JPH01217986A - Semiconductor laser element - Google Patents
Semiconductor laser elementInfo
- Publication number
- JPH01217986A JPH01217986A JP4187588A JP4187588A JPH01217986A JP H01217986 A JPH01217986 A JP H01217986A JP 4187588 A JP4187588 A JP 4187588A JP 4187588 A JP4187588 A JP 4187588A JP H01217986 A JPH01217986 A JP H01217986A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- type
- inp
- active region
- semiconductor laser
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 41
- 150000001875 compounds Chemical class 0.000 claims abstract 2
- 238000005253 cladding Methods 0.000 claims description 38
- 230000010355 oscillation Effects 0.000 claims 1
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 abstract description 8
- 239000000758 substrate Substances 0.000 abstract description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract 8
- 229910052681 coesite Inorganic materials 0.000 abstract 4
- 229910052906 cristobalite Inorganic materials 0.000 abstract 4
- 239000000377 silicon dioxide Substances 0.000 abstract 4
- 235000012239 silicon dioxide Nutrition 0.000 abstract 4
- 229910052682 stishovite Inorganic materials 0.000 abstract 4
- 229910052905 tridymite Inorganic materials 0.000 abstract 4
- 230000004888 barrier function Effects 0.000 description 10
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 238000000927 vapour-phase epitaxy Methods 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 3
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- -1 ammonium decafluoride Chemical compound 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910017401 Au—Ge Inorganic materials 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 125000002524 organometallic group Chemical group 0.000 description 1
Landscapes
- Semiconductor Lasers (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の目的〕
(産業上の利用分野)
本発明は、二重ヘテロ接合構造を用いた長波長光通信用
半導体レーザ素子に関する。DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Industrial Application) The present invention relates to a semiconductor laser device for long wavelength optical communication using a double heterojunction structure.
(従来の技術)
一般に二重ヘテロ接合構造を用いた注入型半導体レーザ
素子においては、活性層を挟むp−型半導体層から活性
層中に正孔を注入し活性層を挟むn−型半導体層と活性
層の価電子帯不連続を障壁として正孔を活性層中に蓄積
する。一方活性層を挟むn−型半導体層から電子を活性
層中に注入し活性層を挟むp−型半導体層と活性層の伝
導帯不連続を障壁として活性層中に電子を蓄積する。活
性層中で正孔と電子が再結合して発光する。光は活性層
の活性領域と活性領域の上下左右の結晶の屈折率差によ
り活性領域近傍に集中される0通常の構造の半導体レー
ザ素子では活性領域を挟むn−型半導体層とp−型半導
体層の材料が同一物質であるために、活性領域とp−型
半導体層の伝導帯不連続と活性領域とn−型半導体層の
伝導帯不連続は同一であり、活性領域とn−型半導体層
の価電子帯不連続と活性領域とp−型半導体層の価電子
帯不連続は同一であった。このため活性領域からp−型
半導体層へ電子のオーバーフローあるいは活性領域から
n−型半導体層へ正孔のオーバーフローが起こり活性層
への電流閉じ込め効率が悪かった。特に活性領域とクラ
ッド層との伝導帯不連続の小さいInP系の半導体レー
ザ域は活性層厚を数百オングストローム以下にした半導
体レーザに於てこの傾向が顕著であった。(Prior Art) Generally, in an injection type semiconductor laser device using a double heterojunction structure, holes are injected into the active layer from p-type semiconductor layers sandwiching the active layer, and n-type semiconductor layers sandwiching the active layer. and holes are accumulated in the active layer using the valence band discontinuity of the active layer as a barrier. On the other hand, electrons are injected into the active layer from the n-type semiconductor layer sandwiching the active layer, and are accumulated in the active layer using the conduction band discontinuity between the active layer and the p-type semiconductor layer sandwiching the active layer as a barrier. Holes and electrons recombine in the active layer and emit light. Light is concentrated in the vicinity of the active region due to the difference in refractive index between the active region of the active layer and the crystals on the upper, lower, left, and right sides of the active region.In a semiconductor laser device with a normal structure, an n-type semiconductor layer and a p-type semiconductor sandwich the active region. Since the materials of the layers are the same, the conduction band discontinuity between the active region and the p-type semiconductor layer and the conduction band discontinuity between the active region and the n-type semiconductor layer are the same, and the conduction band discontinuity between the active region and the n-type semiconductor layer is the same. The valence band discontinuities of the layers and the valence band discontinuities of the active region and the p-type semiconductor layer were the same. Therefore, an overflow of electrons from the active region to the p-type semiconductor layer or an overflow of holes from the active region to the n-type semiconductor layer occurs, resulting in poor current confinement efficiency in the active layer. This tendency was particularly noticeable in InP semiconductor lasers in which the conduction band discontinuity between the active region and the cladding layer was small, and the active layer thickness was several hundred angstroms or less.
(発明が解決しようとする課題)
本発明は以上述べたような活性層からp−型半導体層へ
電子のオーバーフロー域は活性領域からn−型半導体層
への正孔のオーバーフローを減らし、活性領域へ正孔と
電子と光を効率よく閉じ込め集中行える良好な半導体レ
ーザ素子の提供を目的としている。(Problems to be Solved by the Invention) The present invention has the above-mentioned overflow region of electrons from the active layer to the p-type semiconductor layer, which reduces the overflow of holes from the active region to the n-type semiconductor layer. The purpose of the present invention is to provide a good semiconductor laser device that can efficiently confine and concentrate holes, electrons, and light.
(課題を解決するための手段)
本発明の半導体レーザ素子においては2つのクラッド層
の組成が異なるのでp−型の導電性を有するクラッド層
と活性領域との伝導帯不連続と上記2つのクラッド層の
うちn−型の導電性を有するクラッド層と上記活性領域
との価電子帯不連続とを独立に決めることができる。即
ちp−型の導電性を有するクラッド層と活性領域との伝
導帯不連続による電子に対するエネルギー障壁と価電子
帯不連続による正孔に対するエネルギー障壁とを独立に
決めることができる。(Means for Solving the Problems) In the semiconductor laser device of the present invention, since the two cladding layers have different compositions, there is a conduction band discontinuity between the cladding layer having p-type conductivity and the active region, and the two cladding layers have different compositions. Among the layers, the valence band discontinuity between the cladding layer having n-type conductivity and the active region can be determined independently. That is, the energy barrier for electrons due to the conduction band discontinuity between the cladding layer having p-type conductivity and the active region and the energy barrier for holes due to the valence band discontinuity can be determined independently.
2つのクラッド層のうちp−型の導電性を有するクラッ
ド層と活性領域との伝導帯不連続を2つのクラッド層の
うちn−型の導電性を有するクラッド層と活性領域との
伝導帯不連続よりも大きく取ることにより、活性領域と
p−型の導電性を有するクラッド層とのエネルギー障壁
を、n−型の導電性を有するクラッド層よりn−型の導
電性を有するクラッド層と活性領域との伝導帯不連続分
のエネルギーを持って活性領域中に注入される電子のエ
ネルギーに対して充分大きく取れる。The conduction band discontinuity between the cladding layer with p-type conductivity of the two cladding layers and the active region is the conduction band discontinuity between the cladding layer with n-type conductivity of the two cladding layers and the active region. By making the energy barrier larger than continuous, the energy barrier between the active region and the cladding layer with p-type conductivity is lower than that between the cladding layer with n-type conductivity and the active region. It can be taken to be sufficiently large compared to the energy of electrons injected into the active region with the energy corresponding to the conduction band discontinuity with the active region.
半導体レーザを形成する半導体基板がInPであり、且
つp−型クラッド層がInAlAs或はInGaAlA
sであり且つn−型クラッド層がInPであれば、各層
を基板の半導体とほぼ格子整合させて形成できる。The semiconductor substrate forming the semiconductor laser is InP, and the p-type cladding layer is InAlAs or InGaAlA.
s and the n-type cladding layer is InP, each layer can be formed with approximately lattice matching with the semiconductor of the substrate.
有機金属気相成長法で形成すればInP、 InAlA
s。If formed by organometallic vapor phase epitaxy, InP, InAlA
s.
InGaAlAsの各層は良好な結晶が形成でき且つ急
峻且つ良好なヘテロ接合界面を形成できる。Each layer of InGaAlAs can form good crystals and form a steep and good heterojunction interface.
(作 用)
本発明の半導体レーザ素子においては電子に対するエネ
ルギー障壁と正孔に対するエネルギー障壁を独立に大き
く設定できるので、活性層中に電子を良好に蓄積できる
。(Function) In the semiconductor laser device of the present invention, the energy barrier for electrons and the energy barrier for holes can be independently set large, so that electrons can be accumulated in the active layer.
n−型の導電性を有するクラッド層から活性領域に注入
された電子のエネルギーに対して、活性領域からp−型
クラッド層に進入する際のエネルギー障壁を大きく取れ
ば活性層中に電子を良好に蓄積できる。Compared to the energy of electrons injected into the active region from the cladding layer with n-type conductivity, by creating a large energy barrier for electrons to enter the p-type cladding layer from the active region, it is possible to improve the flow of electrons into the active layer. can be accumulated in
p−型の導電性を有するクラッド層から活性領域に注入
された正孔のエネルギーに対して、活性領域からn−型
クラッド層に進入する際のエネルギー障壁を大きく取れ
ば活性層中に正孔を良好に蓄積できる。If the energy barrier for holes entering the n-type cladding layer from the active region is large compared to the energy of holes injected into the active region from the cladding layer having p-type conductivity, holes will be absorbed into the active layer. can be accumulated well.
p−型クラッド層としてInAlAs戒はInAlGa
Asを用いn−型クラッド層としてInPを用いればI
nP基板に格子整合した結晶を形成できるので半導体レ
ーザ素子の各層は良好な結晶により形成できる。InAlAs or InAlGa as the p-type cladding layer
If As is used and InP is used as the n-type cladding layer, I
Since a crystal lattice-matched to the nP substrate can be formed, each layer of the semiconductor laser device can be formed of good crystal.
有機金属気相成長法で形成して半導体レーザ素子の各層
及び各、ヘテロ接合界面が良好に形成されていれば活性
層への電子及び正孔の閉じ込め効率が向上する。If each layer and each heterojunction interface of the semiconductor laser device is formed by metal-organic vapor phase epitaxy, the efficiency of confining electrons and holes in the active layer will be improved.
(実施例) 次に本発明の実施例について詳細に説明する。(Example) Next, embodiments of the present invention will be described in detail.
第1図は本発明の半導体レーザ素子の構造断面図である
。本発明の半導体レーザ素子は先ずn−型(10’O)
InP基板1上にSeドープのn−型InPクラッド
層(2μs厚)2、アンドープInGaAsP活性層(
0,15m厚)3、ZnドープのP−型InAlAsク
ラッド層(1,5%m厚)4、アンドープのInGaA
sキャップ層(0,5%厚)を順次有機金属気相成長法
により形成した。その後Sin、 CVD膜を形成した
6次に通常のフ著トリソゲラフイーによりレジストマス
クをストライプ方向が(011)方向となるように約2
p幅で形成して、弗酸(6%)十弗化アンモニウム(3
0%)溶液でエツチングすることによりSiO□のスト
ライプを形成した0次にSin、をマスクとして過酸化
水素+硫酸系の溶液でInGaAsキャップ層を除去し
、塩酸でエツチングしてp −InAIAsクラッド層
4を除去し、過酸化水素子a酸系の溶液でInGaAs
P活性層3を除去し、塩酸+燐酸手水の溶液でn−In
Pクラッド層2を1.5.除去した。FIG. 1 is a structural sectional view of a semiconductor laser device of the present invention. The semiconductor laser device of the present invention is first of n-type (10'O)
On an InP substrate 1, a Se-doped n-type InP cladding layer (2 μs thick) 2 and an undoped InGaAsP active layer (
0.15 m thick) 3. Zn-doped P-type InAlAs cladding layer (1.5% m thick) 4. Undoped InGaA
An s cap layer (0.5% thickness) was sequentially formed by metal organic vapor phase epitaxy. After that, the resist mask was formed by using a normal trisogera-fie after forming the Sin and CVD film about 2 times so that the stripe direction was in the (011) direction.
Hydrofluoric acid (6%) ammonium decafluoride (3
0%) solution to form stripes of SiO□.Using the 0-order Sin as a mask, remove the InGaAs cap layer with a hydrogen peroxide + sulfuric acid solution, and then remove the InGaAs cladding layer by etching with hydrochloric acid. 4 was removed, and InGaAs was
Remove the P active layer 3 and add n-In with a solution of hydrochloric acid + phosphoric acid.
P cladding layer 2 is 1.5. Removed.
その後有機金属気相成長法によりFeドープの半絶縁性
InP埋め込み層5を3p形成した。(ここで5in2
上にはInPは成長しない、)次に弗酸(6%)十弗化
アンモニウム(30%)溶液でSin、マスクを取り除
いた。その後有機金属気相成長法によりZnドープのp
−型InGaAsコンタクト層(o、s、m厚)6を形
成した。この後Au −Ge合金によりn−側オーミッ
ク電Fi7を形成した。Au−Zn合今によりp−側オ
ーミック電極8を形成した。Thereafter, 3 layers of Fe-doped semi-insulating InP buried layers 5 were formed by metal organic vapor phase epitaxy. (here 5in2
(InP does not grow on top of the film.) Next, the Sin mask was removed using a hydrofluoric acid (6%) ammonium decafluoride (30%) solution. Thereafter, Zn-doped p
- type InGaAs contact layer (o, s, m thickness) 6 was formed. Thereafter, an n-side ohmic electrode Fi7 was formed using an Au-Ge alloy. A p-side ohmic electrode 8 was formed by Au-Zn composite.
このようにして形成した半導体レーザ素子は1.554
で発振し、p−InAlAs層のみをp −InPで置
き換えた半導体レーザ素子と比較して、特性温度がおよ
そ2倍になった。また光出力の最大値はおよそ1.8倍
になった。The semiconductor laser device thus formed has a 1.554
The characteristic temperature was approximately twice that of a semiconductor laser device in which only the p-InAlAs layer was replaced with p-InP. Moreover, the maximum value of optical output was increased by approximately 1.8 times.
本発明は上記実施例に限定されるものではなく、例えば
半導体基板はp−型でもよい。その際は基板側のクラッ
ド層をp−InAlAs層にし、コンタクト層側のクラ
ッド層をn−InP層にし、 コンタクト層の導電型を
n−型にすればよい6またInAlAs層 InGaA
sP/ InP系以外の材料系についても本発明の適用
が可能である。The present invention is not limited to the above embodiments; for example, the semiconductor substrate may be of p-type. In that case, the cladding layer on the substrate side should be a p-InAlAs layer, the cladding layer on the contact layer side should be an n-InP layer, and the conductivity type of the contact layer should be n-type6.InAlAs layer InGaA
The present invention can also be applied to material systems other than the sP/InP system.
以上のように本発明の半導体レーザ素子によれば活性層
に注入された電子と正孔のオーバーフローを防ぐことが
出来、注入電流を有効に変換できる。それ故特性温度、
光出力の最大値といった半導体レーザの基本特性を高め
ることができ、高出力化に適した半導体レーザ素子を提
供できる。As described above, according to the semiconductor laser device of the present invention, overflow of electrons and holes injected into the active layer can be prevented, and the injected current can be effectively converted. Hence the characteristic temperature,
The basic characteristics of a semiconductor laser, such as the maximum value of optical output, can be improved, and a semiconductor laser element suitable for high output can be provided.
第1図は本発明にかかる半導体レーザ素子の構成断面図
である。
1・・・InP基板 2・・・n−型InPク
ラッド層3− InGaAsP活性層 4 ・P−型
InAlAsクラッド層5・・・Feドープ半絶縁性I
nP埋め込層6・・・p−型InGaAsコンタクト層
7・・・n−側オーミック電極
8・・・p−側オーミック電極
代理人 弁理士 則 近 憲 佑
同 松山光之
第1図FIG. 1 is a cross-sectional view of the structure of a semiconductor laser device according to the present invention. 1... InP substrate 2... N-type InP cladding layer 3- InGaAsP active layer 4 - P-type InAlAs cladding layer 5... Fe-doped semi-insulating I
nP buried layer 6...p-type InGaAs contact layer 7...n-side ohmic electrode 8...p-side ohmic electrode Representative Patent attorney Noriyuki Chika Yudo Mitsuyuki Matsuyama Figure 1
Claims (3)
りも禁制帯幅が広く、一方がp−型他の一方がn−型の
導電性を有する上下2つのクラッド層で挟まれた二重ヘ
テロ接合構造の半導体レーザ素子において、上記2つの
クラッド層が異なる化合物半導体により形成されている
ことを特徴とする半導体レーザ素子。(1) The active layer that contributes to light emission and laser oscillation has a wider forbidden band width than this, and is sandwiched between two upper and lower cladding layers, one having p-type conductivity and the other having n-type conductivity. A semiconductor laser device having a heavy heterojunction structure, wherein the two cladding layers are formed of different compound semiconductors.
クラッド層と活性領域との伝導帯不連続が2つのクラッ
ド層のうちn−型の導電性を有するクラッド層と上記活
性領域との伝導帯不連続よりも大きいことを特徴とする 請求項1記載の半導体レーザ素子。(2) The conduction band discontinuity between the cladding layer having p-type conductivity among the two cladding layers and the active region is the same as the conduction band discontinuity between the cladding layer having n-type conductivity among the two cladding layers and the active region. 2. The semiconductor laser device according to claim 1, wherein the conduction band discontinuity is larger than the conduction band discontinuity.
クラッド層と活性領域との価電子帯不連続が2つのクラ
ッド層のうちp−型の導電性を有するクラッド層と上記
活性領域との価電子帯不連続よりも大きいことを特徴と
する請求 項1記載の半導体レーザ素子。(3) The valence band discontinuity between the cladding layer having n-type conductivity among the two cladding layers and the active region is the same as the valence band discontinuity between the cladding layer having p-type conductivity among the two cladding layers and the active region. 2. The semiconductor laser device according to claim 1, wherein the valence band discontinuity is larger than the valence band discontinuity.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63041875A JP2763102B2 (en) | 1988-02-26 | 1988-02-26 | Semiconductor laser device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63041875A JP2763102B2 (en) | 1988-02-26 | 1988-02-26 | Semiconductor laser device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01217986A true JPH01217986A (en) | 1989-08-31 |
JP2763102B2 JP2763102B2 (en) | 1998-06-11 |
Family
ID=12620442
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63041875A Expired - Lifetime JP2763102B2 (en) | 1988-02-26 | 1988-02-26 | Semiconductor laser device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2763102B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6084899A (en) * | 1994-09-14 | 2000-07-04 | Rohm Co. Ltd. | Semiconductor light emitting device and manufacturing method |
US6996150B1 (en) | 1994-09-14 | 2006-02-07 | Rohm Co., Ltd. | Semiconductor light emitting device and manufacturing method therefor |
JP2009059916A (en) * | 2007-08-31 | 2009-03-19 | Sumitomo Electric Ind Ltd | Optical semiconductor device |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60260181A (en) * | 1984-06-06 | 1985-12-23 | Fujitsu Ltd | semiconductor light emitting device |
-
1988
- 1988-02-26 JP JP63041875A patent/JP2763102B2/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60260181A (en) * | 1984-06-06 | 1985-12-23 | Fujitsu Ltd | semiconductor light emitting device |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6084899A (en) * | 1994-09-14 | 2000-07-04 | Rohm Co. Ltd. | Semiconductor light emitting device and manufacturing method |
US6115399A (en) * | 1994-09-14 | 2000-09-05 | Rohm Co. Ltd. | Semiconductor light emitting device |
US6996150B1 (en) | 1994-09-14 | 2006-02-07 | Rohm Co., Ltd. | Semiconductor light emitting device and manufacturing method therefor |
JP2009059916A (en) * | 2007-08-31 | 2009-03-19 | Sumitomo Electric Ind Ltd | Optical semiconductor device |
Also Published As
Publication number | Publication date |
---|---|
JP2763102B2 (en) | 1998-06-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4845724A (en) | Semiconductor laser device having optical guilding layers of unequal resistance | |
JP3484394B2 (en) | Optical semiconductor device and method of manufacturing the same | |
JP3052552B2 (en) | Surface emitting semiconductor laser | |
Kasahara et al. | Monolithically integrated high-speed light source using 1.3-µm wavelength DFB-DC-PBH laser | |
JP2882335B2 (en) | Optical semiconductor device and method for manufacturing the same | |
JPH05102600A (en) | Semiconductor laser | |
JP2001210911A (en) | Semiconductor laser, its manufacturing method, optical module using semiconductor laser, and optical communication system | |
JP2763102B2 (en) | Semiconductor laser device | |
JP2812273B2 (en) | Semiconductor laser | |
JP2616185B2 (en) | Semiconductor laser | |
JPH0697592A (en) | Semiconductor laser and manufacture thereof | |
JP4983791B2 (en) | Optical semiconductor element | |
US5170404A (en) | Semiconductor laser device suitable for optical communications systems drive | |
JPH1027941A (en) | Surface emitting semiconductor laser device and method of manufacturing the same | |
JP3403915B2 (en) | Semiconductor laser | |
JP3241360B2 (en) | Optical semiconductor device | |
JP3202985B2 (en) | Semiconductor laser device | |
JP3033333B2 (en) | Semiconductor laser device | |
JPH07131116A (en) | Semiconductor laser element | |
JPS6237557B2 (en) | ||
JP2751306B2 (en) | Semiconductor light emitting device | |
JPS59200484A (en) | Semiconductor laser | |
JPH0590706A (en) | Semiconductor laser element | |
JPH0511674B2 (en) | ||
JP2865325B2 (en) | Semiconductor laser device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |