 minutes.
実施例1
人工合成したダイヤモンドのより型単結晶基板の(11
0)面、(100)面、(ll’l)面上、並びに天然
の工a型ダイヤモンド基板の(111)面上に、マイク
ロプラズマCVD法により夫々ダイヤモンド単結晶膜を
成長させた。成長条件はいずれも、原料ガスCH4/H
2=1/200、マイクロ波パワー400W及び反応圧
力40 torrとし、各基板上に縦1.5朋、横2.
0羽で戻厚1μmのダイヤモンド膜分得たO
このダイヤモンド膜上にAu/Mo/Ti ii極をf
lQ、5mmで蒸着により形成し、2端子法により室温
での電気抵抗を測定した後、大気中にて500Cで1時
間加熱し再び室温での電気抵抗を測定した。Example 1 Artificially synthesized diamond twisted single crystal substrate (11
Diamond single crystal films were grown on the 0) plane, the (100) plane, the (ll'l) plane, and the (111) plane of a natural engineering a-type diamond substrate by microplasma CVD. The growth conditions are raw material gas CH4/H.
2 = 1/200, microwave power 400 W and reaction pressure 40 torr, and 1.5 mm vertically and 2 mm horizontally on each substrate.
A diamond film with a thickness of 1 μm was obtained using 0 wires.
It was formed by vapor deposition with lQ of 5 mm, and the electrical resistance at room temperature was measured by the two-terminal method, and then heated at 500 C in the air for 1 hour, and the electrical resistance at room temperature was measured again.
結果を第1表に要約した。The results are summarized in Table 1.
第 1 表
基 板 加熱後抵抗値 加熱後抵抗値より (110
) lXl0 Ω 1×10 Ω以上より
(100) 2X10 Ω 1×10
Ω以上より (111) 4X10 Ω
1×10 Ω以上工 a (11,1)
I X 10 Ω 1×]OΩ以」
ニいずれの場合も抵抗値は7桁以上高くなり、この抵抗
値は以後殆ど変化しなかった。Table 1 Substrate resistance value after heating From resistance value after heating (110
) lXl0 Ω From 1×10 Ω or more (100) 2X10 Ω 1×10
From Ω or more (111) 4X10 Ω
1×10Ω or more a (11,1)
I
In both cases, the resistance value increased by more than seven orders of magnitude, and this resistance value hardly changed thereafter.
実施例2
熱CVD法により基板温度900Cの基板上に成長させ
た以外、実施例1と同様にしてダイヤモンド膜を形成し
、実施例1と同様にして抵抗値を測定した結果を第2表
に示した。Example 2 A diamond film was formed in the same manner as in Example 1, except that it was grown on a substrate with a substrate temperature of 900 C by thermal CVD method, and the resistance value was measured in the same manner as in Example 1. The results are shown in Table 2. Indicated.
第 2 表
基 板 加熱剤抵抗値 加熱後抵抗値より (11
0) 2X10 Ω 1×10 Ω
以上より (100) 4X10 Ω
1×10 Ω以上より (111) lX
l0 Ω 1×10 Ω以上工a (111
) 3X10 Ω 1×10 Ω以
上いずれの場合も、抵抗値は7桁以上高くなり、この抵
抗値は以後殆ど変化しなかった。Table 2 Substrate heating agent resistance value From resistance value after heating (11
0) 2×10 Ω 1×10 Ω
From the above (100) 4X10 Ω
From 1×10 Ω or more (111) lX
l0 Ω 1×10 Ω or more engineering a (111
) 3×10 Ω 1×10 Ω or more In both cases, the resistance value increased by more than 7 orders of magnitude, and this resistance value hardly changed thereafter.
実施例3
より型単結晶ダイヤモンド基板の(100)面に、実施
例1と同様の条件でマイクロ波プラズマCvD法により
ダイヤモンド膜を形成し、実施例1と同様に抵抗値を測
定したが、大気中での加熱温度を変化させた。結果分第
3表に要約した。Example 3 A diamond film was formed on the (100) plane of a single-crystal diamond substrate by the microwave plasma CvD method under the same conditions as in Example 1, and the resistance was measured in the same manner as in Example 1, but in the atmosphere. The heating temperature inside was varied. The results are summarized in Table 3.
第3表
8×1o Ω 200 CX 6時間 4×1
0 Ω1×1o Ω 300CX6 //
3X10Ω5×1o Ω 400CX6 II
3X10 Ω7×1o Ω 50’0CX6
// lXl0 Ω加熱温度が高いほど、ダ
イヤモンドは高抵抗化されることが判る。Table 3 8×1o Ω 200 CX 6 hours 4×1
0 Ω1×1o Ω 300CX6 //
3X10Ω5×1oΩ 400CX6 II
3X10 Ω7×1o Ω 50'0CX6
// lXl0 Ω It can be seen that the higher the heating temperature, the higher the resistance of diamond.
実施例4
Mo基板上に実施例1と同様の条件で多結晶ダイヤモン
ド膜〔膜厚5μm〕を成長させ、ダイヤモンド膜上とM
o基板裏面とに直径3 WImの電極を形成し、大気中
にて500 Cで1時間加熱前後における厚さ方向の抵
抗値を測定した。加熱前(成長後)の抵抗値は10
Ωであったのに対して、加熱後の抵抗値は10 Ωと
なり、この抵抗値は以後殆ど変化しなかった。Example 4 A polycrystalline diamond film [thickness 5 μm] was grown on a Mo substrate under the same conditions as in Example 1, and the diamond film and M
An electrode with a diameter of 3 WIm was formed on the back surface of the substrate, and the resistance value in the thickness direction was measured before and after heating at 500 C for 1 hour in the atmosphere. The resistance value before heating (after growth) is 10
Ω, but the resistance value after heating was 10 Ω, and this resistance value hardly changed thereafter.
実施例5
実施例3と同じ基板上に実施例1と同様の条件で弔結晶
ダイヤモンド膜を成長させ、実施例1と同様に電極を形
成して抵抗値を測定した。抵抗値は5×10 Ωであっ
た。その後、このダイヤモンド膜を酸素圧0.01 t
orr SRFパワー200Wの平行平板RF酸素プラ
ズマ中で3分間処理し、再び抵抗値を測定したところ、
抵抗値は10 Ωに高ぬられ、この抵抗値は以後殆ど
変化しなかった。Example 5 A crystalline diamond film was grown on the same substrate as in Example 3 under the same conditions as in Example 1, electrodes were formed in the same manner as in Example 1, and the resistance was measured. The resistance value was 5×10 Ω. Thereafter, this diamond film was exposed to an oxygen pressure of 0.01 t.
After processing for 3 minutes in parallel plate RF oxygen plasma with SRF power of 200W, the resistance value was measured again.
The resistance value was increased to 10 Ω, and this resistance value hardly changed thereafter.
実施例6
実施例3と同じ2枚の基板上に実施例1と同様の条件で
単結晶ダイヤモンド膜を成長させ、実施例1と同様に電
極を形成して抵抗値分測定した。Example 6 A single crystal diamond film was grown on the same two substrates as in Example 3 under the same conditions as in Example 1, electrodes were formed in the same manner as in Example 1, and the resistance was measured.
次に、このダイヤモンド膜を20 torrのAr雰囲
気中で500Cで1時間加熱したものと、20 tor
rの0 雰囲気中で500 Cで1時間加熱したものと
につき夫々抵抗値を測定した。測定結果は、Ar雰囲気
中で加熱したものが加熱前後で3×10Ωと抵抗値が変
わらなかったのに対し、0 雰囲気中で加熱したものは
5×10 Ωから10 Ωへと抵抗値が高くなった。Next, this diamond film was heated at 500C for 1 hour in an Ar atmosphere of 20 torr, and
The resistance value was measured for each sample heated at 500 C for 1 hour in an atmosphere of 0 r. The measurement results showed that the resistance value of the one heated in an Ar atmosphere remained unchanged at 3 x 10 Ω before and after heating, whereas the resistance value of the one heated in an Ar atmosphere increased from 5 x 10 Ω to 10 Ω. became.
本発明によれば、ダイヤモンドの抵抗値を理論値近くに
高め、且つその抵抗値を安定化させることができる。According to the present invention, the resistance value of diamond can be increased to near the theoretical value, and the resistance value can be stabilized.
出願人 住友電気工業株式会社 +(1,−\ 代理人 弁理土中村勝ツ広□’ニー7゛〜じ1Applicant: Sumitomo Electric Industries, Ltd. +(1,-\ Agent: Patent Attorney Katsuhiro Donakamura □’Nee 7゛~Ji1
Claims (3)
雰囲気中で150℃以上に加熱することにより、その電
気抵抗を高抵抗化し且つ安定化させるダイヤモンドの改
質法。(1) A diamond modification method in which the electrical resistance of diamond is increased and stabilized by heating the diamond to 150° C. or higher in an oxygen-containing atmosphere of 0.01 torr or higher.
rr以上の酸素含有ガスプラズマにさらすことにより、
その電気抵抗を高抵抗化し且つ安定化させるダイヤモン
ドの改質法。(2) Oxygen partial pressure of diamond is 1×10^-^5to
By exposing to oxygen-containing gas plasma of rr or more,
A diamond modification method that increases and stabilizes its electrical resistance.
たダイヤモンド膜であることを特徴とする請求項(1)
又は(2)に記載のダイヤモンドの改質法。(3) Claim (1) characterized in that the diamond is a diamond film formed on a substrate by a vapor phase synthesis method.
Or the diamond modification method described in (2).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63064863A JP2620293B2 (en) | 1988-03-18 | 1988-03-18 | Diamond modification method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63064863A JP2620293B2 (en) | 1988-03-18 | 1988-03-18 | Diamond modification method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01239091A true JPH01239091A (en) | 1989-09-25 |
JP2620293B2 JP2620293B2 (en) | 1997-06-11 |
Family
ID=13270428
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63064863A Expired - Fee Related JP2620293B2 (en) | 1988-03-18 | 1988-03-18 | Diamond modification method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2620293B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5173761A (en) * | 1991-01-28 | 1992-12-22 | Kobe Steel Usa Inc., Electronic Materials Center | Semiconducting polycrystalline diamond electronic devices employing an insulating diamond layer |
US5352908A (en) * | 1991-03-29 | 1994-10-04 | Kabushiki Kaisha Kobe Seiko Sho | Diamond Schottky diode with oxygen |
US5653952A (en) * | 1991-12-18 | 1997-08-05 | Kabushiki Kaisha Kobe Seiko Sho | Process for synthesizing diamond using combustion method |
EP0930378A1 (en) * | 1998-01-20 | 1999-07-21 | Saint-Gobain Industrial Ceramics, Inc. | Method of processing of CVD diamond coatings |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6355197A (en) * | 1986-08-25 | 1988-03-09 | Toshiba Corp | Production of diamond having high purity |
-
1988
- 1988-03-18 JP JP63064863A patent/JP2620293B2/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6355197A (en) * | 1986-08-25 | 1988-03-09 | Toshiba Corp | Production of diamond having high purity |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5173761A (en) * | 1991-01-28 | 1992-12-22 | Kobe Steel Usa Inc., Electronic Materials Center | Semiconducting polycrystalline diamond electronic devices employing an insulating diamond layer |
US5352908A (en) * | 1991-03-29 | 1994-10-04 | Kabushiki Kaisha Kobe Seiko Sho | Diamond Schottky diode with oxygen |
US5653952A (en) * | 1991-12-18 | 1997-08-05 | Kabushiki Kaisha Kobe Seiko Sho | Process for synthesizing diamond using combustion method |
EP0930378A1 (en) * | 1998-01-20 | 1999-07-21 | Saint-Gobain Industrial Ceramics, Inc. | Method of processing of CVD diamond coatings |
Also Published As
Publication number | Publication date |
---|---|
JP2620293B2 (en) | 1997-06-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6793849B1 (en) | N-type droping of nanocrystalline diamond films with nitrogen and electrodes made therefrom | |
JP3136307B2 (en) | Diamond mounting substrate for electronic applications | |
US5512873A (en) | Highly-oriented diamond film thermistor | |
JPS63307196A (en) | Diamond multilayered thin film and its production | |
EP0174553B1 (en) | Method for production of silicon thin film piezoresistive devices | |
JPH02270304A (en) | Thermistor and manufacture thereof | |
JP3728464B2 (en) | Method for manufacturing substrate for vapor phase synthesis of single crystal diamond film | |
Xing et al. | Structural and electrical characteristics of high quality (100) orientated-Zn3N2 thin films grown by radio-frequency magnetron sputtering | |
JPH01239091A (en) | Diamond modification method | |
JPH0658891B2 (en) | Thin film single crystal diamond substrate | |
WO2002031839A9 (en) | N-type doping of nanocrystalline diamond films with nitrogen and electrodes made therefrom | |
US5523160A (en) | Highly-oriented diamond film | |
US6537924B2 (en) | Method of chemically growing a thin film in a gas phase on a silicon semiconductor substrate | |
JPS6270295A (en) | Manufacturing method of n-type semiconductor diamond film | |
JP2916580B2 (en) | Epitaxially coated semiconductor wafer and method of manufacturing the same | |
JPS60200519A (en) | heating element | |
WO2008056761A1 (en) | Process for producing single crystal of silicon carbide | |
JP2005317822A (en) | Manufacturing method of singly polarized lithium tantalate | |
JPH03165064A (en) | Diamond semiconductor, electronic device and element using this diamond semiconductor, and thermistor using this diamond semiconductor element | |
Boettger et al. | High-field conductivity of polycrystalline diamond films | |
Huh et al. | Enhanced nucleation of diamond on polycrystalline Ni by dc glow discharge in hot filament CVD | |
JPH0666273B2 (en) | Thin film single crystal diamond substrate | |
CN1096548A (en) | The manufacture method of single crystal diamond diaphragm | |
JP2004315316A (en) | Manufacturing method of lithium tantalate crystal which is singly polarized | |
JP6944699B2 (en) | Method for manufacturing hexagonal boron nitride film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |