JPH01214859A - Mask - Google Patents
MaskInfo
- Publication number
- JPH01214859A JPH01214859A JP63039378A JP3937888A JPH01214859A JP H01214859 A JPH01214859 A JP H01214859A JP 63039378 A JP63039378 A JP 63039378A JP 3937888 A JP3937888 A JP 3937888A JP H01214859 A JPH01214859 A JP H01214859A
- Authority
- JP
- Japan
- Prior art keywords
- film
- light
- excimer laser
- reflectance
- wavelength
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 claims abstract description 38
- 229910000423 chromium oxide Inorganic materials 0.000 claims abstract description 38
- 239000000758 substrate Substances 0.000 claims abstract description 23
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims abstract description 20
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 19
- 239000011651 chromium Substances 0.000 claims abstract description 19
- 239000010453 quartz Substances 0.000 claims abstract description 10
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 10
- 238000010894 electron beam technology Methods 0.000 abstract description 5
- 238000004544 sputter deposition Methods 0.000 abstract description 2
- 238000005229 chemical vapour deposition Methods 0.000 abstract 1
- 239000010408 film Substances 0.000 description 125
- 230000007547 defect Effects 0.000 description 11
- 239000004065 semiconductor Substances 0.000 description 10
- 230000000694 effects Effects 0.000 description 9
- 230000003287 optical effect Effects 0.000 description 7
- 235000012431 wafers Nutrition 0.000 description 7
- 238000000034 method Methods 0.000 description 6
- 239000010409 thin film Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000005530 etching Methods 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 150000001844 chromium Chemical class 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- QDOXWKRWXJOMAK-UHFFFAOYSA-N dichromium trioxide Chemical compound O=[Cr]O[Cr]=O QDOXWKRWXJOMAK-UHFFFAOYSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000000609 electron-beam lithography Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 229910021332 silicide Inorganic materials 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
Landscapes
- Preparing Plates And Mask In Photomechanical Process (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、マスクに関し、特に露光光としてエキシマレ
ーザ光を使用する場合のマスクに適用して有効な技術で
ある。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a mask, and is a technique that is particularly effective when applied to a mask when excimer laser light is used as exposure light.
半導体装置の製造工程におけるウェーハプルセスにおい
て、ウェーハにパターンを転写する縮小投影露光装置で
用いられるレチクルについては特開昭61−80820
号公報に記載されている。Japanese Patent Application Laid-Open No. 61-80820 describes a reticle used in a reduction projection exposure apparatus that transfers a pattern onto a wafer in the wafer process in the manufacturing process of semiconductor devices.
It is stated in the No.
その概要は以下のとおりである。The outline is as follows.
すなわち、半導体素子パターンの微細化に伴い高解像性
、高重ね合せ精度を有する縮小投影露光装置がパターン
転写装置の主流となっているが、光学系における反射光
が原因とされるゴーストやフレア等の転写不良の発生が
顕著になりてきている。そして特にレチクルの金属薄膜
からなる遮光パターンの表裏面からの光反射の影響が大
きいことが認められている。このため、前記転写不良の
対策として、レチクルの遮光パターンの表裏面からの反
射率が0〜30%の範囲になるように前記遮光パターン
面に低反射膜を設けるというものである。In other words, with the miniaturization of semiconductor device patterns, reduction projection exposure equipment with high resolution and high overlay accuracy has become the mainstream pattern transfer equipment, but ghosts and flares caused by reflected light in the optical system have become common. The occurrence of transfer defects such as these is becoming more and more noticeable. In particular, it has been recognized that the influence of light reflection from the front and back surfaces of the light-shielding pattern made of the metal thin film of the reticle is significant. Therefore, as a countermeasure against the transfer failure, a low-reflection film is provided on the surface of the light-shielding pattern so that the reflectance from the front and back surfaces of the light-shielding pattern of the reticle is in the range of 0 to 30%.
縮小投影露光装置で用いられるレチクルからの光反射は
、ゴーストやフレア等の転写不良起因の寸法ばらつきに
影響を与え、その影響はパターンが微細化されるに伴い
顕著となることが知られている。It is known that light reflection from the reticle used in reduction projection exposure equipment affects dimensional variations due to transfer defects such as ghosts and flares, and this effect becomes more pronounced as patterns become finer. .
この光反射の影響を除くため、現状の縮小投影露光装置
に用いられている高圧水銀燈の輝線スペクトルであるG
11ne(波長436nm)において、レチクルの遮光
パターン面の反射率が20%以下になるように低反射膜
の膜厚を調整しである。In order to eliminate the influence of this light reflection, the G
The thickness of the low-reflection film was adjusted so that the reflectance of the light-shielding pattern surface of the reticle was 20% or less at 11ne (wavelength: 436 nm).
ところで、半導体素子パターンの微細化に伴い、半導体
ウェーハへのパターン転写に用いられる光波長は、解像
度を向上させるため現在使用している前記G11neの
436nmから更に短い波長に移行していく頷回にある
。その1つにエキシマレーザがあり、波長248 nm
のKrFエキシマレーザ、波長282nmのXeBrエ
キシマレーザ、波長308nmのXeClエキシマレー
ザ、波長351nmのXeFエキシマレーザが考えられ
ている。そして前記G11neを露光光とした現状の縮
小投影露光装置で用いられているレチクルの基板である
2〜3層膜構造の1元性多層膜を有するマスクブランク
スではG11neの場合数%程度の反射率であったもの
が、前記エキシマレーザの場合20%程度の反射率とな
り、エキシマレーザ光を露光光とした場合寸法の微細化
の影響も加わって、ゴーストやフレア等の転写不良起因
の寸法ばらつきが顕著になることが考えられる。By the way, with the miniaturization of semiconductor device patterns, the wavelength of light used for pattern transfer to semiconductor wafers is shifting from the 436 nm of the G11ne currently used to an even shorter wavelength in order to improve resolution. be. One of them is excimer laser, which has a wavelength of 248 nm.
A KrF excimer laser with a wavelength of 282 nm, a XeCl excimer laser with a wavelength of 308 nm, and an XeF excimer laser with a wavelength of 351 nm are being considered. In addition, in mask blanks having a one-dimensional multilayer film with a two- to three-layer film structure, which is the substrate of the reticle used in the current reduction projection exposure apparatus that uses G11ne as the exposure light, the reflectance of G11ne is about a few percent. However, in the case of the excimer laser mentioned above, the reflectance is about 20%, and when the excimer laser light is used as the exposure light, dimensional variations due to transfer defects such as ghosts and flares are increased due to the effect of miniaturization of dimensions. It is thought that it will become noticeable.
以上のように、現状のレチクルの基板である2〜3層膜
構造の遮光性多層膜を有する1スクブランクスでは、エ
キシマレーザ光の反射率が20%程度となり、今後のエ
キシマレーザ光を露光光とした縮小投影露光装置による
パターン転写において、ゴーストやフレア等の転写不良
起因の寸法ばらつきが顕著になるという課題があること
を本発明者は鋭意検討して見い出し、それを解決すべく
本発明をなした。As mentioned above, the reflectance of excimer laser light is about 20% in the current reticle substrate, which has a light-shielding multilayer film with a two- to three-layer film structure, and the reflectance of excimer laser light is about 20%. The inventors of the present invention have conducted extensive studies and discovered that there is a problem in pattern transfer using a reduced projection exposure apparatus, in which dimensional variations due to transfer defects such as ghosts and flares become noticeable, and the present invention was developed to solve this problem. I did it.
本発明の目的はエキシマレーザ光を露光光とした投影露
光装置によるパターン転写において、ゴーストやフレア
等の転写不良起因の寸法ばらつきを低減することのでき
るマスクを提供するものである。An object of the present invention is to provide a mask that can reduce dimensional variations caused by transfer defects such as ghosts and flares in pattern transfer by a projection exposure apparatus using excimer laser light as exposure light.
本発明の前記ならびにその他の目的と新規な特徴は、本
明細書の記述および添付図面から明らかになるであろう
。The above and other objects and novel features of the present invention will become apparent from the description of this specification and the accompanying drawings.
なお、本明細書では、特殊な使用を除き、マスクの定義
としては、投影露光装置で用いられる転写パターンと等
倍の遮光パターンを有するホトマスク、縮小投影露光装
置で用いられる複数倍の大きさの透光パターンを有する
レチクルおよび前記ホトマスク、前記レチクルの製作の
ためのスターティングマテリアルであるマスクブランク
スをまとめてマスクと総称している。In this specification, except for special uses, the definition of a mask includes a photomask having a light-shielding pattern of the same size as the transferred pattern used in a projection exposure device, and a photomask having a light-shielding pattern multiple times the size used in a reduction projection exposure device. A reticle having a transparent pattern, the photomask, and a mask blank that is a starting material for manufacturing the reticle are collectively referred to as a mask.
本願において開示される発明のうち、代表的なものの*
iを簡単に説明すれば、下記のとおりである。Representative inventions* among the inventions disclosed in this application
A brief explanation of i is as follows.
すなわち、露光光としてエキシマレーザ光を使用する場
合のマスクにおいて、透光性基板の一方の主面上に前記
透光性基板側から積層形成されている遮光膜、低反射膜
あるいは低反射膜、−光膜。That is, in a mask when excimer laser light is used as exposure light, a light-shielding film, a low reflection film, or a low reflection film, which is laminated from the light-transmitting substrate side on one main surface of a light-transmitting substrate, -Light film.
低反射膜からなる2〜3層膜構造の遮光性多層膜からの
反射率が前記エキシイレーザ光の波長において極小とな
るように前記低反射膜の膜厚を調整するものである。The thickness of the low-reflection film is adjusted so that the reflectance from the light-shielding multilayer film having a 2- to 3-layer structure consisting of the low-reflection film becomes minimum at the wavelength of the exci-laser light.
上記した手段によれば、低反射膜と遮光膜との界面にお
ける反射光と低反射膜と空気あるいは石英基板との界面
における反射光とを干渉させることにより、反射光の強
度を小さくすることができるため、遮光性多層膜からの
反射率の低減を達成するものである。According to the above means, the intensity of the reflected light can be reduced by causing the reflected light at the interface between the low reflection film and the light shielding film to interfere with the reflected light at the interface between the low reflection film and the air or the quartz substrate. Therefore, it is possible to reduce the reflectance from the light-shielding multilayer film.
以下本発明の構成について、エキシマレーザ光を露光光
とした縮小投影露光装置で用いられるしチクルに、本発
明を適用した一実施例とともに説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The structure of the present invention will be described below along with an embodiment in which the present invention is applied to a droplet used in a reduction projection exposure apparatus using excimer laser light as exposure light.
第1図乃至第3図は本発明の実施例であるエキシマレー
ザを露光光とした縮小投影露光装置で用いられるレチク
ルについて説明するだめの図面である。第1図は石英基
板側からクロム膜および酸化クロム膜の2層膜構造の遮
光パターンを有するレチクルの断面図で、8g2図は前
記レチクルと同一構造の膜を有するマスクブランクスの
反射特性を示す図面である。また、第3図はエキシマレ
ーザ縮小投影露光装置の光学系を示す図面である。1 to 3 are diagrams for explaining a reticle used in a reduction projection exposure apparatus using an excimer laser as an exposure light, which is an embodiment of the present invention. Figure 1 is a cross-sectional view of a reticle having a light shielding pattern with a two-layer structure of a chromium film and a chromium oxide film from the quartz substrate side, and Figure 8g2 is a drawing showing the reflection characteristics of a mask blank having a film with the same structure as the reticle. It is. Further, FIG. 3 is a drawing showing an optical system of an excimer laser reduction projection exposure apparatus.
エキシマレーザを露光光とした縮小投影露光装置12は
、第3図に示すように、エキシマレーザ光源13からの
エキシマレーザ光を反射ミラー14、走査レンズ15、
走査ミラー16、走査レンズ15な介してコンデンサレ
ンズ17へ照射し、前記コンデンサレンズ17により平
行光としてレチクルIK[射L、このレチクル1のパタ
ーンを複数の縮小レンズからなる縮小光学系18により
、半導体ウェーハ19の表面に縮小結像するように構成
されている。As shown in FIG. 3, the reduction projection exposure apparatus 12 that uses an excimer laser as exposure light reflects excimer laser light from an excimer laser light source 13 through a reflecting mirror 14, a scanning lens 15,
The pattern of the reticle 1 is irradiated onto a condenser lens 17 via the scanning mirror 16 and the scanning lens 15, and converted into parallel light by the condenser lens 17. It is configured to form a reduced image on the surface of the wafer 19.
上述のエキシマレーザ縮小投影露光装置12で用いられ
るレチクル1は半導体ウェーハ19上への転写パターン
の複数倍例えば5倍の寸法の遮光パターンを有している
もので、第1図に示すように透光性の石英基板2上の一
方の主面上に石英基板2側から遮光膜である800A厚
程度のクロム膜3および半透光性の低反射膜である所定
膜厚の酸化クロム膜4からなる2層膜構造の所定形状の
遮光パターン5が所定の配置で配設された構成となりて
いる。すなわち、nft、膜である800A程度のクロ
ム膜30表面に、半透光性の低反射膜である所定膜厚の
酸化クロム膜4が積層されている。The reticle 1 used in the above-mentioned excimer laser reduction projection exposure apparatus 12 has a light-shielding pattern that is multiple times, for example, five times as large as the pattern transferred onto the semiconductor wafer 19, and has a transparent pattern as shown in FIG. On one main surface of the optical quartz substrate 2, from the quartz substrate 2 side, a chromium film 3 with a thickness of about 800A as a light-shielding film and a chromium oxide film 4 with a predetermined thickness as a semi-transparent low reflection film are formed. The light-shielding pattern 5 having a predetermined shape and having a two-layer film structure is arranged in a predetermined arrangement. That is, a chromium oxide film 4 of a predetermined thickness, which is a semi-transparent, low-reflection film, is laminated on the surface of a chromium film 30 of about 800A, which is an NFT film.
ここで、遮光膜であるクロム膜3の膜厚は光の透過率を
]/1000程度にし、十分な遮光性を持たせるために
800A程度に設定されているうまた半透光性の低反射
膜である酸化クロム膜4の膜厚は!!元パターン5表面
からの反射率が極小になるように設定されている。そし
てその反射率はエキシマレーザ光の波長により異なり、
例えば波長248nmのKrFエキシマレーザの場合1
20A穆度、波長282nmのK e B rエキシマ
レーザおよび波長308nmのKeClエキシマレーザ
の場合、それぞれ160A程度、また波長351nmの
XeFエキシマレーザ光や場合は200A程度に設定さ
れている。この際の遮光パターン5表面からの反射率は
3〜5%程度といずれも極めて小さくなりている。この
ため第3図における縮小光学系18の縮小レンズ表面か
らの反射光■、および半導体ウェーハ19の表面からの
反射光■がレチクル1の!!元パターン50表面で反射
されることによって発生するゴーストやフレア等の転写
不良起因の寸法ばらつきが抑制されるようになっている
。Here, the thickness of the chromium film 3, which is a light-shielding film, has a light transmittance of about ]/1000, and is set to about 800A in order to have sufficient light-shielding properties. What is the thickness of the chromium oxide film 4? ! The reflectance from the surface of the original pattern 5 is set to be minimal. The reflectance varies depending on the wavelength of the excimer laser light,
For example, in the case of a KrF excimer laser with a wavelength of 248 nm, 1
In the case of a KeBr excimer laser with a 20A brightness and a wavelength of 282 nm and a KeCl excimer laser with a wavelength of 308 nm, it is set to about 160A, respectively, and in the case of a XeF excimer laser beam with a wavelength of 351 nm, it is set to about 200A. At this time, the reflectance from the surface of the light shielding pattern 5 is approximately 3 to 5%, which is extremely small. Therefore, the reflected light (2) from the surface of the reduction lens of the reduction optical system 18 and the reflected light (2) from the surface of the semiconductor wafer 19 in FIG. ! Dimensional variations caused by transfer defects such as ghosts and flares caused by reflection on the surface of the original pattern 50 are suppressed.
次に上記構成のレチクル1における酸化クロム膜4から
なる低反射膜の反射率の低減作用について述べる。酸化
クロム膜4からなる低反射膜は半透光性であるため、第
3図における縮小光学系18の縮小レンズおよび半導体
ウェーハ190表面からの反射光■、■がレチクル1の
遮光パターン5へ到達した場合、遮光パターン5のクロ
ムM3、酸化クロム膜4および空気の屈折率が各々異な
ることに起因して、遮光パターン5からの反射光はクロ
ム膜3と酸化クロム膜4との界面の反射光と酸化クロム
膜4と空気との界面の反射光とに分離される。この際、
クロム膜3と酸化クロム膜4との界面の反射光と酸化ク
ロム膜4と空気との界面の反射光とが干渉し光強度を弱
め合うことにより遮光パターン5表面からの反射光を小
さくすることができるようになりている。すなわち、ク
ロム膜3と酸化クロム膜4との界面の反射光と酸化クロ
ム膜4と空気との界面の反射光との干渉により遮光パタ
ーン50反射率は低減されるようになっている。そして
上記作用により反射率を低減しているため遮光パターン
5表面の反射率は、酸化クロム膜4の膜厚とエキシマレ
ーザ光の波長に依存している。第2図はこの反射率の波
長分散および酸化クロム膜4の膜厚依存性を示したもの
である。Next, the effect of reducing the reflectance of the low reflection film made of the chromium oxide film 4 in the reticle 1 having the above structure will be described. Since the low-reflection film made of the chromium oxide film 4 is semi-transparent, the reflected lights (2) and (2) from the reduction lens of the reduction optical system 18 and the surface of the semiconductor wafer 190 in FIG. 3 reach the light-shielding pattern 5 of the reticle 1. In this case, the reflected light from the light shielding pattern 5 is reflected light from the interface between the chromium film 3 and the chromium oxide film 4 due to the different refractive indexes of the chromium M3 of the light shielding pattern 5, the chromium oxide film 4, and the air. and reflected light from the interface between the chromium oxide film 4 and air. On this occasion,
The light reflected from the interface between the chromium film 3 and the chromium oxide film 4 and the light reflected from the interface between the chromium oxide film 4 and air interfere and weaken each other, thereby reducing the light reflected from the surface of the light shielding pattern 5. is now possible. That is, the reflectance of the light shielding pattern 50 is reduced by interference between the light reflected from the interface between the chromium film 3 and the chromium oxide film 4 and the light reflected from the interface between the chromium oxide film 4 and air. Since the reflectance is reduced by the above action, the reflectance of the surface of the light shielding pattern 5 depends on the thickness of the chromium oxide film 4 and the wavelength of the excimer laser beam. FIG. 2 shows the wavelength dispersion of this reflectance and the film thickness dependence of the chromium oxide film 4.
なお、同図は前記レチクル1と同じ膜構造のマスクブラ
ンクスにおいて、低反射膜である酸化クロム膜の膜厚を
変動させて反射率の光波長依存性を日立スペクトルメー
タ124型で測定することにより得られた反射率特性曲
線6〜11を示す図面である。この第2図に示されてい
るように前記マスクブランクスからの反射率は半透光性
の低反射膜である酸化クロム膜の膜厚によって極小とな
る波長域が異なっている。例えば、波長248nmのK
rFエキシマレーザの場合、酸化クロム膜厚60Aの反
射率特性的1116と酸化クロム膜厚160A反射率特
性曲i@7との間、丁なわち酸化クロム膜厚120A程
度で反射率が極小となっている。The figure shows a mask blank with the same film structure as reticle 1, by varying the thickness of the chromium oxide film, which is a low reflection film, and measuring the dependence of reflectance on light wavelength using a Hitachi spectrometer model 124. It is a drawing showing the obtained reflectance characteristic curves 6 to 11. As shown in FIG. 2, the wavelength range in which the reflectance from the mask blank becomes minimum differs depending on the thickness of the chromium oxide film, which is a semi-transparent low-reflection film. For example, K at a wavelength of 248 nm
In the case of rF excimer laser, the reflectance becomes minimum between the reflectance characteristic curve i@7 for a chromium oxide film thickness of 60A and the reflectance characteristic curve i@7 for a chromium oxide film thickness of 60A. ing.
また波長282nmのX e B rエキシマレーザお
よび波長308 nmのXeClエキシマレーザの場合
、反射率特性曲線7の酸化クロム膜厚である160A程
度で反射率が極小となっている。また波長351 nm
のXeFエキシマレーザの場合、反射率特性曲線8の酸
化クロム膜厚である200A程度で反射率が極小となり
ている。そして、各々の反射率はいずれも5%程度と極
めて小さ(なりている。以上のことから、エキシマレー
ザ縮小投影露光装置12において、波長248nmのK
rFエキシマレーザを露+元とした場合、レチクル1の
遮光パターン5の酸化クロム膜4の膜厚な120A程度
、波長282nmのXeBrエキシマレーザおよび波長
308nmのXeClエキシマレーザを露光光とした場
合、酸化クロム膜4の膜厚を160A程度、波長351
nmのXeFエキシマレーザを露光光とした場合、酸化
クロム膜4の膜厚を200A程度に設定すると、反射率
が5%程度で極小となり、ゴーストやフレア等の転写不
良起因の寸法ばらつきが抑制されるようになっている。Further, in the case of the X e Br excimer laser with a wavelength of 282 nm and the XeCl excimer laser with a wavelength of 308 nm, the reflectance becomes minimum at about 160 A, which is the chromium oxide film thickness of the reflectance characteristic curve 7. Also, the wavelength is 351 nm
In the case of the XeF excimer laser, the reflectance becomes minimum at about 200 A, which is the chromium oxide film thickness of reflectance characteristic curve 8. The reflectance of each is extremely small (approximately 5%).For the above reasons, in the excimer laser reduction projection exposure apparatus 12, the K
When the rF excimer laser is used as the exposure source, when the film thickness of the chromium oxide film 4 of the light shielding pattern 5 of the reticle 1 is about 120A, and when the exposure light is an XeBr excimer laser with a wavelength of 282 nm and a XeCl excimer laser with a wavelength of 308 nm, the oxidation The thickness of the chromium film 4 is about 160A, the wavelength is 351
When the exposure light is a XeF excimer laser with a wavelength of 1.5 nm and the thickness of the chromium oxide film 4 is set to about 200 A, the reflectance becomes minimal at about 5%, and dimensional variations due to transfer defects such as ghosts and flares are suppressed. It has become so.
次に上記構成のレチクル1の製法について述べる。まず
透光性の石英基板2の一方の主面上にスパッタ法あるc
tcvn法により800A程度のクロム膜3を堆積させ
る。その上に同様の方法で所定膜厚の酸化クロム膜4を
堆積させる。ここで所定膜厚としたのは露光光に用いる
エキシマレーザ光の波長によって酸化クロム膜4の最適
膜厚が異なるためで、例えば波長248nmのKrFエ
キシマレーザの場合120λ程度、波長282nmのX
eBrエキシマレーザおよび波長308nmのX e
Clエキシマレーザの場合16OAa度、波長351
nmのXeFエキシマレーザの場合200A程度の酸化
クロム膜4を堆積させる。次に因示しないが全面に所定
膜厚の電子線レジストを塗布し、電子線リソグラフィ技
術により所定形状の電子線レジストパターンを形成する
。次に電子線レジストパターンをマスクに選択エツチン
グを行い、エツチング後マスクとなった電子線レジスト
パターンを酸素プラズマ処理等により除去することによ
り、クロム膜3および酸化クロム膜4からなる所定形状
の遮光パターン5を形成する。Next, a method for manufacturing the reticle 1 having the above structure will be described. First, a sputtering process is performed on one main surface of a transparent quartz substrate 2.
A chromium film 3 of about 800A is deposited by the tcvn method. A chromium oxide film 4 of a predetermined thickness is deposited thereon in a similar manner. The predetermined film thickness is set here because the optimal film thickness of the chromium oxide film 4 differs depending on the wavelength of the excimer laser light used for exposure light. For example, in the case of a KrF excimer laser with a wavelength of 248 nm, it is about 120λ,
eBr excimer laser and X e with a wavelength of 308 nm
For Cl excimer laser, 16OAa degree, wavelength 351
In the case of a nm XeF excimer laser, a chromium oxide film 4 of about 200 A is deposited. Next, although not shown, an electron beam resist of a predetermined thickness is applied to the entire surface, and an electron beam resist pattern of a predetermined shape is formed by electron beam lithography. Next, selective etching is performed using the electron beam resist pattern as a mask, and after etching, the electron beam resist pattern serving as a mask is removed by oxygen plasma treatment, etc., to form a light-shielding pattern of a predetermined shape made of the chromium film 3 and the chromium oxide film 4. form 5.
以上のように本実施例はエキシマレーザ光を露光光とし
た縮小投影露光装置12で用いられるレチクルlにおい
て、遮光膜であるクロム膜3および低反射膜である酸化
クロム膜4からなる2層膜構造の遮光パターン5表面の
反射率が前記エキシマレーザ光の波長において極小とな
るように低反射膜の膜厚を調整することを特徴としてい
る。上記実施例から得られる作用・効果を簡単に述べる
と以下のようになる。As described above, this embodiment uses a two-layer film consisting of a chromium film 3 as a light-shielding film and a chromium oxide film 4 as a low-reflection film in a reticle l used in a reduction projection exposure apparatus 12 that uses excimer laser light as exposure light. It is characterized in that the thickness of the low reflection film is adjusted so that the reflectance of the surface of the light shielding pattern 5 of the structure becomes minimum at the wavelength of the excimer laser light. The functions and effects obtained from the above embodiments can be briefly described as follows.
1)エキシマレーザ光を露光光とした縮小投影露光装置
で用いられるレチクルにおいて、透光性の石英基板の一
方の主面上に形成された遮光膜であるクロム膜、低反射
膜である酸化クロム膜からなる2層膜構造の遮光パター
ンの前記酸化クロム膜の膜厚を調整することにより、ク
ロム膜と酸fヒフロム膜との界面の反射光と酸化クロム
膜と空気との界面の反射光との干渉効果を顕著にさせ、
遮光パターン表面からの前記エキシマレーザ光の反射率
が極小となるように調整することができるため、ゴース
トやフレア等の転写不良起因の寸法ばらつきを抑制する
ことができる。1) In a reticle used in a reduction projection exposure device that uses excimer laser light as exposure light, a chromium film, which is a light-shielding film, and a chromium oxide film, which is a low-reflection film, are formed on one main surface of a transparent quartz substrate. By adjusting the film thickness of the chromium oxide film in the light-shielding pattern of the two-layer film structure, the light reflected from the interface between the chromium film and the acid fluorium film and the light reflected from the interface between the chromium oxide film and air can be adjusted. make the interference effect of
Since the reflectance of the excimer laser light from the surface of the light shielding pattern can be adjusted to be minimal, it is possible to suppress dimensional variations due to transfer defects such as ghosts and flares.
2)また、連光パターン表面からの反射率が極小となる
ように前記酸化クロム膜の膜厚を調整することにより、
前記酸化クロム膜の膜厚変動に伴なう反射率の変動を小
さくすることができ、ゴーストやフレア等の転写不良起
因の寸法ばらつきを安定して抑制することができる。2) Also, by adjusting the thickness of the chromium oxide film so that the reflectance from the continuous light pattern surface is minimal,
Changes in reflectance due to changes in the thickness of the chromium oxide film can be reduced, and dimensional variations caused by transfer defects such as ghosts and flares can be stably suppressed.
3)上記1)、2) よりゴーストやフレア等の転写不
良起因のチップ内寸法ばらつきを安宇して抑制すること
ができるため、半導体装置の品質や歩留を向上させるこ
とができる。3) As described in 1) and 2) above, it is possible to more easily suppress intra-chip dimensional variations due to transfer defects such as ghosts and flares, thereby improving the quality and yield of semiconductor devices.
以上本発明者によってなされた発明を実施例に基づき具
体的に説明したが、本発明は上記実施例に限定されるも
のではなく、その要旨を逸脱しない範囲で種々変更可能
であることはいうまでもない。例えば、遮光パターン表
面の反射率が極小になるように低反射膜の膜厚を調整し
ているが、必ずしも反射率が極小である必要はなく、寸
法ばらつきが抑制されるに十分な反射率になるように調
整すればよい。Although the invention made by the present inventor has been specifically explained above based on Examples, it goes without saying that the present invention is not limited to the above Examples and can be modified in various ways without departing from the gist thereof. Nor. For example, the thickness of the low-reflection film is adjusted so that the reflectance on the surface of the light-shielding pattern is minimal, but the reflectance does not necessarily have to be minimal, but is sufficient to suppress dimensional variations. Just adjust it accordingly.
また、遮光パターンは石英基板側から順にS光膜である
クロム膜と低反射膜である酸化クロム膜からなる2層膜
構造となっているが、酸fヒフロム膜、クロム膜、酸化
クロム膜すなわち低反射膜。In addition, the light shielding pattern has a two-layer film structure consisting of a chromium film, which is an S light film, and a chromium oxide film, which is a low reflection film, in order from the quartz substrate side. Low reflective film.
遮光膜、低反射膜からなる3層膜構造としてもよい、こ
の場合、遮光パターンの両面においてエキシマレーザ光
の反射率を効果的に低減することができる。また、遮光
膜をクロム膜、低反射膜を酸化クロム膜で形成している
が、S光膜は連光性の金属薄膜であれば何でもよく、低
反射膜は半透光性の金属薄膜であれば何でもよい。例え
ば遮光膜および低反射膜をモリブデン(Mo)、チタン
(Ti)、タングステン(W)、タンクル(Ta)およ
びその酸化物、窒化物あるいはシリサイド等からなる漉
元性、半透元性の膜で形成してもよい。A three-layer film structure consisting of a light-shielding film and a low-reflection film may also be used. In this case, the reflectance of excimer laser light can be effectively reduced on both sides of the light-shielding pattern. In addition, the light-shielding film is formed of a chromium film and the low-reflection film is formed of a chromium oxide film, but the S-light film may be any continuous light metal thin film, and the low-reflection film is a semi-transparent metal thin film. Anything is fine. For example, the light-shielding film and the low-reflection film can be made of a filtering or semi-transparent film made of molybdenum (Mo), titanium (Ti), tungsten (W), tankle (Ta), and their oxides, nitrides, or silicides. may be formed.
“ 以上の説明では主として本発明者によってなされた
発明をその背景となった利用分野であるエキシマレーザ
縮小投影露光装置で用いられるレチクルおよびその材料
であるマスクブランクスに適用した場合について説明し
たが、それに限定されるものではなく、投影露光装置で
用いられるホトマスクにも適用できる。また半導体基板
および前記半導体基板に各種の薄膜管堆積した基板から
の反射率を低減する技術等にも適用できる。“ In the above explanation, the invention made by the present inventor was mainly applied to a reticle used in an excimer laser reduction projection exposure apparatus, which is the field of application in which the invention was made, and a mask blank, which is the material thereof. The present invention is not limited to this, and can be applied to photomasks used in projection exposure apparatuses. It can also be applied to techniques for reducing reflectance from semiconductor substrates and substrates on which various thin film tubes are deposited on the semiconductor substrates.
本願において開示される発明のうち代表的なものによっ
て得られる効果を簡単に説明すれば、下 ′記のと
おりである。A brief explanation of the effects obtained by typical inventions disclosed in this application is as follows.
すなわち、エキシマレーザ光を露光光としたマスクにお
いて、透光性基板の一方の主面上に前記透光性基板側か
ら積層形成されている遮光膜、低反射膜あるいは低反射
膜、+1!元膜、低反射膜からなる2〜3層膜構造の遮
光性多層膜の前記低反射膜の膜厚を調整することにより
、遮光膜と低反射膜との界面の反射光と、低反射膜と空
気あるいは前記透光性基板との界面の反射光との干渉効
果を顕著にさせ遮光性多層膜の表裏面からの反射率が、
前記エキシマレーザ光の波長において、極小となるよう
に制御することができるため、ゴーストやフレア等の転
写不良起因の寸法ばらつきを抑制することができる。That is, in a mask using excimer laser light as exposure light, a light-shielding film, a low-reflection film, or a low-reflection film, which is laminated on one main surface of a light-transmitting substrate from the light-transmitting substrate side, +1! By adjusting the film thickness of the low-reflection film of a light-shielding multilayer film with a two- to three-layer film structure consisting of an original film and a low-reflection film, the light reflected at the interface between the light-shielding film and the low-reflection film and the low-reflection film can be reduced. The reflectance from the front and back surfaces of the light-shielding multilayer film increases by making the interference effect between the air and the light reflected from the interface with the light-transmitting substrate significant.
Since the wavelength of the excimer laser light can be controlled to be minimal, it is possible to suppress dimensional variations due to transfer defects such as ghosts and flares.
第1図はクロム膜および酸化クロム膜からなるS元パタ
ーンを有するレチクルの断面図、第2図は前記レチクル
と同一構造の膜を有するクロムブランクスの反射特性を
示す図面、第3図はエキシマレーザ縮小投影露光装置の
光学系な示すrI!Jfである。
1・・・レチクル、2・・・石英基板、3・・・クロム
膜、4・・・酸化クロム膜、5・・・遮光パターン、6
〜11・・・反射率特性曲線、12・・・エキシマレー
ザ縮小投影露光装置、13・・・エキシマレーザ光源、
14・・・反射ミラー、15・・・走査レンズ、16・
・・走査ミラー、17・・・コンデンサレンズ、18・
・・縮小光学系、19・・・牛導体りエーハ。
第 1 図
第2図
第3図
/′:IFig. 1 is a cross-sectional view of a reticle having an S original pattern consisting of a chromium film and a chromium oxide film, Fig. 2 is a drawing showing the reflection characteristics of a chrome blank having a film with the same structure as the reticle, and Fig. 3 is an excimer laser The optical system of the reduction projection exposure apparatus shows rI! It is Jf. DESCRIPTION OF SYMBOLS 1... Reticle, 2... Quartz substrate, 3... Chrome film, 4... Chrome oxide film, 5... Light shielding pattern, 6
~11...Reflectance characteristic curve, 12...Excimer laser reduction projection exposure device, 13...Excimer laser light source,
14... Reflection mirror, 15... Scanning lens, 16.
...Scanning mirror, 17...Condenser lens, 18.
...Reducing optical system, 19...Cow conductor. Figure 1 Figure 2 Figure 3/':I
Claims (1)
スクにおいて、透光性基板の一方の主面上に前記透光性
基板側から積層形成されている遮光膜、低反射膜あるい
は低反射膜、遮光膜、低反射膜からなる2〜3層膜構造
の遮光性多層膜からの反射率が前記エキシマレーザ光の
波長において、極小となるように構成されていることを
特徴としたマスク。 2、前記遮光性多層膜の低反射膜の最適膜厚は、エキシ
マレーザ光の波長によって変動することを特徴とした特
許請求の範囲第1項記載のマスク。 3、前記透光性基板が石英基板であることを特徴とした
特許請求の範囲第1項記載のマスク。 4、前記遮光膜がクロム膜であることを特徴とした特許
請求の範囲第1項記載のマスク。 5、前記低反射膜が酸化クロム膜であることを特徴とし
た特許請求の範囲第1項記載のマスク。[Claims] 1. In a mask when excimer laser light is used as exposure light, a light-shielding film laminated from the light-transmitting substrate side on one main surface of a light-transmitting substrate, and a low reflection film. The invention is characterized in that the reflectance from a light-shielding multilayer film having a two- to three-layer film structure consisting of a film, a low-reflection film, a light-shielding film, and a low-reflection film is minimized at the wavelength of the excimer laser light. mask. 2. The mask according to claim 1, wherein the optimum film thickness of the low reflection film of the light-shielding multilayer film varies depending on the wavelength of the excimer laser beam. 3. The mask according to claim 1, wherein the light-transmitting substrate is a quartz substrate. 4. The mask according to claim 1, wherein the light shielding film is a chromium film. 5. The mask according to claim 1, wherein the low reflection film is a chromium oxide film.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63039378A JPH01214859A (en) | 1988-02-24 | 1988-02-24 | Mask |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63039378A JPH01214859A (en) | 1988-02-24 | 1988-02-24 | Mask |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01214859A true JPH01214859A (en) | 1989-08-29 |
Family
ID=12551362
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63039378A Pending JPH01214859A (en) | 1988-02-24 | 1988-02-24 | Mask |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01214859A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0481752A (en) * | 1990-07-24 | 1992-03-16 | Toppan Printing Co Ltd | Laser mask |
JPH04233542A (en) * | 1990-06-25 | 1992-08-21 | Internatl Business Mach Corp <Ibm> | Aberrasion mask and use thereof |
US5279911A (en) * | 1990-07-23 | 1994-01-18 | Mitsubishi Denki Kabushiki Kaisha | Photomask |
WO2007058199A1 (en) * | 2005-11-16 | 2007-05-24 | Hoya Corporation | Mask blank and photo mask |
JP2007164156A (en) * | 2005-11-16 | 2007-06-28 | Hoya Corp | Mask blank and photomask |
JP2007207964A (en) * | 2006-02-01 | 2007-08-16 | Toppan Printing Co Ltd | Mask for extreme ultraviolet rays exposure, and its manufacturing method, and exposure method of extreme ultraviolet rays |
JP2008116583A (en) * | 2006-11-01 | 2008-05-22 | Hoya Corp | Method of manufacturing mask blank and method of manufacturing photomask, and method of manufacturing reflective mask |
JP2012159855A (en) * | 2012-04-23 | 2012-08-23 | Hoya Corp | Mask blank manufacturing method and mask manufacturing method |
TWI417644B (en) * | 2005-12-26 | 2013-12-01 | Hoya Corp | Mask base and mask |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6146821A (en) * | 1984-08-10 | 1986-03-07 | Matsushita Electric Ind Co Ltd | Electric stove |
-
1988
- 1988-02-24 JP JP63039378A patent/JPH01214859A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6146821A (en) * | 1984-08-10 | 1986-03-07 | Matsushita Electric Ind Co Ltd | Electric stove |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04233542A (en) * | 1990-06-25 | 1992-08-21 | Internatl Business Mach Corp <Ibm> | Aberrasion mask and use thereof |
US5279911A (en) * | 1990-07-23 | 1994-01-18 | Mitsubishi Denki Kabushiki Kaisha | Photomask |
JPH0481752A (en) * | 1990-07-24 | 1992-03-16 | Toppan Printing Co Ltd | Laser mask |
WO2007058199A1 (en) * | 2005-11-16 | 2007-05-24 | Hoya Corporation | Mask blank and photo mask |
JP2007164156A (en) * | 2005-11-16 | 2007-06-28 | Hoya Corp | Mask blank and photomask |
JP4726010B2 (en) * | 2005-11-16 | 2011-07-20 | Hoya株式会社 | Mask blank and photomask |
TWI393998B (en) * | 2005-11-16 | 2013-04-21 | Hoya Corp | Mask base and mask |
TWI417644B (en) * | 2005-12-26 | 2013-12-01 | Hoya Corp | Mask base and mask |
JP2007207964A (en) * | 2006-02-01 | 2007-08-16 | Toppan Printing Co Ltd | Mask for extreme ultraviolet rays exposure, and its manufacturing method, and exposure method of extreme ultraviolet rays |
JP2008116583A (en) * | 2006-11-01 | 2008-05-22 | Hoya Corp | Method of manufacturing mask blank and method of manufacturing photomask, and method of manufacturing reflective mask |
JP2012159855A (en) * | 2012-04-23 | 2012-08-23 | Hoya Corp | Mask blank manufacturing method and mask manufacturing method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101724046B1 (en) | Method of manufacturing photomask blank and method of manufacturing photomask | |
JP4686006B2 (en) | Halftone phase shift photomask, blank for halftone phase shift photomask, and method for manufacturing halftone phase shift photomask | |
WO2018135468A1 (en) | Substrate with conductive film, substrate with multilayer reflective film, reflective mask blank, reflective mask and method for manufacturing semiconductor device | |
KR102741625B1 (en) | Phase shift mask for extreme ultraviolet lithography | |
JP6845122B2 (en) | Reflective mask blank, reflective mask and its manufacturing method, and semiconductor device manufacturing method | |
JP2004207593A (en) | Mask for extreme ultra-violet exposure, blank, and method for pattern transfer | |
KR20180026766A (en) | Mask blank, phase shift mask, method of manufacturing phase shift mask, and method of manufacturing semiconductor device | |
JP2924791B2 (en) | Photomask and method of manufacturing photomask | |
JP3993005B2 (en) | Halftone phase shift mask blank, halftone phase shift mask, method of manufacturing the same, and pattern transfer method | |
JPH01214859A (en) | Mask | |
US6764792B1 (en) | Halftone phase shift photomask and blanks for halftone phase shift photomask for producing it | |
JP2019070854A (en) | Reflective mask blank, reflective mask and method for producing the same, and semiconductor device production method | |
KR20190010686A (en) | Mask blank, transfer mask, manufacturing method of transfer mask, and manufacturing method of semiconductor device | |
JPH10186632A (en) | Blank for halftone type phase shift mask and halftone type phase shift mask | |
JPH04162039A (en) | Photomask | |
JP2012049243A (en) | Reflective mask for euv exposure and method for manufacturing the same | |
JP5121020B2 (en) | Multi-tone photomask, photomask blank, and pattern transfer method | |
US6869734B1 (en) | EUV reflective mask having a carbon film and a method of making such a mask | |
JPH11125896A (en) | Photomask blank and photomask | |
US8916482B2 (en) | Method of making a lithography mask | |
JP3351892B2 (en) | Halftone phase shift photomask and blank for halftone phase shift photomask | |
JP4529359B2 (en) | Ultraviolet exposure mask, blank and pattern transfer method | |
JPH1048806A (en) | Photomask, its production and photomask blank | |
JP2000031021A (en) | Reflective mask and device manufacturing method using the same | |
JP3289606B2 (en) | Blank for halftone type phase shift mask and halftone type phase shift mask |