[go: up one dir, main page]

JP5121020B2 - Multi-tone photomask, photomask blank, and pattern transfer method - Google Patents

Multi-tone photomask, photomask blank, and pattern transfer method Download PDF

Info

Publication number
JP5121020B2
JP5121020B2 JP2008247271A JP2008247271A JP5121020B2 JP 5121020 B2 JP5121020 B2 JP 5121020B2 JP 2008247271 A JP2008247271 A JP 2008247271A JP 2008247271 A JP2008247271 A JP 2008247271A JP 5121020 B2 JP5121020 B2 JP 5121020B2
Authority
JP
Japan
Prior art keywords
film
semi
line
transmittance
transparent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008247271A
Other languages
Japanese (ja)
Other versions
JP2010078923A5 (en
JP2010078923A (en
Inventor
勝 三井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP2008247271A priority Critical patent/JP5121020B2/en
Priority to KR1020090090091A priority patent/KR101156658B1/en
Priority to TW098132359A priority patent/TWI465838B/en
Publication of JP2010078923A publication Critical patent/JP2010078923A/en
Priority to KR1020110086572A priority patent/KR101543288B1/en
Publication of JP2010078923A5 publication Critical patent/JP2010078923A5/ja
Application granted granted Critical
Publication of JP5121020B2 publication Critical patent/JP5121020B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/54Absorbers, e.g. of opaque materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/54Absorbers, e.g. of opaque materials
    • G03F1/58Absorbers, e.g. of opaque materials having two or more different absorber layers, e.g. stacked multilayer absorbers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/033Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
    • H01L21/0334Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • H01L21/0337Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane characterised by the process involved to create the mask, e.g. lift-off masks, sidewalls, or to modify the mask, e.g. pre-treatment, post-treatment

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Description

本発明は、多階調フォトマスク、フォトマスクブランク、及びパターン転写方法等に関する。   The present invention relates to a multi-tone photomask, a photomask blank, a pattern transfer method, and the like.

近年、大型FPD(フラットパネルディスプレイ)用フォトマスクの分野において、半透光性領域(いわゆるグレートーン部)を有する多階調フォトマスク(いわゆるグレートーンマスク)を用いてマスク枚数を削減する試みがなされている(例えば、非特許文献1)。
ここで、多階調フォトマスクは、図11(1)及び図12(1)に示すように、透光性基板上に、露光光を遮光する遮光部1と、露光光を透過する透光部2と、露光光を一部透過する半透光部3とを有する。半透光部3は、遮光部と透光部の中間的な透過率を得るための領域であり、例えば、図11(1)に示すように遮光部と透光部の中間的な透過率を有する半透光膜3a’を形成した領域、あるいは、図12(1)に示すように多階調フォトマスクを使用(搭載)してパターン転写を行う大型FPD用露光機の解像限界以下の微細遮光パターン3a及び微細透過部3b(いわゆるグレートーンパターン)を形成した領域であって、これらの領域を透過する露光光の透過量を低減しこの領域による照射量を低減して、係る領域に対応するフォトレジストの現像後の膜減りした膜厚を所望の値に制御することを目的として形成される。
大型多階調フォトマスクを、ミラープロジェクション方式や、レンズを使ったレンズプロジェクション方式の大型露光装置に搭載して使用する場合、半透光部3を通過した露光光は全体として露光量が足りなくなるため、この半透光部3を介して露光したポジ型フォトレジストは膜厚が薄くなるだけで基板上に残る。つまり、レジストは露光量の違いによって通常の遮光部1に対応する部分と半透光部3に対応する部分で現像液に対する溶解性に差ができるため、現像後のレジスト形状は、図11(2)及び図12(2)に示すように、通常の遮光部1に対応する部分1’が例えば約1μm、半透光部3に対応する部分3’が例えば約0.4〜0.5μm、透光部2に対応する部分はレジストのない部分2’となる。そして、レジストのない部分2’で被加工基板の第1のエッチングを行い、半透光部3に対応する薄い部分3’のレジストをアッシング等によって除去しこの部分で第2のエッチングを行うことによって、1枚のマスクで従来のマスク2枚分の工程を行い、マスク枚数を削減する。
月刊FPD Intelligence、p.31-35、1999年5月
In recent years, in the field of large-scale FPD (flat panel display) photomasks, attempts have been made to reduce the number of masks using a multi-tone photomask (so-called gray-tone mask) having a semi-transparent region (so-called gray-tone portion). (For example, Non-Patent Document 1).
Here, as shown in FIGS. 11A and 12A, the multi-tone photomask has a light-shielding portion 1 that shields exposure light and a light-transmitting light that transmits exposure light on a light-transmitting substrate. Part 2 and semi-translucent part 3 that partially transmits exposure light. The semi-translucent portion 3 is a region for obtaining an intermediate transmittance between the light shielding portion and the light transmitting portion. For example, as shown in FIG. 11 (1), an intermediate transmittance between the light shielding portion and the light transmitting portion. Or below the resolution limit of a large FPD exposure machine that performs pattern transfer using (mounting) a multi-tone photomask as shown in FIG. 12 (1). In which the fine light-shielding pattern 3a and the fine transmissive portion 3b (so-called gray tone pattern) are formed, and the amount of exposure light transmitted through these regions is reduced and the amount of irradiation by this region is reduced. Is formed for the purpose of controlling the reduced film thickness after development of the photoresist corresponding to the desired value.
When a large-scale multi-tone photomask is used in a large-scale exposure apparatus of a mirror projection system or a lens projection system using a lens, the exposure light passing through the semi-transparent portion 3 is insufficient as a whole. Therefore, the positive photoresist exposed through the semi-translucent portion 3 remains on the substrate only by reducing the film thickness. That is, since the resist can have a difference in solubility in the developer between the portion corresponding to the normal light-shielding portion 1 and the portion corresponding to the semi-translucent portion 3 depending on the exposure amount, the resist shape after development is shown in FIG. As shown in 2) and FIG. 12 (2), the portion 1 ′ corresponding to the normal light shielding portion 1 is, for example, about 1 μm, and the portion 3 ′ corresponding to the semi-translucent portion 3 is, for example, about 0.4 to 0.5 μm. The portion corresponding to the translucent portion 2 is a portion 2 ′ having no resist. Then, the first etching of the substrate to be processed is performed in the portion 2 ′ without the resist, the resist of the thin portion 3 ′ corresponding to the semi-translucent portion 3 is removed by ashing or the like, and the second etching is performed in this portion. Thus, the process for two conventional masks is performed with one mask to reduce the number of masks.
Monthly FPD Intelligence, p.31-35, May 1999

ところで、マイクロプロセッサ、半導体メモリ、システムLSIなどの半導体ディバイスを製造するためのLSI用マスクは、最大でも6インチ角程度と相対的に小型であって、ステッパ(ショット−ステップ露光)方式による縮小投影露光装置に搭載されて使用されることが多い。また、LSI用マスクでは、レンズ系による色収差排除及びそれによる解像性向上の観点から、単色の露光光が使用される。このLSI用マスクについての単色の露光波長の短波長化は、超高圧水銀灯のg線(436nm)、i線(365nm)、KrFエキシマレーザ(248nm)、ArFエキシマレーザ(193nm)へと進行してきている。
また、LSI用マスクを製造するための小型マスクブランクにおいては、高いエッチング精度が必要であるため、ドライエッチングによってマスクブランク上に形成された薄膜のパターニングが施される。
これに対し、FPD用大型マスクは、例えば、330mm×450mmから1220mm×1400mmと相対的に大型であって、ミラープロジェクション方式やレンズを使ったレンズプロジェクション方式の露光装置に搭載されて使用されることが多い。また、FPD用大型マスクを、ミラープロジェクション(スキャニング露光方式による、等倍投影露光)方式の露光装置に搭載して使用する場合、(1)反射光学系だけでマスクを介した露光が行われるので、LSI用マスクの如きレンズ系の介在に基づき生じる色収差は問題とならないこと、及び、(2)現状では多色波露光の影響(透過光や反射光に基づく干渉や、色収差の影響など)を検討するよりも、単色波露光に比べ大きな露光光強度を確保した方が総合的な生産面から有利であることから、またレンズ方式の大型露光装置に搭載して使用する場合上記(2)に記載したことなどから、超高圧水銀灯のi〜g線の広い帯域を利用し多色波露光を実施している。複数の波長による露光(多色波露光)処理の利点は、露光光強度が、単一波長による露光(単色波露光)の場合に比べて大きくできることである。例えば、i線のみ、又はg線のみの単色波露光に比べて、h線を含みi線からg線に亘る波長帯域の光で露光を行うほうが、露光光強度は大きい。このため、デバイスの生産性を向上させることができる。また、例えば、FPDデバイス等の大型のディスプレイデバイスは、等倍露光法を利用して製造される場合が多い。LSIデバイス等の製造で使われている縮小露光法に比べて等倍露光法では、デバイス面に照射される露光光の入射強度が小さいので、複数の波長を利用することで、デバイス面に照射される露光光の入射強度を補える利点が得られる。
また、FPD用大型マスクの製造においては、大型のドライエッチング装置の作製が難しく、作製したとしても非常に高価で均一にエッチングすることは技術的に難しい。このようなことから、FPD用大型マスクを製造するための大型マスクブランクにおいては、コスト面及びスループットを重視してエッチング液を用いたウエットエッチングを採用し、マスクブランク上に形成された薄膜のパターニングが施されることが多い。
By the way, an LSI mask for manufacturing a semiconductor device such as a microprocessor, a semiconductor memory, or a system LSI is relatively small at a maximum of about 6 inches square, and is reduced projection by a stepper (shot-step exposure) method. Often used in an exposure apparatus. In the LSI mask, monochromatic exposure light is used from the viewpoint of eliminating chromatic aberration due to the lens system and improving the resolution. The shortening of the monochromatic exposure wavelength for LSI masks has progressed to g-line (436 nm), i-line (365 nm), KrF excimer laser (248 nm), and ArF excimer laser (193 nm) for ultra-high pressure mercury lamps. Yes.
In addition, since a small mask blank for manufacturing an LSI mask requires high etching accuracy, a thin film formed on the mask blank is patterned by dry etching.
On the other hand, a large mask for FPD is relatively large, for example, from 330 mm × 450 mm to 1220 mm × 1400 mm, and is used by being mounted on a mirror projection type or a lens projection type exposure apparatus using a lens. There are many. In addition, when a large FPD mask is mounted on an exposure apparatus using a mirror projection (scanning exposure method, equal-magnification projection exposure) method, (1) exposure is performed through the mask only with a reflective optical system. Chromatic aberration caused by the lens system such as LSI mask is not a problem, and (2) the influence of multicolor wave exposure (interference based on transmitted light and reflected light, influence of chromatic aberration, etc.) at present. Compared to monochromatic wave exposure, it is advantageous from the viewpoint of overall production to secure a large exposure light intensity compared to monochromatic wave exposure. From what has been described, multicolor wave exposure is performed using a wide band of ig lines of an ultrahigh pressure mercury lamp. The advantage of the exposure (multicolor wave exposure) processing with a plurality of wavelengths is that the exposure light intensity can be increased as compared with the exposure with a single wavelength (monochromatic wave exposure). For example, the exposure light intensity is higher when the exposure is performed with light in the wavelength band including the h line and extending from the i line to the g line, as compared with the monochromatic exposure using only the i line or only the g line. For this reason, the productivity of the device can be improved. In addition, for example, large display devices such as FPD devices are often manufactured using the same magnification exposure method. Compared with the reduced exposure method used in the manufacture of LSI devices, etc., in the 1X exposure method, the incident intensity of the exposure light applied to the device surface is small, so the device surface can be irradiated by using multiple wavelengths. The advantage of compensating the incident intensity of the exposure light to be obtained can be obtained.
In manufacturing a large mask for FPD, it is difficult to manufacture a large dry etching apparatus, and even if manufactured, it is very expensive and technically difficult to etch uniformly. For this reason, in a large mask blank for manufacturing a large mask for FPD, wet etching using an etchant is adopted with emphasis on cost and throughput, and patterning of a thin film formed on the mask blank is performed. Is often applied.

近年、FPD用大型多階調フォトマスクの要求精度(規格値)が厳しくなってきている。これと同時にコスト削減も要望されている。
そこで、本発明者らは、FPD用大型多階調フォトマスクブランク及びフォトマスクに関し、半透光膜及び遮光膜のそれぞれにウエットエッチングによるパターニングが施される場合について、厳しくなる要求精度(規格値)を満たすための課題について検討した。
その結果、
(1)半透光膜のi線〜g線の波長帯域に亘る透過率変化量を抑制すること、
(2)半透光膜を透過する露光光の透過率を所望の値に調整すること(特に微調整が容易であること)、
(3)欠陥の少ない製造プロセスを採用できること、
は両立が困難であることがわかった。
このことを、以下で詳しく説明する。
まず、前提として、ウエットエッチングを用いて作製されるFPD用大型多階調フォトマスクにおける遮光膜としては、Cr系遮光膜が通常使用される。
半透光膜としてMoSiNを用いるFPD用大型多階調フォトマスクブランク及びフォトマスクでは、基板側から基板\MoSiN半透光膜\Cr系遮光膜のフォトマスクブランク(従来例1)が用いられる。このとき、MoSiN半透光膜は、i線−g線間の透過率変動が相対的に大きいが、所定の透過率得るための膜厚が相対的に厚い(例えば約20〜35nm)ため、膜厚による透過率調整及び透過率制御が容易である。また、半透光膜としてMoSiNを用いる場合は、半透光膜先付け・半透光膜後付けの双方のプロセスを採用可能である。
半透光膜としてCrNを用いるFPD用大型多階調フォトマスクブランク及びフォトマスク(従来例2)においては、CrN半透光膜は、i線−g線間の透過率変動が相対的に小さいが、所定の透過率を得るための膜厚が相対的に薄い(例えば約10nm以下と非常に薄い)ため、膜厚による透過率調整や制御が難しい。また、CrN半透光膜は、Cr系遮光膜とのエッチング選択性がほとんどないため、Cr系遮光膜の成膜とパターニングをまず行い、その後に、CrN半透光膜の成膜とパターニングを行う必要がある(いわゆる半透光膜後付けプロセスの採用が必須となる)。半透光膜後付けプロセスの場合、成膜とその膜のパターニングの一連の工程を2回に分けて行う必要があるので、半透光膜先付けプロセスに比べ、欠陥が増加する。
上記のように、従来例1と2の双方の利点を有し、双方の欠点を解消する技術の提案は未だなされていない。つまり、上記(1)〜(3)を両立しうる技術の提案は未だなされていない。
In recent years, the required accuracy (standard value) of a large-scale multi-tone photomask for FPD has become stricter. At the same time, cost reduction is also desired.
Accordingly, the present inventors have related to large-scale multi-tone photomask blanks and photomasks for FPD, and the required accuracy (standard value) becomes severe when patterning by wet etching is performed on each of the semi-transparent film and the light shielding film. ) We examined issues to satisfy.
as a result,
(1) Suppressing the transmittance change amount over the wavelength band of i-line to g-line of the semi-transparent film,
(2) adjusting the transmittance of the exposure light transmitted through the semi-transparent film to a desired value (especially fine adjustment is easy);
(3) A manufacturing process with few defects can be adopted.
Was found to be difficult to achieve.
This will be described in detail below.
First, as a premise, a Cr-based light-shielding film is usually used as a light-shielding film in a large-scale multi-tone photomask for FPD manufactured by wet etching.
In a large-scale multi-tone photomask blank for FPD and a photomask using MoSiN as a semi-transparent film, a photomask blank (conventional example 1) of substrate \ MoSiN semi-transparent film \ Cr-based light-shielding film is used from the substrate side. At this time, the MoSiN translucent film has a relatively large transmittance fluctuation between the i-line and the g-line, but the film thickness for obtaining a predetermined transmittance is relatively thick (for example, about 20 to 35 nm). It is easy to adjust the transmittance and control the transmittance by the film thickness. In addition, when MoSiN is used as the semi-transparent film, both processes of semi-transparent film front attachment and semi-transparent film retrofit can be employed.
In a large-scale multi-tone photomask blank for FPD and a photomask (conventional example 2) that use CrN as a semi-transparent film, the CrN semi-transparent film has a relatively small transmittance variation between i-line and g-line. However, since the film thickness for obtaining the predetermined transmittance is relatively thin (for example, very thin, about 10 nm or less), it is difficult to adjust and control the transmittance depending on the film thickness. In addition, since the CrN semi-transparent film has almost no etching selectivity with the Cr-based light-shielding film, the Cr-based light-shielding film is first formed and patterned, and then the CrN semi-transparent film is formed and patterned. (It is essential to adopt a so-called semi-transparent film post-attachment process). In the case of the semi-transparent film post-attachment process, since a series of steps of film formation and patterning of the film needs to be performed in two steps, defects are increased as compared with the semi-transparent film pre-attach process.
As described above, there has not been proposed a technique that has the advantages of both of the conventional examples 1 and 2 and eliminates the disadvantages of both. That is, the proposal of the technique which can make said (1)-(3) compatible is not made yet.

本発明は、FPD用大型多階調フォトマスクブランク及びフォトマスクに関し、
(1)半透光膜のi線〜g線の波長帯域に亘る透過率変化量を抑制すること、
(2)半透光膜を透過する露光光の透過率を所望の値に調整すること(特に微調整が容易であること)、
(3)欠陥の少ない製造プロセスを採用できること、
を両立しうる技術の提供を目的とする。
The present invention relates to a large-scale multi-tone photomask blank for FPD and a photomask,
(1) Suppressing the transmittance change amount over the wavelength band of i-line to g-line of the semi-transparent film,
(2) adjusting the transmittance of the exposure light transmitted through the semi-transparent film to a desired value (especially fine adjustment is easy);
(3) A manufacturing process with few defects can be adopted.
The purpose is to provide technology that can achieve both.

本発明者らは、上記課題を解決すべく、鋭意研究開発を行った。その結果、
(i)半透光膜は、i線〜g線の波長帯域に亘る露光光に対する透過率スペクトルが互いに異なる2以上の半透光膜の積層膜とし、これにより、
(ii)前記積層膜からなる半透光膜は、2以上の半透光膜の積層によって、前記積層膜からなる半透光膜を透過するi線〜g線の波長帯域に亘る露光光に対する透過率変化量が適切に制御でき、かつ、
前記積層膜からなる半透光膜は、2以上の半透光膜の積層によって、前記積層膜からなる半透光膜を透過する露光光の透過率が適切に制御できる、
ことを見い出した。これにより、上記(1)〜(3)を両立しうるFPD用大型多階調フォトマスクブランク及びフォトマスクを得ることが可能となることを見い出した。
更に、本発明者は、前記積層膜を構成する各半透光膜の材料が同じであっても、各半透光膜の膜厚によってi線〜g線の波長帯域に亘る透過率変化量の抑制効果が得られたり、得られなかったりすることを見い出した。このことに基づいて、本発明者は、
(iii)「前記積層膜からなる半透光膜は、2以上の半透光膜の積層によって、前記積層膜からなる半透光膜を透過するi線〜g線の波長帯域に亘る露光光に対する透過率変化量が制御(所望の値に抑制)でき、かつ、
前記積層膜からなる半透光膜は、2以上の半透光膜の積層によって、前記積層膜からなる半透光膜を透過する露光光の透過率が制御(所望の値に制御)できる、」ように前記積層膜を構成する各半透光膜の材料及び膜厚を選択する(調整する)ことによって、上記(1)〜(3)を両立しうるFPD用大型多階調フォトマスクブランク及びフォトマスクが得られることを見い出し、本発明に至った。
In order to solve the above-mentioned problems, the present inventors have conducted intensive research and development. as a result,
(I) The semi-transparent film is a laminated film of two or more semi-transparent films having different transmittance spectra for exposure light over the wavelength band of i-line to g-line,
(Ii) The semi-transparent film made of the laminated film is formed by laminating two or more semi-transmissive films with respect to exposure light over a wavelength band of i-line to g-line that passes through the semi-transmissive film made of the laminated film. The transmittance change amount can be controlled appropriately, and
The translucent film made of the laminated film can appropriately control the transmittance of the exposure light transmitted through the semi-transmissive film made of the laminated film by laminating two or more semi-transmissive films.
I found out. As a result, it has been found that it is possible to obtain a large-scale multi-tone photomask blank for FPD and a photomask that can satisfy the above (1) to (3).
Furthermore, the present inventor, even if the material of each semi-transparent film constituting the laminated film is the same, the amount of change in transmittance over the wavelength band of i-line to g-line depending on the film thickness of each semi-transparent film It has been found that the suppression effect is not obtained. Based on this, the present inventor
(Iii) “The semi-transparent film made of the laminated film is an exposure light over a wavelength band of i-line to g-line that is transmitted through the semi-transparent film made of the laminated film by laminating two or more semi-transparent films. The amount of change in transmittance with respect to can be controlled (suppressed to a desired value) and
The translucent film made of the laminated film can control (control to a desired value) the transmittance of exposure light transmitted through the semi-transmissive film made of the laminated film by laminating two or more semi-transmissive films. By selecting (adjusting) the material and film thickness of each semi-translucent film constituting the laminated film as described above, a large-scale multi-tone photomask blank for FPD that can satisfy the above (1) to (3) In addition, the inventors have found that a photomask can be obtained, and have reached the present invention.

本発明方法は、以下の構成を有する。
(構成1)
透光性基板上に、露光光の一部を透過する半透光膜と露光光を遮光する遮光膜をこの順で有し、前記半透光膜と前記遮光膜にそれぞれパターニングが施されることにより、露光光を透過する透光部、露光光を一部透過する半透光部、露光光を遮光する遮光部が形成された多階調フォトマスクを作製するためのフォトマスクブランクであって、
前記半透光膜は、i線〜g線の波長帯域に亘る露光光に対する透過率スペクトルが互いに異なる2以上の半透光膜の積層膜からなり、
前記積層膜からなる半透光膜は、2以上の半透光膜の積層によって、前記積層膜からなる半透光膜を透過するi線〜g線の波長帯域に亘る露光光に対する透過率変化量が制御され、かつ、
前記積層膜からなる半透光膜は、2以上の半透光膜の積層によって、前記積層膜からなる半透光膜を透過する露光光の透過率が制御され、
たものであることを特徴とするフォトマスクブランク。
(構成2)
前記積層膜を構成する少なくとも一方の半透光膜は、i線〜g線の波長帯域に亘る透過率変化量を抑制する機能を有する膜であり、かつ、
前記積層膜を構成する少なくとも一方の半透光膜の膜厚を調整することによって、前記積層膜からなる半透光膜を透過する露光光の透過率を所望の値に調整することを特徴とする構成1記載のフォトマスクブランク。
(構成3)
前記積層膜からなる半透光膜は、i線〜g線の波長帯域に亘る露光光に対する透過率変化量が、2.0%以下であることを特徴とする構成1又は2に記載のフォトマスクブランク。
(構成4)
透光性基板上に、
クロムと窒素を含む材料からなる半透光膜と、モリブデンとシリコンを含む材料又はモリブデンとシリコンと窒素を含む材料からなる半透光膜と、をこの順で積層してなる半透光膜の積層膜と、
クロムを含む材料からなる遮光膜と、
をこの順で積層してなることを特徴とする構成1〜3のいずれか一項に記載のフォトマスクブランク。
(構成5)
透光性基板上に、露光光の一部を透過する半透光膜と露光光を遮光する遮光膜をこの順で有し、前記半透光膜と前記遮光膜にそれぞれパターニングが施されることにより、露光光を透過する透光部、露光光を一部透過する半透光部、露光光を遮光する遮光部が形成された多階調フォトマスクであって、
前記半透光膜は、i線〜g線の波長帯域に亘る露光光に対する透過率スペクトルが互いに異なる2以上の半透光膜の積層膜からなり、
前記積層膜からなる半透光膜は、2以上の半透光膜の積層によって、前記積層膜からなる半透光膜を透過するi線〜g線の波長帯域に亘る露光光に対する透過率変化量が制御され、かつ、
前記積層膜からなる半透光膜は、2以上の半透光膜の積層によって、前記積層膜からなる半透光膜を透過する露光光の透過率が制御され、
たものであることを特徴とする多階調フォトマスク。
(構成6)
前記半透光部は、透光性基板上に、前記積層構造の半透光膜で構成される半透光部が形成されてなることを特徴とする構成5に記載の多階調フォトマスク。
(構成7)
前記半透光部は、露光光の透過率の異なる第1の半透光部と第2の半透光部を有し、前記第1の半透光部は、透光性基板上に、前記積層構造の半透光膜の下層膜のみで構成される半透光部が形成されてなり、前記第2の半透光部は、透光性基板上に、前記積層構造の半透光膜の下層膜及び上層膜の積層膜で構成される半透光部が形成されてなることを特徴とする構成5に記載の多階調フォトマスク。
(構成8)
構成5〜7のいずれかに記載の多階調フォトマスクを用い、i線〜g線の波長帯域に亘る露光光によって、フォトマスクに形成された多階調パターンを被転写体上に転写する工程を含む、パターン転写方法。
The method of the present invention has the following configuration.
(Configuration 1)
On the translucent substrate, a semi-transparent film that transmits part of the exposure light and a light-shield film that shields the exposure light are provided in this order, and the semi-transparent film and the light-shield film are respectively patterned. Thus, a photomask blank for producing a multi-tone photomask in which a light-transmitting part that transmits exposure light, a semi-light-transmitting part that partially transmits exposure light, and a light-shielding part that blocks exposure light is formed. And
The semi-transparent film is a laminated film of two or more semi-transparent films having different transmittance spectra for exposure light over the wavelength band of i-line to g-line,
The semi-transparent film made of the laminated film is a change in transmittance with respect to exposure light over the wavelength band of i-line to g-line that is transmitted through the semi-transparent film made of the laminated film by laminating two or more semi-transparent films. The amount is controlled, and
The translucent film made of the laminated film has a transmittance of exposure light that is transmitted through the translucent film made of the laminated film is controlled by laminating two or more translucent films,
A photomask blank characterized by
(Configuration 2)
At least one semi-transparent film constituting the laminated film is a film having a function of suppressing a transmittance change amount over a wavelength band of i-line to g-line, and
By adjusting the film thickness of at least one semi-transparent film constituting the laminated film, the transmittance of exposure light transmitted through the semi-transparent film made of the laminated film is adjusted to a desired value. A photomask blank according to Configuration 1.
(Configuration 3)
3. The photo according to configuration 1 or 2, wherein the translucent film made of the laminated film has a transmittance change amount with respect to exposure light over a wavelength band of i-line to g-line of 2.0% or less. Mask blank.
(Configuration 4)
On the translucent substrate,
A semi-transparent film made of a material containing chromium and nitrogen and a semi-transparent film made of molybdenum and silicon or a semi-transparent film made of molybdenum, silicon and nitrogen. A laminated film;
A light shielding film made of a material containing chromium;
These are laminated | stacked in this order, The photomask blank as described in any one of the structures 1-3 characterized by the above-mentioned.
(Configuration 5)
On the translucent substrate, a semi-transparent film that transmits part of the exposure light and a light-shield film that shields the exposure light are provided in this order, and the semi-transparent film and the light-shield film are respectively patterned. A multi-tone photomask in which a translucent part that transmits exposure light, a semi-transparent part that partially transmits exposure light, and a light-shielding part that shields exposure light are formed,
The semi-transparent film is a laminated film of two or more semi-transparent films having different transmittance spectra for exposure light over the wavelength band of i-line to g-line,
The semi-transparent film made of the laminated film is a change in transmittance with respect to exposure light over the wavelength band of i-line to g-line that is transmitted through the semi-transparent film made of the laminated film by laminating two or more semi-transparent films. The amount is controlled, and
The translucent film made of the laminated film has a transmittance of exposure light that is transmitted through the translucent film made of the laminated film is controlled by laminating two or more translucent films,
A multi-tone photomask characterized by that.
(Configuration 6)
6. The multi-tone photomask according to Configuration 5, wherein the semi-transparent portion is formed by forming a semi-transparent portion composed of the semi-transparent film having the laminated structure on a translucent substrate. .
(Configuration 7)
The semi-transparent portion has a first semi-transparent portion and a second semi-transparent portion having different exposure light transmittances, and the first semi-transparent portion is formed on the translucent substrate. A semi-translucent portion composed only of a lower layer film of the semi-transparent film having the laminated structure is formed, and the second semi-transparent portion is formed on the translucent substrate. 6. The multi-tone photomask according to Structure 5, wherein a semi-translucent portion composed of a laminated film of a lower layer film and an upper layer film is formed.
(Configuration 8)
Using the multi-tone photomask according to any one of Structures 5 to 7, the multi-tone pattern formed on the photomask is transferred onto the transfer object by exposure light over the wavelength band of i-line to g-line. A pattern transfer method including a step.

本発明によれば、下記(1)〜(3)を両立しうるFPD用大型多階調フォトマスクブランク及びフォトマスク並びにそれらの製造方法を提供できる。
(1)半透光膜のi線〜g線の波長帯域に亘る透過率変化量を抑制すること、
(2)半透光膜を透過する露光光の透過率を所望の値に調整すること(特に微調整が容易であること)、
(3)欠陥の少ないプロセスを採用できること。
According to the present invention, it is possible to provide a large-scale multi-tone photomask blank for FPD and a photomask that can satisfy the following (1) to (3), and a method for manufacturing them.
(1) Suppressing the transmittance change amount over the wavelength band of i-line to g-line of the semi-transparent film,
(2) adjusting the transmittance of the exposure light transmitted through the semi-transparent film to a desired value (especially fine adjustment is easy);
(3) A process with few defects can be adopted.

以下、本発明を詳細に説明する。
本発明のフォトマスクブランク及び多階調フォトマスクは、
透光性基板上に、露光光の一部を透過する半透光膜と露光光を遮光する遮光膜をこの順で有し、前記半透光膜と前記遮光膜にそれぞれパターニングが施されることにより、露光光を透過する透光部、露光光を一部透過する半透光部、露光光を遮光する遮光部が形成された多階調フォトマスクであって、又はこの多階調フォトマスクを作製するためのフォトマスクブランクであって、
前記半透光膜は、i線〜g線の波長帯域に亘る露光光に対する透過率スペクトルが互いに異なる2以上の半透光膜の積層膜からなり、
前記積層膜からなる半透光膜は、2以上の半透光膜の積層によって、前記積層膜からなる半透光膜を透過するi線〜g線の波長帯域に亘る露光光に対する透過率変化量が制御され、かつ、
前記積層膜からなる半透光膜は、2以上の半透光膜の積層によって、前記積層膜からなる半透光膜を透過する露光光の透過率が制御され、
たものであることを特徴とする(構成1、構成5)。
上記構成1、構成5に係る発明によれば、下記(1)〜(3)を両立しうるFPD用大型多階調フォトマスクブランク及びフォトマスク並びにそれらの製造方法の提供が可能となる。
(1)半透光膜のi線〜g線の波長帯域に亘る透過率変化量を抑制すること、
(2)半透光膜を透過する露光光の透過率を所望の値に調整すること(特に微調整が容易であること)、
(3)欠陥の少ないプロセスを採用できること。
Hereinafter, the present invention will be described in detail.
The photomask blank and multi-tone photomask of the present invention are
On the translucent substrate, a semi-transparent film that transmits part of the exposure light and a light-shield film that shields the exposure light are provided in this order, and the semi-transparent film and the light-shield film are respectively patterned. A multi-tone photomask having a light-transmitting portion that transmits exposure light, a semi-light-transmitting portion that partially transmits exposure light, and a light-shielding portion that blocks exposure light, or the multi-tone photomask. A photomask blank for producing a mask,
The semi-transparent film is a laminated film of two or more semi-transparent films having different transmittance spectra for exposure light over the wavelength band of i-line to g-line,
The semi-transparent film made of the laminated film is a change in transmittance with respect to exposure light over the wavelength band of i-line to g-line that is transmitted through the semi-transparent film made of the laminated film by laminating two or more semi-transparent films. The amount is controlled, and
The translucent film made of the laminated film has a transmittance of exposure light that is transmitted through the translucent film made of the laminated film is controlled by laminating two or more translucent films,
(Configuration 1, Configuration 5).
According to the inventions according to configurations 1 and 5, it is possible to provide a large-scale multi-tone photomask blank for FPD and a photomask that can satisfy the following (1) to (3), and a method for manufacturing them.
(1) Suppressing the transmittance change amount over the wavelength band of i-line to g-line of the semi-transparent film,
(2) adjusting the transmittance of the exposure light transmitted through the semi-transparent film to a desired value (especially fine adjustment is easy);
(3) A process with few defects can be adopted.

本発明のフォトマスクブランク及びフォトマスクは、上述したように、「前記積層膜からなる半透光膜は、2以上の半透光膜の積層によって、前記積層膜からなる半透光膜を透過するi線〜g線の波長帯域に亘る露光光に対する透過率変化量が制御(所望の値に抑制)でき、かつ、
前記積層膜からなる半透光膜は、2以上の半透光膜の積層によって、前記積層膜からなる半透光膜を透過する露光光の透過率が制御(所望の値に抑制)できる、」ように前記積層膜を構成する各半透光膜の材料及び膜厚を選択する(調整する)ことを特徴とするものであると言える。
これによって、上記(1)〜(3)を両立しうるFPD用大型多階調フォトマスクブランク及びフォトマスクが得られる。
具体的には、例えば、半透光膜は、基板側からCrN\MoSiNの積層膜とする。MoSiNの膜厚が適当である場合(膜厚が相対的に小さい場合)、i線〜g線の波長帯域に亘る透過率変化量を1.5%以下に抑制する効果得られる。また、MoSiNの膜厚で透過率の微調整が可能となる。これに対し、MoSiNの膜厚が適当でない場合(膜厚が相対的に大きい場合)、i線〜g線の波長帯域に亘る透過率変化量を抑制する効果得られない。
As described above, the photomask blank and the photomask of the present invention are “a translucent film made of the laminated film is transmitted through the translucent film made of the laminated film by laminating two or more semitransmissive films. The amount of change in transmittance with respect to exposure light over the wavelength band of i-line to g-line can be controlled (suppressed to a desired value), and
The semi-transparent film made of the laminated film can control (suppress to a desired value) the transmittance of exposure light that passes through the semi-transmissive film made of the laminated film by laminating two or more semi-transmissive films. Thus, it can be said that the material and film thickness of each translucent film constituting the laminated film are selected (adjusted).
Thereby, a large-scale multi-tone photomask blank for FPD and a photomask capable of satisfying the above (1) to (3) can be obtained.
Specifically, for example, the semi-transparent film is a laminated film of CrN / MoSiN from the substrate side. When the film thickness of MoSiN is appropriate (when the film thickness is relatively small), an effect of suppressing the transmittance change amount over the wavelength band of i-line to g-line to 1.5% or less can be obtained. Further, the transmittance can be finely adjusted by the film thickness of MoSiN. On the other hand, when the film thickness of MoSiN is not appropriate (when the film thickness is relatively large), the effect of suppressing the transmittance change amount over the wavelength band of i-line to g-line cannot be obtained.

本発明のフォトマスクブランク及びフォトマスクは、
前記積層膜を構成する少なくとも一方の半透光膜は、i線〜g線の波長帯域に亘る透過率変化量を抑制する機能を有する膜であり、かつ、
前記積層膜を構成する少なくとも一方の半透光膜の膜厚を調整することによって、前記積層膜からなる半透光膜を透過する露光光の透過率を所望の値に調整することを特徴とする(構成2)。
上記構成2に係る発明によれば、下記(1)〜(3)を両立しうるFPD用大型多階調フォトマスクブランク及びフォトマスク並びにそれらの製造方法の提供が可能となる。
(1)半透光膜のi線〜g線の波長帯域に亘る透過率変化量を抑制すること、
(2)半透光膜を透過する露光光の透過率を所望の値に調整すること(特に微調整が容易であること)、
(3)欠陥の少ない製造プロセスを採用できること。
The photomask blank and photomask of the present invention are
At least one semi-transparent film constituting the laminated film is a film having a function of suppressing a transmittance change amount over a wavelength band of i-line to g-line, and
By adjusting the film thickness of at least one semi-transparent film constituting the laminated film, the transmittance of exposure light transmitted through the semi-transparent film made of the laminated film is adjusted to a desired value. (Configuration 2).
According to the second aspect of the present invention, it is possible to provide a large-scale multi-tone photomask blank for FPD and a photomask that can satisfy the following (1) to (3), and a method for manufacturing them.
(1) Suppressing the transmittance change amount over the wavelength band of i-line to g-line of the semi-transparent film,
(2) adjusting the transmittance of the exposure light transmitted through the semi-transparent film to a desired value (especially fine adjustment is easy);
(3) A manufacturing process with few defects can be adopted.

上記構成2に係る発明には、以下の態様が含まれる。
(態様1)
i線−g線間の透過率変動が相対的に大きいが、所定の透過率得るための膜厚が相対的に厚いため透過率の調整・制御が容易である膜と、
i線−g線間の透過率変動が相対的に小さいが、所定の透過率得るための膜厚が相対的に薄いため透過率の調整・制御が難しい膜と、
の積層膜で半透光膜を構成する態様。
上記態様1の具体例としては、例えば、基板側からCrN\MoSiNの積層膜で半透光膜を構成する態様が挙げられる。
(態様2)
i線−g線間の透過率変動が相対的に小さく、所定の透過率得るための膜厚が相対的に厚いため透過率の調整・制御が容易である膜と、
i線−g線間の透過率変動が相対的に小さいが、所定の透過率得るための膜厚が相対的に薄いため透過率の調整・制御が難しい膜と、
の積層膜で半透光膜を構成する態様。
上記態様2の具体例としては、例えば、基板側からCrN\MoSiの積層膜で半透光膜を構成する態様が挙げられる。この場合、CrN膜、MoSi膜の何れか一方の膜又は双方の膜の膜厚で透過率の調整が可能となる。また、MoSi膜の成膜条件によってMoSi膜の透過率を調整することによって、積層膜からなる半透光膜の透過率を調整することも可能である。さらに、MoSiNの膜厚で透過率の微調整が可能となる。
なお、上記態様1、2において、i線−g線間の透過率変動が相対的に小さいが、所定の透過率得るための膜厚が相対的に薄いため透過率の調整・制御が難しい膜は、下層(基板側の層)とすることができ、上層(遮光膜側の層)とすることもできる。
The invention according to Configuration 2 includes the following aspects.
(Aspect 1)
Although the transmittance fluctuation between the i-line and the g-line is relatively large, a film whose transmittance is easily adjusted and controlled because the film thickness for obtaining a predetermined transmittance is relatively thick,
Although the transmittance fluctuation between the i-line and the g-line is relatively small, the film is difficult to adjust and control the transmittance because the film thickness for obtaining a predetermined transmittance is relatively thin,
The aspect which comprises a semi-translucent film with the laminated film of.
As a specific example of the above-described aspect 1, for example, an aspect in which a semi-transparent film is formed from a laminated film of CrN / MoSiN from the substrate side can be cited.
(Aspect 2)
a film in which the transmittance fluctuation between the i-line and the g-line is relatively small, and the film thickness for obtaining a predetermined transmittance is relatively thick, so that the transmittance can be easily adjusted and controlled;
Although the transmittance fluctuation between the i-line and the g-line is relatively small, the film is difficult to adjust and control the transmittance because the film thickness for obtaining a predetermined transmittance is relatively thin,
The aspect which comprises a semi-translucent film with the laminated film of.
As a specific example of the above-mentioned aspect 2, for example, an aspect in which a semi-transparent film is formed from a laminated film of CrN / MoSi from the substrate side can be cited. In this case, the transmittance can be adjusted by the film thickness of one or both of the CrN film and the MoSi film. It is also possible to adjust the transmittance of the semi-transparent film made of a laminated film by adjusting the transmittance of the MoSi film according to the deposition conditions of the MoSi film. Further, the transmittance can be finely adjusted by the film thickness of MoSiN.
In addition, in the first and second aspects, the transmittance fluctuation between the i-line and the g-line is relatively small, but the film for obtaining the predetermined transmittance is relatively thin, so that it is difficult to adjust and control the transmittance. Can be a lower layer (layer on the substrate side) or an upper layer (layer on the light shielding film side).

本発明のフォトマスクブランク及びフォトマスクにおいて、積層膜からなる半透光膜は、i線〜g線の波長帯域に亘る透過率変化量が、2.0%以下であることが好ましい(構成3)。
厳しくなる要求精度(規格値)を満たすためである。また、半透光膜のi線〜g線の波長帯域に亘る透過率変化量を小さく抑制することによる効果が、大きく得られるからである。
同様の観点から、積層膜からなる半透光膜は、i線〜g線の波長帯域に亘る透過率変化量が、1.5%以下であることが更に好ましい。
In the photomask blank and the photomask of the present invention, the translucent film made of a laminated film preferably has a transmittance change amount of 2.0% or less over the wavelength band of i-line to g-line (Configuration 3). ).
This is because the required accuracy (standard value) becomes stricter. Moreover, it is because the effect by suppressing the transmittance | permeability change amount over the wavelength range | band of i line | wire -g line | wire of a semi-transparent film | membrane small is acquired largely.
From the same viewpoint, it is more preferable that the translucent film made of a laminated film has a transmittance change amount of 1.5% or less over the wavelength band of i-line to g-line.

本発明のフォトマスクブランク及びフォトマスクにおいて、前記積層膜を構成する少なくとも一方の半透光膜は、i線〜g線の波長帯域に亘る露光光に対する透過率変化量(i線〜g線の波長帯域における透過率の最大値と最小値との差)が、1.5%以下となる材料からなることが好ましい。
このような材料としては、MoSi、CrNなどが挙げられる。これらのなかでも、(a)i線〜g線の波長帯域に亘る露光光に対する透過率の波長依存性が小さいこと、(b)耐薬品性(耐洗浄性)及び耐光性に優れること、(c)エッチング速度を制御できること、(d)他方の半透光膜(例えばMoSiN、MoSi等)のエッチング液に対してエッチング選択性が十分にあり、そのため他方の半透光膜(例えばMoSiN、MoSi等)のエッチングに際して半透光膜が受けるダメージが小さいこと、などの点から、CrNが最も好ましい。
In the photomask blank and the photomask of the present invention, at least one semi-transparent film constituting the laminated film has a transmittance change amount (i-line to g-line) with respect to exposure light over a wavelength band of i-line to g-line. The difference between the maximum value and the minimum value of transmittance in the wavelength band is preferably 1.5% or less.
Examples of such a material include MoSi and CrN. Among these, (a) the wavelength dependency of the transmittance with respect to the exposure light over the wavelength band of i-line to g-line is small, (b) excellent chemical resistance (cleaning resistance) and light resistance, c) The etching rate can be controlled, and (d) the etching selectivity of the other semi-transparent film (eg, MoSiN, MoSi, etc.) is sufficiently high, so that the other semi-transparent film (eg, MoSiN, MoSi) Etc.) CrN is most preferable from the viewpoint that the semi-translucent film undergoes little damage during the etching.

本発明のフォトマスクブランク及びフォトマスクは、例えば、
透光性基板上に、
クロムと窒素を含む材料からなる半透光膜と、モリブデンとシリコンを含む材料又はモリブデンとシリコンと窒素を含む材料からなる半透光膜と、をこの順で積層してなる半透光膜の積層膜と、
クロムを含む材料からなる遮光膜と、
をこの順で積層してなる態様が含まれる(構成4)。
The photomask blank and photomask of the present invention are, for example,
On the translucent substrate,
A semi-transparent film made of a material containing chromium and nitrogen and a semi-transparent film made of molybdenum and silicon or a semi-transparent film made of molybdenum, silicon and nitrogen. A laminated film;
A light shielding film made of a material containing chromium;
Are included in this order (Configuration 4).

本発明のフォトマスクブランク及びフォトマスクにおいて、基板側からCrN\MoSiNの積層膜からなる半透光膜を用いる場合は、以下の効果が得られる。
1)MoSiNの膜厚を適当な厚さとすることによって、i線〜g線の波長帯域に亘る透過率変化量を1.5%以下に抑制する効果が得られる。
2)CrN単層膜を用いる場合(従来例2)に比べ、所望の透過率への調整・制御が容易であり、特に透過率の微調整が容易である。
3)半透光膜先付けプロセスが使用可能である。
4)MoSiN単層膜を用いる場合(従来例1)に比べ、MoSiN膜を薄くできるのでエッチング時間の短縮が可能となる。具体的には、従来例1に比べ、膜厚約1/3で、ジャストエッチングタイム約1/5となる。
5)MoSi系単層膜(MoSi、MoSiN等)に比べ、積層膜の状態でシート抵抗が低い。これは、MoSi系膜は非導電性だが下層に接するCrN膜のトンネル効果で導電性が得られると考えられる。
6)MiSi系単層膜(MoSi、MoSiN等)に比べ耐光性・耐薬性に優れる。CrN膜も耐光性・耐薬性に優れるので、積層膜からなる半透光膜として耐光性・耐薬性に優れる。
7)基板側から半透光性のCrN膜(下層)と、これと接する半透光性のMoSi膜(上層)と、これと接するCr系の遮光膜と、の積層構造における各層の間で高いエッチング選択比が得られる。
In the photomask blank and the photomask of the present invention, the following effects can be obtained when a semi-transparent film made of a laminated film of CrN / MoSiN is used from the substrate side.
1) By setting the film thickness of MoSiN to an appropriate thickness, the effect of suppressing the transmittance change amount over the wavelength band of i-line to g-line to 1.5% or less can be obtained.
2) Compared with the case of using a CrN single layer film (conventional example 2), adjustment and control to a desired transmittance are easy, and fine adjustment of the transmittance is particularly easy.
3) A semi-transparent film prior process can be used.
4) Compared with the case of using the MoSiN single layer film (conventional example 1), the MoSiN film can be made thinner, so that the etching time can be shortened. Specifically, compared to the conventional example 1, the film thickness is about 1/3 and the just etching time is about 1/5.
5) The sheet resistance is lower in the state of the laminated film than the MoSi single-layer film (MoSi, MoSiN, etc.). This is presumably because the MoSi-based film is nonconductive, but the conductivity is obtained by the tunnel effect of the CrN film in contact with the lower layer.
6) Excellent in light resistance and chemical resistance compared to a MiSi single layer film (MoSi, MoSiN, etc.). Since the CrN film is also excellent in light resistance and chemical resistance, it is excellent in light resistance and chemical resistance as a semi-transparent film made of a laminated film.
7) Between each layer in a laminated structure of a semi-transparent CrN film (lower layer), a semi-transparent MoSi film (upper layer) in contact with the same, and a Cr-based light-shielding film in contact with the same from the substrate side A high etching selectivity can be obtained.

本発明のフォトマスクブランク及びフォトマスクにおいて、積層膜からなる半透光膜は、2層構造(2層膜)とすることができ、3層以上の多層構造(多層膜)とすることも可能である。
本発明において、積層膜を構成する各半透光膜は、金属を含む膜とすることができる。
本発明において、積層膜からなる半透光膜は、積層膜の状態で電気抵抗がシート抵抗値1kΩ/□以下の導電性であることが好ましい。
In the photomask blank and photomask of the present invention, the semi-transparent film made of a laminated film can have a two-layer structure (two-layer film), and can also have a multilayer structure (multi-layer film) of three or more layers. It is.
In the present invention, each translucent film constituting the laminated film can be a film containing a metal.
In the present invention, the semi-transparent film made of a laminated film preferably has an electrical resistance of a sheet resistance value of 1 kΩ / □ or less in the state of the laminated film.

本発明のフォトマスクブランク及びフォトマスクにおいて、半透光膜の材質としては、膜厚を選択することにより、透光部の透過率を100%とした場合に透過率20〜60%程度(好ましくは40〜60%)の半透過性が得られるものが好ましく、例えば、MoSi系材料、Cr化合物(Crの酸化物、窒化物、酸窒化物、フッ化物など)、Si,W,Al等が挙げられる。Si,W,Al等は、その膜厚によって高い遮光性も得られ、或いは半透過性も得られる材質である。
ここで、半透光膜の材料としては、MoとSiで構成されるMoSi系材料に限らず、金属及びシリコン(MSi、M:Mo、Ta、W、Ni、Zr、Ti、Cr等の遷移金属)、酸化窒化された金属及びシリコン(MSiON)、酸化炭化された金属及びシリコン(MSiCO)、酸化窒化炭化された金属及びシリコン(MSiCON)、酸化された金属及びシリコン(MSiO)、窒化された金属及びシリコン(MSiN)、などが挙げられる。
In the photomask blank and the photomask of the present invention, as the material of the semi-transparent film, by selecting the film thickness, the transmissivity of the translucent part is assumed to be 100%. 40 to 60%) is preferable, for example, MoSi-based materials, Cr compounds (Cr oxides, nitrides, oxynitrides, fluorides, etc.), Si, W, Al, etc. Can be mentioned. Si, W, Al, and the like are materials that can provide high light shielding properties or semi-transparency depending on the film thickness.
Here, the material of the semi-transparent film is not limited to the MoSi-based material composed of Mo and Si, but transitions of metals and silicon (MSi, M: Mo, Ta, W, Ni, Zr, Ti, Cr, etc.) Metal), oxynitrided metal and silicon (MSSiON), oxycarbonized metal and silicon (MSiCO), oxynitridized carbon and silicon (MSiCON), oxidized metal and silicon (MSioN), nitrided Examples include metal and silicon (MSiN).

本発明のフォトマスクブランク及びフォトマスクにおいて、遮光膜の材質としては、膜厚を選択することにより高い遮光性が得られるものが好ましく、例えばCr、Si、W、Al等が挙げられる。
遮光膜の材質としては、例えば、CrN、CrO、CrN、CrC、CrONなどCrを主成分とするものが挙げられる。遮光膜は、これらの単層でもこれらを積層したものであっても良い。遮光膜は、好ましくは、Crからなる遮光層にCr化合物(CrO、CrN、又はCrC)からなる反射防止層を積層したものが好ましい。
In the photomask blank and the photomask of the present invention, the material of the light shielding film is preferably one that can obtain high light shielding properties by selecting the film thickness, and examples thereof include Cr, Si, W, and Al.
Examples of the material of the light shielding film include those containing Cr as a main component, such as CrN, CrO, CrN, CrC, and CrON. The light shielding film may be a single layer or a laminate of these. The light shielding film is preferably formed by laminating an antireflection layer made of a Cr compound (CrO, CrN, or CrC) on a light shielding layer made of Cr.

本発明の多階調フォトマスクにおいては、図9(1)に一例を示すように、前記半透光部は、透光性基板21上に、2つの半透光膜22、23を積層した構造の半透光膜のみで構成される半透光部が形成されてなる態様が含まれる(構成6)。
本発明の多階調フォトマスクにおいては、図9(2)に一例を示すように、前記半透光部は、露光光の透過率の異なる第1の半透光部と第2の半透光部を有し、前記第1の半透光部は、透光性基板21上に、前記積層構造の半透光膜の下層膜22のみで構成される半透光部が形成されてなり、前記第2の半透光部は、透光性基板21上に、前記積層構造の半透光膜の下層膜22及び上層膜23の積層膜で構成される半透光部が形成されてなる態様が含まれる(構成7)。この場合、上層の半透光膜23として、一定の透過率を有する半透光膜を用い、上層の半透光膜23を選択的に残すことによって、4階調マスクを得ることが可能となる。
In the multi-tone photomask of the present invention, as shown in FIG. 9 (1), the semi-transparent portion is formed by laminating two semi-transparent films 22 and 23 on a translucent substrate 21. A mode in which a semi-translucent portion composed of only a semi-transparent film having a structure is formed is included (Configuration 6).
In the multi-tone photomask of the present invention, as shown in FIG. 9 (2), the semi-transparent part includes a first semi-transparent part and a second semi-transparent part having different transmittances of exposure light. The first semi-transparent part is formed by forming a semi-transparent part composed only of the lower layer film 22 of the semi-transparent film having the laminated structure on the translucent substrate 21. The second semi-transparent part is formed on the translucent substrate 21 by a semi-transparent part composed of a laminated film of the lower film 22 and the upper film 23 of the semi-transmissive film having the laminated structure. (Configuration 7). In this case, a four-tone mask can be obtained by using a semi-transparent film having a certain transmittance as the upper semi-transparent film 23 and selectively leaving the upper semi-transparent film 23. Become.

本発明において、透光性基板の露出した透光部の露光光透過率を100%としたとき、半透光膜の露光光透過率は20〜60%が好ましく、40〜60%が更に好ましい。ここで透過率とは、多階調フォトマスクを使用する例えば大型LCD用露光機の露光光の波長に対する透過率のことである。
本発明において、形成されるマスクの遮光部は、半透光膜と遮光膜の積層となる場合は、遮光膜単独では遮光性が足りなくても半透光膜と合わせた場合に遮光性が得られれば良い。
本発明において、基板側から半透光膜の下層と、これと接する半透光膜の上層と、これと接する遮光膜とは、基板上に成膜したときに互いに密着性が良好であることが望ましい。
In the present invention, the exposure light transmittance of the translucent film is preferably 20 to 60%, and more preferably 40 to 60%, when the exposure light transmittance of the exposed light transmitting portion of the light transmitting substrate is 100%. . Here, the transmittance is the transmittance with respect to the wavelength of the exposure light of, for example, a large LCD exposure machine using a multi-tone photomask.
In the present invention, when the light-shielding portion of the mask to be formed is a laminate of a semi-transparent film and a light-shielding film, the light-shielding property when the light-shielding film is combined with the semi-transparent film even if the light shielding film alone is not sufficient. It only has to be obtained.
In the present invention, the lower layer of the semi-transparent film, the upper layer of the semi-transparent film in contact with the substrate, and the light-shielding film in contact with the semi-transparent film have good adhesion to each other when formed on the substrate. Is desirable.

本発明では、透光性基板上に半透光膜、遮光膜を成膜する工程を有するが、成膜方法は、スパッタ法、蒸着法、CVD(化学的気相成長)法など、膜種に適した方法を適宜選択すればよい。   In the present invention, the method includes forming a semi-transparent film and a light-shielding film on a light-transmitting substrate. Examples of the film forming method include film types such as sputtering, vapor deposition, and CVD (chemical vapor deposition). A method suitable for the above may be selected as appropriate.

本発明では、金属及び珪素を含む材料からなる半透光膜のエッチング液としては、弗化水素酸、珪弗化水素酸、弗化水素アンモニウムから選ばれる少なくとも一つの弗素化合物と、過酸化水素、硝酸、硫酸から選ばれる少なくとも一つの酸化剤とを含むエッチング液を用いることができる。
本発明では、Crを含む材料のエッチング液としては、硝酸第2セリウムアンモニウムを含むエッチング液を用いることができる。
In the present invention, an etching solution for a semi-transparent film made of a material containing metal and silicon includes at least one fluorine compound selected from hydrofluoric acid, hydrosilicofluoric acid, and ammonium hydrogen fluoride, and hydrogen peroxide. An etching solution containing at least one oxidizing agent selected from nitric acid and sulfuric acid can be used.
In the present invention, an etchant containing ceric ammonium nitrate can be used as the etchant for the material containing Cr.

本発明の多階調フォトマスクは、薄膜トランジスタ(TFT)製造用の多階調フォトマスク及びブランクであり、該半透光部は、該薄膜トランジスタのチャネル部に相当する部分のパターンを転写するものとして好適に使用することができる。
TFT基板製造用のマスクパターンの一例を図13に示す。TFT基板製造用のパターン100は、TFT基板のソース及びドレインに対応するパターン101a、101bからなる遮光部101と、TFT基板のチャネル部に対応するパターンからなる半透光部103と、これらパターンの周囲に形成される透光部102とで構成される。
The multi-tone photomask of the present invention is a multi-tone photomask for manufacturing a thin film transistor (TFT) and a blank, and the semi-transparent portion transfers a pattern of a portion corresponding to a channel portion of the thin film transistor. It can be preferably used.
An example of a mask pattern for manufacturing a TFT substrate is shown in FIG. The TFT substrate manufacturing pattern 100 includes a light-shielding portion 101 composed of patterns 101a and 101b corresponding to the source and drain of the TFT substrate, a semi-transparent portion 103 composed of a pattern corresponding to the channel portion of the TFT substrate, and a pattern of these patterns. It is comprised with the translucent part 102 formed in the circumference | surroundings.

本発明のパターン転写方法は、上記構成5〜7のいずれかに記載のフォトマスクを用い、i線〜g線の波長帯域に亘る露光光によって、フォトマスクに形成された多階調パターンを被転写体上に転写する工程を含むパターン転写方法として好適に使用することができる(構成8)。   The pattern transfer method of the present invention uses the photomask according to any one of the above configurations 5 to 7, and covers the multi-tone pattern formed on the photomask with exposure light over the wavelength band of i-line to g-line. It can be suitably used as a pattern transfer method including a step of transferring onto a transfer body (Configuration 8).

本発明において、i線〜g線の波長帯域に亘る露光光源としては、超高圧水銀灯などが例示されるが、本発明はこれに限定されない。   In the present invention, the exposure light source over the wavelength band of i-line to g-line is exemplified by an ultrahigh pressure mercury lamp, but the present invention is not limited to this.

以下、実施例に基づき本発明をさらに詳細に説明する。
(実施例1)
(フォトマスクブランクの作製)
各種半透光膜を基板上にそれぞれ単層、積層して形成した試料(下記(1)〜(3))を準備した。
(1)CrN膜
Crターゲットを用い、ArとN(8:2sccm)ガスをスパッタリングガスとしてCrN膜(半透光膜)を、露光光源の波長に対する透過率が40%となる膜厚(約88オングストローム)で基板上に成膜した。
得られたCrN膜の、i線(365nm)、h線(405nm)、g線(436nm)における透過率(%)、反射率(%)、i線〜g線の波長帯域における透過率、反射率の最大値と最小値との差、を図1(1)に示す。また、得られたCrN膜の、膜厚、及び、シート抵抗(kΩ/□)、を図1(2)に示す。さらに、得られたCrN膜の、透過率スペクトルを図2に、相対反射率スペクトルを図3に、それぞれ示す。
(2)MoSiN膜
Mo:Si=20:80(原子%比)のターゲットを用い、ArとNをスパッタリングガス(流量比;Ar 5:N50sccm)として、モリブデン及びシリコンの窒化膜からなる半透光膜(MoSiN膜)を、約120オングストロームの膜厚、及び、約330オングストロームの膜厚で、それぞれ基板上に形成した。
得られたMoSiN膜は、膜厚の薄い方をMoSiN−1と表記し、膜厚の厚い方をMoSiN−2と表記する。
得られたMoSiN膜(MoSiN−1、MoSiN−2)の、i線(365nm)、h線(405nm)、g線(436nm)における透過率(%)、反射率(%)、i線〜g線の波長帯域における透過率、反射率の最大値と最小値との差、を図1(1)に示す。また、得られたMoSiN膜(MoSiN−1、MoSiN−2)の、膜厚、及び、シート抵抗(kΩ/□)、を図1(2)に示す。さらに、得られたMoSiN膜(MoSiN−1、MoSiN−2)の、透過率スペクトルを図2に、相対反射率スペクトルを図3に、それぞれ示す。
(3)積層膜
基板上に、上記と同じCrN膜、膜厚の薄い方のMoSiN膜(MoSiN−1)を、この順で形成した試料を、CrN+MoSiN−1と表記する。
基板上に、上記と同じCrN膜、膜厚の厚い方のMoSiN膜(MoSiN−2)を、この順で形成した試料を、CrN+MoSiN−2と表記する。
得られた試料(CrN+MoSiN−1、CrN+MoSiN−2)の、i線(365nm)、h線(405nm)、g線(436nm)における透過率(%)、反射率(%)、i線〜g線の波長帯域における透過率、反射率の最大値と最小値との差、を図1(1)に示す。また、得られた試料(CrN+MoSiN−1、CrN+MoSiN−2)の、膜厚、及び、シート抵抗(kΩ/□)、を図1(2)に示す。さらに、得られた試料(CrN+MoSiN−1、CrN+MoSiN−2)の、透過率スペクトルを図2に、相対反射率スペクトルを図3に、それぞれ示す。
なお、上記成膜工程では、大型ガラス基板(合成石英(QZ)10mm厚、サイズ850mm×1200mm)を使用し、大型インラインスパッタリング装置を使用した。
また、図1(1)及び図3における「相対反射率」は、アルミ(Al)の反射率を基準(100%)として測定した反射率を示す。
Hereinafter, the present invention will be described in more detail based on examples.
Example 1
(Production of photomask blank)
Samples (following (1) to (3)) formed by laminating various types of semi-translucent films on a substrate were prepared.
(1) CrN film Using a Cr target, Ar and N 2 (8: 2 sccm) gas as a sputtering gas, a CrN film (semi-transparent film) is formed to a film thickness (about approximately 40%) with respect to the wavelength of the exposure light source. The film was formed on the substrate at 88 Å.
Transmittance (%), reflectance (%) of i-line (365 nm), h-line (405 nm), g-line (436 nm), reflectance (%), transmittance in wavelength band of i-line to g-line, reflection The difference between the maximum value and the minimum value of the rate is shown in FIG. Moreover, the film thickness and sheet resistance (kΩ / □) of the obtained CrN film are shown in FIG. Further, FIG. 2 shows the transmittance spectrum and FIG. 3 shows the relative reflectance spectrum of the obtained CrN film.
(2) MoSiN film A Mo: Si = 20: 80 (atomic% ratio) target is used, and Ar and N 2 are used as sputtering gases (flow rate ratio: Ar 5: N 2 50 sccm), and a molybdenum and silicon nitride film is used. A semi-transparent film (MoSiN film) was formed on the substrate with a thickness of about 120 Å and a thickness of about 330 Å, respectively.
In the obtained MoSiN film, the thinner film is expressed as MoSiN-1, and the thicker film is expressed as MoSiN-2.
The transmittance (%), reflectance (%), i-line to g of i-line (365 nm), h-line (405 nm), and g-line (436 nm) of the obtained MoSiN film (MoSiN-1, MoSiN-2) The difference between the maximum transmittance and the minimum reflectance in the wavelength band of the line is shown in FIG. Moreover, the film thickness and sheet resistance (kΩ / □) of the obtained MoSiN films (MoSiN-1, MoSiN-2) are shown in FIG. Further, FIG. 2 shows the transmittance spectrum and FIG. 3 shows the relative reflectance spectrum of the obtained MoSiN films (MoSiN-1 and MoSiN-2).
(3) Laminated film A sample in which the same CrN film as described above and the thinner MoSiN film (MoSiN-1) are formed in this order on the substrate is denoted as CrN + MoSiN-1.
A sample in which the same CrN film as described above and the thicker MoSiN film (MoSiN-2) are formed in this order on the substrate is referred to as CrN + MoSiN-2.
The transmittance (%), reflectance (%), i-line to g-line of the obtained samples (CrN + MoSiN-1, CrN + MoSiN-2) at i-line (365 nm), h-line (405 nm), and g-line (436 nm) The difference between the maximum value and the minimum value of the transmittance and the reflectance in the wavelength band is shown in FIG. Moreover, the film thickness and sheet resistance (kΩ / □) of the obtained samples (CrN + MoSiN-1, CrN + MoSiN-2) are shown in FIG. Furthermore, the transmittance | permeability spectrum of the obtained sample (CrN + MoSiN-1, CrN + MoSiN-2) is shown in FIG. 2, and a relative reflectance spectrum is shown in FIG. 3, respectively.
Note that, in the film forming step, a large glass substrate (synthetic quartz (QZ) 10 mm thickness, size 850 mm × 1200 mm) was used, and a large in-line sputtering apparatus was used.
In addition, “relative reflectance” in FIGS. 1A and 3 indicates reflectance measured with the reflectance of aluminum (Al) as a reference (100%).

(評価)
CrN\MoSiNの積層膜に関し、MoSiNの膜厚が適当である場合(CrN+MoSiN−1の試料の場合)、i線〜g線の波長帯域に亘る透過率変化量を1.5%以下に抑制する効果得られる。また、MoSiNの膜厚で透過率の微調整が可能となる。これに対し、MoSiNの膜厚が適当でない場合(CrN+MoSiN−2の試料の場合)、i線〜g線の波長帯域に亘る透過率変化量を抑制する効果得られない。
(Evaluation)
Regarding the laminated film of CrN \ MoSiN, when the film thickness of MoSiN is appropriate (in the case of CrN + MoSiN-1 sample), the transmittance change amount over the wavelength band of i-line to g-line is suppressed to 1.5% or less. The effect is obtained. Further, the transmittance can be finely adjusted by the film thickness of MoSiN. On the other hand, when the film thickness of MoSiN is not appropriate (in the case of a CrN + MoSiN-2 sample), the effect of suppressing the transmittance change amount over the wavelength band of i-line to g-line cannot be obtained.

(実施例2)
(フォトマスクブランクの作製)
各種半透光膜を基板上にそれぞれ単層、積層して形成した試料を準備した。
(1)CrN膜
Crターゲットを用い、ArとN(8:2sccm)ガスをスパッタリングガスとしてCrN膜(半透光膜)を、露光光源の波長に対する透過率が40%となる膜厚(約78オングストローム)で基板上に成膜した。
得られたCrN膜の、i線(365nm)、h線(405nm)、g線(436nm)における透過率(%)、反射率(%)、i線〜g線の波長帯域における透過率、反射率の最大値と最小値との差、を図4(1)に示す。また、得られたCrN膜の、膜厚、及び、シート抵抗(kΩ/□)、を図4(2)に示す。さらに、得られたCrN膜の、透過率スペクトルを図5に、相対反射率スペクトルを図6に、それぞれ示す。
(2)MoSi膜
Mo:Si=20:80(原子%比)のターゲットを用い、Arをスパッタリングガスとして、モリブデン及びシリコンからなる半透光膜(MoSi膜)を、約220オングストロームの膜厚で基板上に形成した。
得られたMoSi膜の、i線(365nm)、h線(405nm)、g線(436nm)における透過率(%)、反射率(%)、i線〜g線の波長帯域における透過率、反射率の最大値と最小値との差、を図4(1)に示す。また、得られたMoSi膜の、膜厚、及び、シート抵抗(kΩ/□)、を図4(2)に示す。さらに、得られたMoSi膜の、透過率スペクトルを図5に、相対反射率スペクトルを図6に、それぞれ示す。
(3)積層膜
基板上に、上記と同じCrN膜、MoSi膜を、この順で形成した試料を、CrN+MoSiと表記する。
得られた試料(CrN+MoSi)の、i線(365nm)、h線(405nm)、g線(436nm)における透過率(%)、反射率(%)、i線〜g線の波長帯域における透過率、反射率の最大値と最小値との差、を図4(1)に示す。また、得られた試料(CrN+MoSi)の、膜厚、及び、シート抵抗(kΩ/□)、を図4(2)に示す。さらに、得られた試料(CrN+MoSi)の、透過率スペクトルを図5に、相対反射率スペクトルを図6に、それぞれ示す。
なお、上記成膜工程では、大型ガラス基板(合成石英(QZ)10mm厚、サイズ850mm×1200mm)を使用し、大型インラインスパッタリング装置を使用した。
また、図4(1)及び図6における「相対反射率」は、アルミ(Al)の反射率を基準(100%)として測定した反射率を示す。
(Example 2)
(Production of photomask blank)
Samples were prepared by laminating various types of semi-transparent films on a substrate, each in a single layer.
(1) CrN film Using a Cr target, Ar and N 2 (8: 2 sccm) gas as a sputtering gas, a CrN film (semi-transparent film) is formed to a film thickness (about approximately 40%) with respect to the wavelength of the exposure light source. The film was formed on the substrate at 78 angstroms).
Transmittance (%), reflectance (%) of i-line (365 nm), h-line (405 nm), g-line (436 nm), reflectance (%), transmittance in wavelength band of i-line to g-line, reflection The difference between the maximum value and the minimum value of the rate is shown in FIG. Further, FIG. 4B shows the film thickness and sheet resistance (kΩ / □) of the obtained CrN film. Furthermore, the transmittance spectrum of the obtained CrN film is shown in FIG. 5, and the relative reflectance spectrum is shown in FIG.
(2) MoSi film Using a target of Mo: Si = 20: 80 (atomic% ratio), using Ar as a sputtering gas, a semi-transparent film (MoSi film) made of molybdenum and silicon with a film thickness of about 220 Å Formed on a substrate.
The transmissivity (%), reflectance (%), i-line (365 nm), h-line (405 nm), and g-line (436 nm) of the obtained MoSi film, i-line to g-line wavelength transmittance, reflection The difference between the maximum value and the minimum value of the rate is shown in FIG. Moreover, the film thickness and sheet resistance (kΩ / □) of the obtained MoSi film are shown in FIG. Further, FIG. 5 shows the transmittance spectrum and FIG. 6 shows the relative reflectance spectrum of the obtained MoSi film.
(3) Laminated film A sample in which the same CrN film and MoSi film as described above are formed in this order on the substrate is denoted as CrN + MoSi.
The transmittance of the obtained sample (CrN + MoSi) at i-line (365 nm), h-line (405 nm), and g-line (436 nm) (%), reflectance (%), and transmissivity in the wavelength band of i-line to g-line FIG. 4A shows the difference between the maximum value and the minimum value of the reflectance. Moreover, the film thickness and sheet resistance (kΩ / □) of the obtained sample (CrN + MoSi) are shown in FIG. Furthermore, the transmittance spectrum of the obtained sample (CrN + MoSi) is shown in FIG. 5, and the relative reflectance spectrum is shown in FIG.
Note that, in the film forming step, a large glass substrate (synthetic quartz (QZ) 10 mm thickness, size 850 mm × 1200 mm) was used, and a large in-line sputtering apparatus was used.
In addition, “relative reflectance” in FIGS. 4A and 6 indicates reflectance measured using the reflectance of aluminum (Al) as a reference (100%).

(評価)
「i線−g線間の透過率変動が相対的に小さく、所定の透過率得るための膜厚が相対的に厚いため透過率の調整・制御が容易である」CrN膜と、「線−g線間の透過率変動が相対的に小さいが、所定の透過率得るための膜厚が相対的に薄いため透過率の調整・制御が難しい」MoSi膜と、の積層膜で半透光膜を構成すると、i線〜g線の波長帯域に亘る透過率変化量を2.0%以下に抑制する効果が得られる。
実施例2では、CrN膜、MoSi膜の何れか一方の膜又は双方の膜の膜厚で透過率の調整が可能となる。また、MoSi膜の成膜条件によってMoSi膜の透過率を調整することによって、積層膜からなる半透光膜の透過率を調整することも可能である。さらに、MoSiNの膜厚で透過率の微調整が可能となる。
(Evaluation)
“The transmittance variation between the i-line and the g-line is relatively small, and the film thickness for obtaining a predetermined transmittance is relatively thick, so that the transmittance can be easily adjusted and controlled.” The transmittance variation between g-lines is relatively small, but it is difficult to adjust and control the transmittance because the film thickness for obtaining a predetermined transmittance is relatively thin. ” If it comprises, the effect which suppresses the transmittance | permeability change amount over the wavelength band of i line | wire-g line | wire to 2.0% or less is acquired.
In Example 2, the transmittance can be adjusted by the film thickness of one or both of the CrN film and the MoSi film. It is also possible to adjust the transmittance of the semi-transparent film made of a laminated film by adjusting the transmittance of the MoSi film according to the deposition conditions of the MoSi film. Further, the transmittance can be finely adjusted by the film thickness of MoSiN.

(実施例3)
(フォトマスクブランクの作製)
大型ガラス基板(合成石英(QZ)10mm厚、サイズ850mm×1200mm)上に、大型インラインスパッタリング装置を使用し、多階調フォトマスク用の半透光膜の成膜を行った。具体的には、Crターゲットを用い、ArとN(8:2sccm)ガスをスパッタリングガスとしてCrN膜(半透光膜)を、露光光源の波長に対する透過率が40%となる膜厚(約88オングストローム)で成膜した。
続いて、上記半透光膜上に、Mo:Si=20:80(原子%比)のターゲットを用い、ArとNをスパッタリングガス(流量比;Ar 5:N50sccm)として、モリブデン及びシリコンの窒化膜からなる半透光膜の上層膜(MoSiN)を、約120オングストロームの膜厚で形成した。
半透光膜の下層膜(CrN)と半透光膜の上層膜(MoSiN)とを積層した状態の積層膜のシート抵抗は1kΩ/□以下の導電性であった。
続いて、上記半透光膜の上層膜上に、遮光膜として、まずArとNガスをスパッタリングガスとしてCrN膜を150オングストローム、次いでArとCHガスをスパッタリングガスとしてCrC膜(主遮光膜)を650オングストローム、次いでArとNOガスをスパッタリングガスとしてCrON膜(膜面反射防止膜)を250オングストローム、連続成膜した。尚、各膜はそれぞれ組成傾斜膜であった。
以上のようにして、FPD用大型フォトマスクブランクを作製した。
(Example 3)
(Production of photomask blank)
A semi-transparent film for a multi-tone photomask was formed on a large glass substrate (synthetic quartz (QZ) 10 mm thick, size 850 mm × 1200 mm) using a large in-line sputtering apparatus. Specifically, using a Cr target, Ar and N 2 (8: 2 sccm) gas as a sputtering gas, a CrN film (semi-transparent film) is formed with a film thickness (about approximately 40%) with respect to the wavelength of the exposure light source. The film was formed at 88 Å.
Subsequently, a Mo: Si = 20: 80 (atomic% ratio) target is used on the semi-transparent film, Ar and N 2 are used as a sputtering gas (flow rate ratio; Ar 5: N 2 50 sccm), molybdenum and An upper layer film (MoSiN) of a semi-transparent film made of a silicon nitride film was formed with a film thickness of about 120 Å.
The sheet resistance of the laminated film in a state where the lower film (CrN) of the semi-transparent film and the upper film (MoSiN) of the semi-transparent film were laminated was 1 kΩ / □ or less.
Subsequently, on the upper film of the semi-transparent film, as a light shielding film, first, a CrC film (main light shielding film) using Ar and N 2 gas as sputtering gas and CrN film as 150 angstrom, and then Ar and CH 4 gas as sputtering gas. ) At 650 Å, and then Cr and a film surface antireflection film were continuously formed at 250 Å using Ar and NO gas as sputtering gases. Each film was a composition gradient film.
A large photomask blank for FPD was produced as described above.

(多階調フォトマスクの作製)
上記のようにして、透光性基板21(QZ)上に、半透光膜22(CrN)と半透光膜23(MoSiN)の積層膜からなる半透光膜24、及び遮光膜30(基板側からCrN膜31/CrC遮光膜32/CrON反射防止膜33)を順次成膜したフォトマスクブランクを準備する(図7、図8(1)参照)。
次に、このフォトマスクブランク上に例えば電子線或いはレーザ描画用のポジ型レジストをCAPコータ装置を用いて塗布し、ベーキングを行って、レジスト膜を形成する。次に、電子線描画機或いはレーザ描画機などを用いて描画を行う。描画後、これを現像して、フォトマスクブランク上に透光部を除く領域(即ち遮光部及び半透光部に対応する領域)にレジストパターン50aを形成する(図8(2)参照)。
次に、形成されたレジストパターン50aをマスクとして、遮光膜30をウエットエッチングして、遮光膜パターン30aを形成をする(図8(3)参照)。使用するエッチング液は、硝酸第二セリウムアンモニウムに過塩素酸を加えたものである。
次に、レジストパターン50aを除去した後、遮光膜パターン30aをマスクとして、上層の半透光膜23(MoSiN)をウエットエッチングして、半透光膜(MoSiN)のパターン23aを形成をする(図8(4)参照)。使用するエッチング液は、弗化水素アンモニウムに過酸化水素を加えたものである。
次に、遮光膜パターン30aをマスクとして、下層の半透光膜22(CrN)をウエットエッチングして、半透光膜(CrN)のパターン22aを形成をする(図8(5)参照)。使用するエッチング液は、硝酸第二セリウムアンモニウムに過塩素酸を加えたものでである。
次に、再び全面に前記レジストを塗布してレジスト膜を形成する。そして、2回目の描画を行う。描画後、これを現像して、遮光部及び透光部に対応するレジストパターン51aを形成する(図8(6)参照)。
次に、形成されたレジストパターン51aをマスクとして、半透光部となる領域の遮光膜パターン30aをウエットエッチングにより除去する。これにより、半透光部上の透光膜が除去されると共に、遮光膜パターン30bが形成される(図8(7)参照)。
最後に、残存するレジストパターン51aを、濃硫酸などを用いて除去する(図8(8)参照)。
以上のようにして多階調フォトマスクが出来上がる。
(Production of multi-tone photomask)
As described above, on the translucent substrate 21 (QZ), the semi-transparent film 24 composed of the laminated film of the semi-transparent film 22 (CrN) and the semi-transparent film 23 (MoSiN), and the light shielding film 30 ( A photomask blank in which a CrN film 31 / CrC light shielding film 32 / CrON antireflection film 33) is sequentially formed from the substrate side is prepared (see FIGS. 7 and 8 (1)).
Next, a positive resist for electron beam or laser drawing, for example, is applied onto the photomask blank using a CAP coater and baked to form a resist film. Next, drawing is performed using an electron beam drawing machine or a laser drawing machine. After drawing, this is developed and a resist pattern 50a is formed on the photomask blank in a region excluding the light transmitting portion (that is, a region corresponding to the light shielding portion and the semi-light transmitting portion) (see FIG. 8B).
Next, using the formed resist pattern 50a as a mask, the light shielding film 30 is wet-etched to form the light shielding film pattern 30a (see FIG. 8 (3)). The etching solution used is a solution of perchloric acid added to ceric ammonium nitrate.
Next, after removing the resist pattern 50a, the upper semi-transparent film 23 (MoSiN) is wet-etched using the light-shielding film pattern 30a as a mask to form a semi-transparent film (MoSiN) pattern 23a ( (See FIG. 8 (4)). The etching solution used is an ammonium hydrogen fluoride added with hydrogen peroxide.
Next, using the light shielding film pattern 30a as a mask, the lower semi-transparent film 22 (CrN) is wet-etched to form a semi-transparent film (CrN) pattern 22a (see FIG. 8 (5)). The etching solution used is a mixture of ceric ammonium nitrate and perchloric acid.
Next, the resist is applied again on the entire surface to form a resist film. Then, the second drawing is performed. After drawing, this is developed to form a resist pattern 51a corresponding to the light shielding part and the light transmitting part (see FIG. 8 (6)).
Next, using the formed resist pattern 51a as a mask, the light shielding film pattern 30a in a region to be a semi-transparent portion is removed by wet etching. Thereby, the light-transmitting film on the semi-light-transmitting portion is removed and the light-shielding film pattern 30b is formed (see FIG. 8 (7)).
Finally, the remaining resist pattern 51a is removed using concentrated sulfuric acid or the like (see FIG. 8 (8)).
A multi-tone photomask is completed as described above.

(評価)
上記実施例3に係る発明によれば、下記(1)〜(3)を両立しうるFPD用大型多階調フォトマスクブランク及びフォトマスク並びにそれらの製造方法を提供できることが確認された。
(1)半透光膜のi線〜g線の波長帯域に亘る透過率変化量を抑制すること、
(2)半透光膜を透過する露光光の透過率を所望の値に調整すること(特に微調整が容易であること)、
(3)欠陥の少ないプロセスを採用できること。
(Evaluation)
According to the invention according to Example 3, it was confirmed that a large-scale multi-tone photomask blank for FPD and a photomask that can satisfy the following (1) to (3) and a manufacturing method thereof can be provided.
(1) Suppressing the transmittance change amount over the wavelength band of i-line to g-line of the semi-transparent film,
(2) adjusting the transmittance of the exposure light transmitted through the semi-transparent film to a desired value (especially fine adjustment is easy);
(3) A process with few defects can be adopted.

(実施例4)
上記実施例3において、図8の工程(8)に続けて、下層の半透光膜(CrN)パターン22aと上層の半透光膜(MoSiN)パターン23aの積層膜ならなる半透光膜パターン24aの一部について、新たにレジストパターンを形成して保護する。その後、レジストパターンで保護されていない半透光膜パターン24aにおける上層の半透光膜(MoSiN)パターン23aを、エッチング液(弗化水素アンモニウムに過酸化水素を加えたもの)を用いてエッチングし、下層の半透光膜(CrN)パターン22aのみからなる半透光部を形成した。
レジストパターン24aを除去し、下層の半透光膜(CrN)パターン22aと上層の半透光膜(MoSiN)パターン23aの積層膜ならなる半透光部と、下層の半透光膜(CrN)パターン22aのみからなる半透光部と、遮光部と、透光部と、を有する多階調(4階調)フォトマスクを作製した(図9(2)参照)。
評価の結果は実施例3と同様であった。
Example 4
In Example 3 described above, following the step (8) of FIG. 8, the semi-transparent film pattern is a laminated film of the lower semi-transparent film (CrN) pattern 22a and the upper semi-transparent film (MoSiN) pattern 23a. A part of 24a is protected by forming a new resist pattern. Thereafter, the upper semi-transparent film (MoSiN) pattern 23a in the semi-transparent film pattern 24a not protected by the resist pattern is etched using an etchant (a solution of ammonium hydrogen fluoride plus hydrogen peroxide). A semi-translucent portion consisting only of the lower semi-transparent film (CrN) pattern 22a was formed.
The resist pattern 24a is removed, and a semi-transparent portion that is a laminated film of a lower semi-transparent film (CrN) pattern 22a and an upper semi-transparent film (MoSiN) pattern 23a, and a lower semi-transparent film (CrN) A multi-tone (4-gradation) photomask having a semi-transparent portion made only of the pattern 22a, a light-shielding portion, and a light-transmitting portion was manufactured (see FIG. 9B).
The result of evaluation was the same as in Example 3.

以上、好ましい実施例を掲げて本発明を説明したが、本発明は上記実施例に限定されるものではない。   While the present invention has been described with reference to the preferred embodiments, the present invention is not limited to the above embodiments.

本発明の実施例1で得られた各種半透光膜の光学特性等を示す図である。It is a figure which shows the optical characteristic etc. of the various semi-transparent film obtained in Example 1 of this invention. 本発明の実施例1で得られた各種半透光膜の透過率スペクトルを示す図である。It is a figure which shows the transmittance | permeability spectrum of the various semi-transparent film obtained in Example 1 of this invention. 本発明の実施例1で得られた各種半透光膜の反射率スペクトルを示す図である。It is a figure which shows the reflectance spectrum of the various semi-transparent film obtained in Example 1 of this invention. 本発明の実施例2で得られた各種半透光膜の光学特性等を示す図である。It is a figure which shows the optical characteristic etc. of the various semi-transmissive films obtained in Example 2 of this invention. 本発明の実施例2で得られた各種半透光膜の透過率スペクトルを示す図である。It is a figure which shows the transmittance | permeability spectrum of the various semi-transparent film obtained in Example 2 of this invention. 本発明の実施例2で得られた各種半透光膜の反射率スペクトルを示す図である。It is a figure which shows the reflectance spectrum of the various semi-transmissive films obtained in Example 2 of the present invention. 本発明の実施例3で作製したフォトマスクブランクを示す模式的断面図である。It is typical sectional drawing which shows the photomask blank produced in Example 3 of this invention. 本発明の実施例3に係る製造方法を工程順に示す概略断面図である。It is a schematic sectional drawing which shows the manufacturing method which concerns on Example 3 of this invention in process order. 半透光部の態様を説明するための模式図である。It is a schematic diagram for demonstrating the aspect of a semi-translucent part. 半透光膜と遮光膜との成膜順序の違いを説明するための図であり、図10(1)は半透光膜先付けタイプのフォトマスク、図10(2)は半透光膜後付けタイプのフォトマスクをそれぞれ示す。It is a figure for demonstrating the difference in the film-forming order of a semi-transparent film and a light shielding film, FIG. 10 (1) is a semi-transparent film pre-attached type photomask, FIG. Each type of photomask is shown. 半透光膜を有する多階調フォトマスクを説明するための図であり、(1)は部分平面図、(2)は部分断面図である。It is a figure for demonstrating the multi-tone photomask which has a semi-transparent film, (1) is a fragmentary top view, (2) is a fragmentary sectional view. 解像限界以下の微細遮光パターンを有する多階調フォトマスクを説明するための図であり、(1)は部分平面図、(2)は部分断面図である。It is a figure for demonstrating the multi-tone photomask which has the fine light-shielding pattern below a resolution limit, (1) is a fragmentary top view, (2) is a fragmentary sectional view. TFT基板製造用のマスクパターンの一例を示す図である。It is a figure which shows an example of the mask pattern for TFT substrate manufacture.

符号の説明Explanation of symbols

1 遮光部
2 透光部
3 半透光部
3a 微細遮光パターン
3b 微細透過部
3a’ 半透光膜
21 透光性基板
22 半透光膜の下層膜
23 半透光膜の上層膜
24 積層構造の半透光膜(半透光膜の積層膜)
30 遮光膜
50 レジスト膜
DESCRIPTION OF SYMBOLS 1 Light-shielding part 2 Translucent part 3 Semi-transparent part 3a Fine light-shielding pattern 3b Fine transmissive part 3a 'Semi-transparent film 21 Translucent substrate 22 Lower-layer film 23 of semi-translucent film Laminated film upper layer 24 Semi-translucent film (laminated film of semi-translucent film)
30 light shielding film 50 resist film

Claims (16)

透光性基板上に、露光光の一部を透過する半透光膜と露光光を遮光する遮光膜をこの順で有し、前記半透光膜と前記遮光膜にそれぞれパターニングが施されることにより、露光光を透過する透光部、露光光を一部透過する半透光部、露光光を遮光する遮光部が形成された多階調フォトマスクを作製するためのフォトマスクブランクであって、
前記半透光膜は、透光性基板側から下層と上層がこの順に積層した積層膜からなり、
前記下層は、i線〜g線の波長帯域にわたる露光光に対する透過率変化量が上層に比べて相対的に小さく、かつ、所定の透過率を得るために必要な膜厚が上層に比べて相対的に薄く、
前記上層は、i線〜g線の波長帯域にわたる露光光に対する透過率変化量が下層に比べて相対的に大きく、かつ、所定の透過率を得るために必要な膜厚が下層に比べて相対的に厚いことを特徴とするフォトマスクブランク。
On the translucent substrate, a semi-transparent film that transmits part of the exposure light and a light-shield film that shields the exposure light are provided in this order, and the semi-transparent film and the light-shield film are respectively patterned. Thus, a photomask blank for producing a multi-tone photomask in which a light-transmitting part that transmits exposure light, a semi-light-transmitting part that partially transmits exposure light, and a light-shielding part that blocks exposure light is formed. And
The semi-transparent film is a laminated film in which a lower layer and an upper layer are laminated in this order from the translucent substrate side ,
In the lower layer, the amount of change in transmittance with respect to exposure light over the wavelength band of i-line to g-line is relatively smaller than that of the upper layer, and the film thickness necessary for obtaining a predetermined transmittance is relatively smaller than that of the upper layer. Thin,
The upper layer has a relatively large change in transmittance with respect to the exposure light over the wavelength band of i-line to g-line compared to the lower layer, and the film thickness necessary for obtaining a predetermined transmittance is relative to the lower layer. Photomask blank characterized by being thick .
前記上層の膜厚は、前記下層の膜厚よりも厚いことを特徴とする請求項1記載のフォトマスクブランク。  The photomask blank according to claim 1, wherein the upper layer is thicker than the lower layer. 前記下層は、i線〜g線の波長帯域に亘る透過率変化量を抑制する機能を有する膜であり、
前記上層は、膜厚を調整することによって、前記積層膜からなる半透光膜を透過する露光光の透過率を所望の値に調整することを特徴とする請求項1又は2に記載のフォトマスクブランク。
The lower layer is a film having a function of suppressing the amount of change in transmittance over the wavelength band of i-line to g-line,
3. The photo according to claim 1 , wherein the upper layer adjusts the transmittance of exposure light transmitted through the semi-transparent film made of the laminated film to a desired value by adjusting the film thickness. Mask blank.
前記積層膜からなる半透光膜は、i線〜g線の波長帯域に亘る露光光に対する透過率変化量が、2.0%以下であることを特徴とする請求項1〜3のいずれかに記載のフォトマスクブランク。 The translucent film made of the laminated film has a transmittance change amount with respect to exposure light over a wavelength band of i-line to g-line of 2.0% or less . The photomask blank described in 1. 前記下層は、シート抵抗値が前記上層よりも小さいことを特徴とする請求項1〜4のいずれか記載のフォトマスクブランク。The photomask blank according to claim 1, wherein the lower layer has a sheet resistance value smaller than that of the upper layer. 前記下層は、シート抵抗が0.55kΩ/□以下であることを特徴とする請求項1〜5のいずれかに記載のフォトマスクブランク。The photomask blank according to claim 1, wherein the lower layer has a sheet resistance of 0.55 kΩ / □ or less. 透光性基板上に、
クロムと窒素を含む材料からなる下層と、モリブデンとシリコンを含む材料又はモリブデンとシリコンと窒素を含む材料からなる上層と、をこの順で積層してなる半透光膜の積層膜と、
クロムを含む材料からなる遮光膜と、
をこの順で積層してなることを特徴とする請求項1〜6のいずれかに記載のフォトマスクブランク。
On the translucent substrate,
A laminated film of a semi-transparent film formed by laminating a lower layer made of a material containing chromium and nitrogen and an upper layer made of a material containing molybdenum and silicon or a material containing molybdenum, silicon, and nitrogen in this order;
A light shielding film made of a material containing chromium;
These are laminated | stacked in this order, The photomask blank in any one of Claims 1-6 characterized by the above-mentioned.
透光性基板上に、露光光の一部を透過する半透光膜と露光光を遮光する遮光膜をこの順で有し、前記半透光膜と前記遮光膜にそれぞれパターニングが施されることにより、露光光を透過する透光部、露光光を一部透過する半透光部、露光光を遮光する遮光部が形成された多階調フォトマスクであって、
前記半透光膜は、透光性基板側から下層と上層がこの順に積層した積層膜からなり、
前記下層は、i線〜g線の波長帯域にわたる露光光に対する透過率変化量が上層に比べて相対的に小さく、かつ、所定の透過率を得るために必要な膜厚が上層に比べて相対的に薄く、
前記上層は、i線〜g線の波長帯域にわたる露光光に対する透過率変化量が下層に比べて相対的に大きく、かつ、所定の透過率を得るために必要な膜厚が下層に比べて相対的に厚いことを特徴とする多階調フォトマスク。
On the translucent substrate, a semi-transparent film that transmits part of the exposure light and a light-shield film that shields the exposure light are provided in this order, and the semi-transparent film and the light-shield film are respectively patterned. A multi-tone photomask in which a translucent part that transmits exposure light, a semi-transparent part that partially transmits exposure light, and a light-shielding part that shields exposure light are formed,
The semi-transparent film is a laminated film in which a lower layer and an upper layer are laminated in this order from the translucent substrate side ,
In the lower layer, the amount of change in transmittance with respect to exposure light over the wavelength band of i-line to g-line is relatively smaller than that of the upper layer, and the film thickness necessary for obtaining a predetermined transmittance is relatively smaller than that of the upper layer. Thin,
The upper layer has a relatively large change in transmittance with respect to the exposure light over the wavelength band of i-line to g-line compared to the lower layer, and the film thickness necessary for obtaining a predetermined transmittance is relative to the lower layer. Multi-tone photomask characterized by its thick thickness .
前記上層の膜厚は、前記下層の膜厚よりも厚いことを特徴とする請求項8記載の多階調フォトマスク。  9. The multi-tone photomask according to claim 8, wherein the upper layer is thicker than the lower layer. 前記下層は、i線〜g線の波長帯域に亘る透過率変化量を抑制する機能を有する膜であり、The lower layer is a film having a function of suppressing the amount of change in transmittance over the wavelength band of i-line to g-line,
前記上層は、膜厚を調整することによって、前記積層膜からなる半透光膜を透過する露光光の透過率を所望の値に調整することを特徴とする請求項8又は9に記載の多階調フォトマスク。The multi-layered film according to claim 8 or 9, wherein the upper layer adjusts the transmittance of exposure light transmitted through the semi-transparent film made of the laminated film to a desired value by adjusting the film thickness. Tone photomask.
前記積層膜からなる半透光膜は、i線〜g線の波長帯域に亘る露光光に対する透過率変化量が、2.0%以下であることを特徴とする請求項8〜10のいずれかに記載の多階調フォトマスク The translucent film made of the laminated film has a transmittance change amount with respect to exposure light over a wavelength band of i-line to g-line of 2.0% or less. A multi-tone photomask described in 1 . 前記下層は、シート抵抗値が前記上層よりも小さいことを特徴とする請求項8〜11のいずれかに記載の多階調フォトマスク。The multi-tone photomask according to claim 8, wherein the lower layer has a sheet resistance value smaller than that of the upper layer. 前記下層は、シート抵抗が0.55kΩ/□以下であることを特徴とする請求項8〜12のいずれかに記載の多階調フォトマスク。The multi-tone photomask according to any one of claims 8 to 12, wherein the lower layer has a sheet resistance of 0.55 kΩ / □ or less. 前記半透光部は、透光性基板上に、前記積層構造の半透光膜で構成される半透光部が形成されてなることを特徴とする請求項8〜13のいずれかに記載の多階調フォトマスク。 The semi-light transmitting portion, on a transparent substrate, according to any one of claims 8 to 13, characterized in that formed by the semi-transparent portion formed of a semi-transparent film is formed of the laminated structure Multi-tone photomask. 前記半透光部は、露光光の透過率の異なる第1の半透光部と第2の半透光部を有し、前記第1の半透光部は、透光性基板上に、前記積層構造の半透光膜の下層膜のみで構成される半透光部が形成されてなり、前記第2の半透光部は、透光性基板上に、前記積層構造の半透光膜の下層膜及び上層膜の積層膜で構成される半透光部が形成されてなることを特徴とする請求項8〜13のいずれかに記載の多階調フォトマスク。 The semi-transparent portion has a first semi-transparent portion and a second semi-transparent portion having different exposure light transmittances, and the first semi-transparent portion is formed on the translucent substrate. A semi-translucent portion composed only of a lower layer film of the semi-transparent film having the laminated structure is formed, and the second semi-transparent portion is formed on the translucent substrate. The multi-tone photomask according to any one of claims 8 to 13, wherein a semi-translucent portion composed of a laminated film of a lower layer film and an upper layer film is formed. 請求項15のいずれかに記載の多階調フォトマスクを用い、i線〜g線の波長帯域に亘る露光光によって、フォトマスクに形成された多階調パターンを被転写体上に転写する工程を含む、パターン転写方法。 Using a multi-tone photo mask according to any one of claims 8 to 15, transferred by exposure light over a wavelength band of i rays ~g line, a multi-tone pattern formed on a photomask onto a transfer material A pattern transfer method including the step of:
JP2008247271A 2008-09-26 2008-09-26 Multi-tone photomask, photomask blank, and pattern transfer method Active JP5121020B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2008247271A JP5121020B2 (en) 2008-09-26 2008-09-26 Multi-tone photomask, photomask blank, and pattern transfer method
KR1020090090091A KR101156658B1 (en) 2008-09-26 2009-09-23 Multi-gray scale photomask, photomask blank and pattern transcription method
TW098132359A TWI465838B (en) 2008-09-26 2009-09-24 Multi-tone photomask, photomask blank, and pattern transfer method
KR1020110086572A KR101543288B1 (en) 2008-09-26 2011-08-29 Multi-gray scale photomask, photomask blank and pattern transcription method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008247271A JP5121020B2 (en) 2008-09-26 2008-09-26 Multi-tone photomask, photomask blank, and pattern transfer method

Publications (3)

Publication Number Publication Date
JP2010078923A JP2010078923A (en) 2010-04-08
JP2010078923A5 JP2010078923A5 (en) 2011-10-13
JP5121020B2 true JP5121020B2 (en) 2013-01-16

Family

ID=42209448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008247271A Active JP5121020B2 (en) 2008-09-26 2008-09-26 Multi-tone photomask, photomask blank, and pattern transfer method

Country Status (3)

Country Link
JP (1) JP5121020B2 (en)
KR (2) KR101156658B1 (en)
TW (1) TWI465838B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5917020B2 (en) * 2010-06-29 2016-05-11 Hoya株式会社 Manufacturing method of mask blank and multi-tone mask
JP6761255B2 (en) * 2016-02-15 2020-09-23 関東化学株式会社 Etching solution and photomask processed by etching solution
JP6891099B2 (en) * 2017-01-16 2021-06-18 Hoya株式会社 A phase shift mask blank, a method for manufacturing a phase shift mask using the blank, and a method for manufacturing a display device.
CN112015044A (en) * 2019-05-28 2020-12-01 爱发科成膜株式会社 Mask blank, halftone mask, manufacturing method, and manufacturing apparatus

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3262302B2 (en) * 1993-04-09 2002-03-04 大日本印刷株式会社 Phase shift photomask, blank for phase shift photomask, and method of manufacturing the same
KR0172790B1 (en) * 1995-09-18 1999-03-20 김영환 Phase inversion mask and manufacturing method thereof
JP4054951B2 (en) * 2001-08-06 2008-03-05 信越化学工業株式会社 Method for manufacturing phase shift mask blank and method for manufacturing phase shift mask
TWI480676B (en) * 2004-03-31 2015-04-11 Shinetsu Chemical Co Halftone phase shift mask blank, halftone phase shift mask, and pattern transfer method
JP4933753B2 (en) * 2005-07-21 2012-05-16 信越化学工業株式会社 Phase shift mask blank, phase shift mask, and manufacturing method thereof
JP4695964B2 (en) * 2005-11-09 2011-06-08 アルバック成膜株式会社 Gray tone mask and manufacturing method thereof
JP4516560B2 (en) * 2005-12-26 2010-08-04 Hoya株式会社 Mask blank and photomask
JP4570632B2 (en) * 2006-02-20 2010-10-27 Hoya株式会社 Four-tone photomask manufacturing method and photomask blank processed product
CN101866107B (en) * 2006-02-20 2013-08-07 Hoya株式会社 Four-gradation photomask, its manufacturing method and photomask blank
KR100886802B1 (en) * 2006-03-30 2009-03-04 주식회사 에스앤에스텍 Blankmask and Transmittance Modulation Slit Mask using the same, and Manufacturing Method thereof
KR101329525B1 (en) * 2006-10-04 2013-11-14 주식회사 에스앤에스텍 Gray-tone Blank Mask and Gray-tone Photomask, the Manufacturing method of them
JP4848932B2 (en) * 2006-11-13 2011-12-28 大日本印刷株式会社 Tone mask for proximity exposure
TWI422967B (en) * 2007-10-12 2014-01-11 Ulvac Coating Corp Method for manufacturing gray tone mask
JP5219201B2 (en) * 2008-07-31 2013-06-26 Hoya株式会社 Photomask, photomask blank, photomask manufacturing method, and pattern transfer method

Also Published As

Publication number Publication date
TW201017328A (en) 2010-05-01
TWI465838B (en) 2014-12-21
JP2010078923A (en) 2010-04-08
KR101156658B1 (en) 2012-06-14
KR20100035599A (en) 2010-04-05
KR20110111342A (en) 2011-10-11
KR101543288B1 (en) 2015-08-11

Similar Documents

Publication Publication Date Title
TWI481949B (en) Photomask blank, photomask, and methods of manufacturing these
TWI594066B (en) A mask substrate, a phase shift mask and a method of manufacturing the semiconductor device
TWI541589B (en) A mask blank and its manufacturing method, manufacturing method of a mask, and manufacturing method of a semiconductor device
JP5412507B2 (en) Mask blank and transfer mask
US8409772B2 (en) Mask blank and method of manufacturing a transfer mask
TWI683174B (en) Mask blank, phase shift mask, method of manufacturing a phase shift mask and method of manufacturing a semiconductor device
TW201341945A (en) Photomask blank, photomask manufacturing method and semiconductor device manufacturing method
KR101333931B1 (en) Mask blank, and photomask
JP4766518B2 (en) Mask blank and photomask
KR20170123610A (en) Mask blank, phase shift mask, method of manufacturing phase shift mask, and method of manufacturing semiconductor device
CN111742259B (en) Mask blank, phase shift mask, and method for manufacturing semiconductor device
JP2020052195A (en) Phase shift-type photomask blank and phase shift-type photomask
JP5121020B2 (en) Multi-tone photomask, photomask blank, and pattern transfer method
WO2019188397A1 (en) Mask blank, phase shift mask, and method for manufacturing semiconductor device
JP2012003152A (en) Multi-tone photomask, blank for multi-tone photomask, and pattern transfer method
JP2008249949A (en) Photomask blank and photomask
JP5219201B2 (en) Photomask, photomask blank, photomask manufacturing method, and pattern transfer method
TWI827878B (en) Mask blank, phase shift mask, and method for manufacturing semiconductor device
JP5219200B2 (en) Photomask, photomask blank, photomask manufacturing method, and pattern transfer method
US20230314929A1 (en) Mask blank, phase shift mask, and method of manufacturing semiconductor device
TW202217433A (en) Mask blank, phase shift mask, method of manufacturing phase shift mask, and method of manufacturing semiconductor device
TW202305498A (en) Mask blank, method for manufacturing phase shift mask, and method for manufacturing semiconductor device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110829

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121017

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121019

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5121020

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250