JPH01233892A - Three-dimension picture conversion coding device - Google Patents
Three-dimension picture conversion coding deviceInfo
- Publication number
- JPH01233892A JPH01233892A JP63061346A JP6134688A JPH01233892A JP H01233892 A JPH01233892 A JP H01233892A JP 63061346 A JP63061346 A JP 63061346A JP 6134688 A JP6134688 A JP 6134688A JP H01233892 A JPH01233892 A JP H01233892A
- Authority
- JP
- Japan
- Prior art keywords
- image data
- memory
- discrete sine
- data
- predictive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Compression Or Coding Systems Of Tv Signals (AREA)
Abstract
Description
(産業上の利用分野]
本発明は画像を変換符号化し、画像データを圧縮するた
めの3次元画像変換符号化装置に関するものである。(Industrial Application Field) The present invention relates to a three-dimensional image conversion and encoding device for converting and encoding images and compressing image data.
画像の画素間相関を利用して高能率な符号化を行う方法
としては本発明者等が既に特願昭62−240455号
と提案している外挿予測離散サイン変換による方法があ
る。As a method of performing highly efficient encoding using the correlation between pixels of an image, there is a method using extrapolation predictive discrete sine transformation, which the present inventors have already proposed in Japanese Patent Application No. 62-240455.
しかしながらこの方法は画像データ1枚中の画素間相関
を利用しているので連続した画像データの変換に際して
は画像データの時間的相関を利用することがなく非能率
的である。
本発明は上記の問題点に鑑みて発明したものであって、
その目的とするところは連続した画像データに対して時
間的相関を利°泪してさらに高能率な符号化を行うこと
ができる3次元画像変換符号化装置を提供するにある、
[,9題を解決するだめの手段]
本発明は連続した複数枚の画像データを蓄積できるメモ
リと、このメモリに記憶した画像データのアクセス順序
を1画面の水平、垂直方向の所定画素数ずつか、水平ま
たは垂直方向と時間方向の所定画素数ずつかに切り換え
ることができるメモリ制御二重・段と、2次元外挿予測
−離散サイン変換により画像データの符号化を行う2次
元外挿予測離散サイン変換手段とを備えている。However, since this method uses the correlation between pixels in one piece of image data, it is inefficient when converting continuous image data because it does not use the temporal correlation of the image data. The present invention was invented in view of the above problems, and
The purpose is to provide a three-dimensional image transformation encoding device that can perform more efficient encoding by exploiting temporal correlation for continuous image data. Means for Solving the Problem] The present invention provides a memory that can store a plurality of consecutive image data, and an access order for the image data stored in this memory, either by a predetermined number of pixels in the horizontal or vertical directions of one screen, or by horizontally or vertically. A memory control double stage that can switch between a predetermined number of pixels in the vertical direction and a temporal direction, and a two-dimensional extrapolation prediction discrete sine conversion means that encodes image data by two-dimensional extrapolation prediction-discrete sine conversion. It is equipped with
而して本発明装置ではメモリ制御手段により各校の画像
データから水平、垂直方向の所定側索のプロングを切換
抽出して2次元外挿予測離散サイン変換F段により予測
変換符号化を行い、この予測変換符号化したデータをメ
モリにM積した後にデータの内所定枚の画像データに亘
る所定画素数のグロックをメモリ制御手段により切換抽
出して2次元外挿予測離散サイン変換手段にて時間軸方
向の圧縮を行うのである。In the apparatus of the present invention, the memory control means selectively extracts the prongs of predetermined lateral lines in the horizontal and vertical directions from the image data of each school, and performs predictive conversion encoding using the F stage of two-dimensional extrapolation predictive discrete sine conversion. After M-products of this predictive conversion encoded data are stored in memory, Glocks of a predetermined number of pixels covering a predetermined number of image data among the data are switched and extracted by the memory control means, and time is extracted by the two-dimensional extrapolation predictive discrete sine conversion means. It performs compression in the axial direction.
以下本発明を実施例の回路構成により説明する。
第1図は一天施例の構成を示しており、画像データをN
+1枚分蓄積できるメモリ1と、後述の2次元外挿予測
離散サイン変換手段3と、上記メモリ1にv!積された
画像データから2次元外挿予測離散サイン変換手段3に
データを渡す際に、画像データ1画面内の水平、垂直方
向のNXN画素のブロックを渡すか、画像データの水平
または垂直方向と時間方向のN画素ずつを渡すかを切り
換えるメモリ制御手段2とから構成される。
2次元外挿予測離散サイン変換手段3は第2図に示すよ
うに画像をブロックに分割i、てブロックの外の境界値
からブロック内の画像信号を外挿予測し、この予測によ
って得られた外挿予測信号をブロック内の原画像信号よ
り減じて外挿予測誤差信号として出力する2次元外挿予
測手段3aと、この外挿予測誤差46号を2次元離散サ
イン変換する変換手段3bと、変換手段3bで変換され
た変化係数をある閾値で切り捨て、更にある量子化ステ
ップ[[]によって量子化する量子化手段3cと、この
量子化手段3cの出力を逆量子化し2次元逆離散サイン
変換して上記外挿予測信号との加算を行うことで、次の
ブロックとの境界値を再生する逆変換手段3dとをから
なるものであり、画像を予測した後に変換符号化するの
で、特に従来のDCTlj式に比べてブロックサイズを
小さくすることができという特徴がある。
而して第1図において連続した画像データN+1枚をメ
モリ1に蓄積する。次にメモリ制御手段2によってメモ
リ1にWmした画像データを第3図のように1枚ずつN
XN画像のブロックに分け、2次元外挿予測離散サイン
変換手段3に人力し、予測変換符号化する。予測変換符
号化したデータは尤の画素データのところのメモリ蓄積
する。
このようにしてN+1枚の画像データをそれぞれ独立に
予測変換符号化し終えた後、第3図のよ−)に画像デー
タの予測変換符号化したデー・りのN枚に亘るNXN画
素のブロックをメモリ制御手段2によr)選択して2次
元外挿予測離散サイン変換手段3に入力し、ここで時間
軸方向の圧縮を行う。
この時第4はIのように画像データの垂直方向と時間方
向を選択することもでき、また第5図のように画像の水
平方向と時間方向に選択することもできる。ここで一番
上め画像データ部分は時間軸方向の境界値として使用す
る。尚Nとして、は4が実際的な値である。
第6図は動画像の予測変換符号化に用いtこ実施例の回
路構成を示しており、第5図のようにN枚分のメモリ1
at i bを2つ準備し、このメモリ1u。
1bの入出力を切換手段4 a、 4 bで切換えるよ
うになっている。
而して動画像の最初の1枚はメモ’JlaのN枚目の画
像データ領域に入力し、続きの画像データをN枚分メモ
リ1bに入力し、メモリ1aに蓄積した上記N枚目の画
像データを境界値として2次元外挿予測離散サイン変換
手F13にて予測変換符号化を行い、メモ1jlb側の
予測変換符号化が実行されている間に最初からN−1枚
目までの画像データをメモリ1aに人力する。メモリ1
]】側の画像データの予測変換符号化が終了した後にメ
モリ]aのN枚目の画像データをメモリ1bに入力し、
このN枚目の画像データを境界値としてメモリ1a側の
予測変換符号化を開始する。以下この手順を繰り返すこ
とによって動画像の予測変換符号化が可能となる。この
時N枚の予測変換符号化は動画像N−1枚分の時間内に
終了することが必淡となる。。The present invention will be explained below with reference to circuit configurations of embodiments. Figure 1 shows the configuration of the Ichiten embodiment, in which image data is
A memory 1 that can store +1 image, a two-dimensional extrapolation predictive discrete sine conversion means 3 described later, and a v! When passing data from the multiplied image data to the two-dimensional extrapolation predictive discrete sine transformation means 3, blocks of NXN pixels in the horizontal and vertical directions within one screen of image data are passed, or blocks of NXN pixels in the horizontal or vertical direction of the image data are passed. It is comprised of a memory control means 2 that switches whether to pass N pixels in the time direction or not. The two-dimensional extrapolation prediction discrete sine transformation means 3 divides the image into blocks as shown in FIG. a two-dimensional extrapolation prediction means 3a that subtracts the extrapolation prediction signal from the original image signal in the block and outputs it as an extrapolation prediction error signal; a conversion means 3b that performs two-dimensional discrete sign conversion on this extrapolation prediction error No. 46; A quantization means 3c cuts off the change coefficient transformed by the transformation means 3b at a certain threshold value and further quantizes it by a certain quantization step [[], and inverse quantizes the output of this quantization means 3c and performs two-dimensional inverse discrete sine transformation. and an inverse transform means 3d which reproduces the boundary value with the next block by performing addition with the extrapolated prediction signal.Since the image is transformed and encoded after being predicted, it is particularly difficult to use in the conventional method. It has the feature that the block size can be smaller than the DCTlj formula. As shown in FIG. 1, N+1 pieces of continuous image data are stored in the memory 1. Next, the memory control means 2 stores the Wm image data in the memory 1 one by one as shown in FIG.
The image is divided into XN image blocks, manually inputted to the two-dimensional extrapolation predictive discrete sine transform means 3, and predictive transform encoded. Predictive transform encoded data is stored in memory at the location of the most likely pixel data. After completing the predictive conversion encoding of each of the N+1 pieces of image data independently in this way, as shown in Fig. 3, the blocks of N×N pixels covering N pieces of the predictive conversion encoded data of the image data are r) is selected by the memory control means 2 and inputted to the two-dimensional extrapolation prediction discrete sine transformation means 3, where it is compressed in the time axis direction. At this time, the fourth option can select the vertical direction and time direction of the image data as shown in I, or it can also select the horizontal direction and time direction of the image as shown in FIG. Here, the uppermost image data portion is used as a boundary value in the time axis direction. Note that 4 is a practical value for N. FIG. 6 shows the circuit configuration of this embodiment used for predictive conversion encoding of moving images, and as shown in FIG.
Prepare two at i b and use this memory 1u. The input/output of 1b is switched by switching means 4a, 4b. The first moving image is input into the Nth image data area of the memo 'Jla, the subsequent image data for N images is input into the memory 1b, and the Nth image data stored in the memory 1a is inputted into the Nth image data area of the memo 'Jla. Predictive conversion coding is performed using the image data as a boundary value in the two-dimensional extrapolation predictive discrete sine conversion hand F13, and while the predictive conversion coding on the memo 1jlb side is being executed, images from the first to the N-1th image are Data is manually input to the memory 1a. memory 1
After the predictive conversion encoding of the image data on the ]] side is input to the memory 1b,
Predictive conversion encoding on the memory 1a side is started using this Nth image data as a boundary value. Thereafter, by repeating this procedure, predictive conversion encoding of moving images becomes possible. At this time, it is essential that the predictive transformation coding of N images be completed within the time period corresponding to N-1 moving images. .
本発明は上述のように構成しであるから、画像データの
時間経過に関する相関を利用で時間軸方向にも圧縮を行
うことができ、2次元外挿予測離散サイン変換よりも圧
縮率を上げることができる。Since the present invention is configured as described above, compression can also be performed in the time axis direction by utilizing the correlation regarding the passage of time in image data, and the compression rate can be increased compared to two-dimensional extrapolation predictive discrete sine transformation. Can be done.
m1図は本発明の一実施例の構成図、第2図は2付言外
挿予測離散サイン変換手段の構成図、第3図は画像デー
タの2次元外挿予測のだめのメモリ走査手順を示す図、
第4図は外挿予測を時開軸方向に行う際のメモリ走査の
手順を示す図、第5図は第4図の別の走査方法を示す図
、第6図は本発明の別の実施例の構成図である。
1はメモリ、2はメモリ制御手段、3は2次元外挿予測
離散サイン変換手段である。
代理人 弁理士 石 [J] 艮 七笥3図
笥4図
嘗
1116図Fig. m1 is a block diagram of an embodiment of the present invention, Fig. 2 is a block diagram of a two-dimensional extrapolation prediction discrete sign conversion means, and Fig. 3 is a diagram showing a memory scanning procedure for two-dimensional extrapolation prediction of image data. ,
FIG. 4 is a diagram showing a memory scanning procedure when performing extrapolation prediction in the time axis direction, FIG. 5 is a diagram showing another scanning method of FIG. 4, and FIG. 6 is a diagram showing another implementation of the present invention. It is a block diagram of an example. 1 is a memory, 2 is a memory control means, and 3 is a two-dimensional extrapolation prediction discrete sine conversion means. Agent Patent Attorney Ishi [J] Ai Shichizu 3 zu 4 zu 1116 zu
Claims (1)
と、このメモリに記憶した画像データのアクセス順序を
1画面の水平、垂直方向の所定画素数ずつか、水平また
は垂直方向と時間方向の所定画素数ずつかに切り換える
ことができるメモリ制御手段と、2次元外挿予測−離散
サイン変換により画像データの符号化を行う2次元外挿
予測離散サイン変換手段とを備え、メモリ制御手段によ
り各枚の画像データから水平、垂直方向の所定画素数の
ブロックを切換抽出して2次元外挿予測離散サイン変換
手段により予測変換符号化を行い、この予測変換符号化
したデータをメモリに蓄積した後にデータの内所定枚の
画像データに亘る所定画素数のブロックをメモリ制御手
段により切換抽出して2次元外挿予測離散サイン変換手
段にて時間軸方向の圧縮を行うことを特徴とする3次元
画像変換符号化装置。(1) A memory that can store multiple consecutive images, and an access order for the image data stored in this memory, either by a predetermined number of pixels in the horizontal or vertical direction of one screen, or by a predetermined number of pixels in the horizontal or vertical direction and in the time direction. It is equipped with a memory control means that can switch the number of pixels in increments, and a two-dimensional extrapolation prediction discrete sine conversion means that encodes image data by two-dimensional extrapolation prediction-discrete sine conversion. Blocks with a predetermined number of pixels in the horizontal and vertical directions are selectively extracted from the image data of , predictive transform coding is performed using a two-dimensional extrapolation predictive discrete sine transform means, and the predictive transform encoded data is stored in memory, and then the data is A three-dimensional image transformation characterized in that blocks of a predetermined number of pixels from a predetermined number of image data are selectively extracted by a memory control means and compressed in the time axis direction by a two-dimensional extrapolation predictive discrete sine transformation means. Encoding device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6134688A JP2595291B2 (en) | 1988-03-14 | 1988-03-14 | Three-dimensional image conversion coding device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6134688A JP2595291B2 (en) | 1988-03-14 | 1988-03-14 | Three-dimensional image conversion coding device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01233892A true JPH01233892A (en) | 1989-09-19 |
JP2595291B2 JP2595291B2 (en) | 1997-04-02 |
Family
ID=13168481
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6134688A Expired - Fee Related JP2595291B2 (en) | 1988-03-14 | 1988-03-14 | Three-dimensional image conversion coding device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2595291B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5327242A (en) * | 1993-03-18 | 1994-07-05 | Matsushita Electric Corporation Of America | Video noise reduction apparatus and method using three dimensional discrete cosine transforms and noise measurement |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6012884A (en) * | 1983-03-28 | 1985-01-23 | コムプレツシヨン・ラブズ・インコ−ポレ−テツド | Method and device for processing image signal |
-
1988
- 1988-03-14 JP JP6134688A patent/JP2595291B2/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6012884A (en) * | 1983-03-28 | 1985-01-23 | コムプレツシヨン・ラブズ・インコ−ポレ−テツド | Method and device for processing image signal |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5327242A (en) * | 1993-03-18 | 1994-07-05 | Matsushita Electric Corporation Of America | Video noise reduction apparatus and method using three dimensional discrete cosine transforms and noise measurement |
Also Published As
Publication number | Publication date |
---|---|
JP2595291B2 (en) | 1997-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5982437A (en) | Coding method and system, and decoding method and system | |
US6445828B1 (en) | Transform domain resizing of an image compressed with field encoded blocks | |
JPH0537915A (en) | Image signal encoding method and image signal encoding apparatus | |
JP2003507804A (en) | Method and apparatus for variable complexity decoding of motion compensated block-based compressed digital video | |
KR960028558A (en) | Bit rate reduction device and motion vector processing device used therein | |
JPH031688A (en) | High efficiency picture coder | |
JP3202433B2 (en) | Quantization device, inverse quantization device, image processing device, quantization method, inverse quantization method, and image processing method | |
JPH04280376A (en) | image display device | |
JPH10136368A (en) | Apparatus and method for bidirectional scanning of video coefficients | |
JPH01233892A (en) | Three-dimension picture conversion coding device | |
JP3403724B2 (en) | Image reproducing apparatus and method | |
JPH089385A (en) | Dynamic image encoder | |
JPH0730903A (en) | Integrated memory circuit for picture processing | |
JPH02122767A (en) | Encoding/decoding system for picture signal | |
JPH08204957A (en) | Image processing method | |
JP2001045493A (en) | Video encoding device, video output device, and storage medium | |
JP2839055B2 (en) | Image editing device | |
KR20040073095A (en) | A Device for Both Encoding and Decoding MPEG or JPEG Data | |
JP2001128182A (en) | Image encoding method and computer-readable recording medium storing image encoding program | |
JPH08130741A (en) | Image decoding device | |
JPH05114866A (en) | High efficiency coding method | |
JPH04280377A (en) | Picture display device | |
JPH06205399A (en) | Picture division coder | |
JP2870626B2 (en) | Image compression device | |
JPH04250789A (en) | Picture coding decoding device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |