[go: up one dir, main page]

JPH01213991A - Transparent electrode substrate and electroluminescence element utilizing same - Google Patents

Transparent electrode substrate and electroluminescence element utilizing same

Info

Publication number
JPH01213991A
JPH01213991A JP63038068A JP3806888A JPH01213991A JP H01213991 A JPH01213991 A JP H01213991A JP 63038068 A JP63038068 A JP 63038068A JP 3806888 A JP3806888 A JP 3806888A JP H01213991 A JPH01213991 A JP H01213991A
Authority
JP
Japan
Prior art keywords
transparent electrode
film
insulating layer
substrate
transparent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63038068A
Other languages
Japanese (ja)
Inventor
Ryuzo Fukao
隆三 深尾
Tsunemi Oiwa
大岩 恒美
Akira Kawakami
章 川上
Yoshihiro Hamakawa
圭弘 浜川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP63038068A priority Critical patent/JPH01213991A/en
Publication of JPH01213991A publication Critical patent/JPH01213991A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

PURPOSE:To obtain improved dielectric strength and luminous efficiency without making electric resistance higher, by using an SnO2:F film as a transparent electrode. CONSTITUTION:A stannic oxide film containing fluorine, i.e. an SnO2:F film, used as a transparent electrode 2 on a transparent electrode substrate 1 performs its electric conduction function owing to the presence of the fluorine as a impurity in the stannic oxide. Its electric resistance, therefore, does not change if it is subjected to oxidation or reduction. When the transparent electrode substrate 1 having such a transparent electrode 2 is thus used as a display-side substrate of a EL-element, the electric resistance of the electrode film does not become higher if the transparent electrode 2 is subjected to sputtering in an atmosphere containing oxygen for forming an insulting oxide layer thereon or subjected to annealing after the film formation, so that an electroluminescence(EL) element with high dielectric strength and high luminous efficiency is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明はデイスプレィ装置などに使用されるエレクト
ロルミネッセンス(以下、ELという)素子に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an electroluminescent (hereinafter referred to as EL) element used in display devices and the like.

〔従来の技術〕[Conventional technology]

この種のEL素子は、少なくとも一方が透明でかつ通常
ではどちらか一方がパターン化された一対の電極間に、
発光体層とこれに隣接する絶縁層とが配置された構造を
有しており、上記絶縁層が発光体層の片側のみに設けら
れた卓絶縁形ならびに同じく両側に設けられた二重絶縁
形のものが知られており、また発光体層が一層に限らず
絶縁層を介して二層以上に積層されたものがある。
This type of EL element has a structure between a pair of electrodes, at least one of which is transparent and usually one of which is patterned.
It has a structure in which a light emitting layer and an insulating layer adjacent thereto are arranged, and the insulating layer is provided on only one side of the light emitting layer, such as the table insulation type, and the double insulation type, where the insulating layer is provided on both sides. There are some known devices in which the luminescent layer is not limited to one layer, but two or more layers are laminated with an insulating layer interposed therebetween.

このようなEL素子の駆動は、交流駆動方式では、両電
極間に交流電圧を印加することにより、発光体層にその
発光開始しきい値電界以上の電界をかけて発光させ、こ
の発光色を透明電極側の基板表面に表出させることによ
り、所定パターンの表示を行わせるものである。
In the AC driving method, such an EL element is driven by applying an AC voltage between both electrodes to apply an electric field equal to or higher than a threshold electric field for starting light emission to the luminescent layer, causing it to emit light, and changing the color of the emitted light. A predetermined pattern is displayed by exposing the surface of the substrate on the transparent electrode side.

そして、一般的に、上記絶縁層にはスパッタリング法を
始めとする種々の真空中薄膜形成手段によって形成され
るPbTiOs 、BaTiO3、Y203 、A1)
z Ox 、S lo2、Tax o、、Si3N4な
どの絶縁材料からなる薄膜が使用されている。また、表
示側となる透明電極にはインジウムと少量のスズを含む
複合酸化物からなる透明導電膜(以下、ITO膜という
)が、これに対向する背面側の電極には上記ITO膜や
不透明なAI膜がそれぞれ用いられている(文献不詳)
Generally, the insulating layer is made of PbTiOs, BaTiO3, Y203, A1) formed by various vacuum thin film forming methods including sputtering.
Thin films made of insulating materials such as zOx, Slo2, Taxo, Si3N4 are used. In addition, the transparent electrode on the display side is covered with a transparent conductive film made of a composite oxide containing indium and a small amount of tin (hereinafter referred to as ITO film), and the electrode on the back side opposite to this is made of the above-mentioned ITO film or opaque. AI membranes are used for each (document unknown)
.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、EL素子の製作においてITO膜からな
る透明電極上に酸化物からなる絶縁層をスパッタリング
法にて形成する場合、一般的にアルゴンガスの如き不活
性ガスと酸素ガスとの混合ガスなどからなる酸素含有雰
囲気中で基板温度を高温に設定してスパッタリングを行
うことから、ITO膜が酸化されて高抵抗化する問題が
ある。
However, when forming an insulating layer made of an oxide by sputtering on a transparent electrode made of an ITO film in the production of an EL element, it is generally made of a mixed gas of an inert gas such as argon gas and oxygen gas. Since sputtering is performed with the substrate temperature set at a high temperature in an oxygen-containing atmosphere, there is a problem that the ITO film is oxidized and becomes highly resistive.

たとえば、アルゴンガスと酸素ガスとの混合ガス(Ar
10x =90/10)中で基板温度600℃にてp 
b T i Osをスパッタリングすると、ITon!
の電気抵抗は約20倍にも増大する。また、酸化物絶縁
層の形成後に通常行われる大気中でたとえば400℃程
度のアニール処理を施した場合には、ITO膜の電気抵
抗はさらに著しく増大する。
For example, a mixed gas of argon gas and oxygen gas (Ar
10x = 90/10) at a substrate temperature of 600°C.
b When T i Os is sputtered, ITon!
The electrical resistance increases by about 20 times. Further, when annealing treatment is performed in the atmosphere at, for example, about 400° C., which is usually performed after the formation of the oxide insulating layer, the electrical resistance of the ITO film further increases significantly.

このようなITO膜の電気抵抗の増大は、EL素子の絶
縁耐圧つまり絶縁破壊電圧の低下ならびに発光効率の低
下の原因となり、素子性能の改善を図る上で大きな問題
となっている。
Such an increase in the electrical resistance of the ITO film causes a decrease in the dielectric breakdown voltage, that is, a dielectric breakdown voltage, and a decrease in the luminous efficiency of the EL device, and is a major problem in improving the device performance.

なお、上述のようなITO膜の高抵抗化を緩和する手段
として、酸化物絶縁層を形成するためのスパッタリング
時に酸素ガスを含まないスパッタガスを使用したり基板
温度を低くすることが考えられるが、これらの手段では
形成される酸化物絶縁層の組成変化や緻密性の悪化を招
いて絶縁層として充分な特性が得られなくなる。
Note that as a means to alleviate the high resistance of the ITO film as described above, it is possible to use a sputtering gas that does not contain oxygen gas or to lower the substrate temperature during sputtering to form the oxide insulating layer. However, these methods cause compositional changes and deterioration of the density of the formed oxide insulating layer, making it impossible to obtain sufficient properties as an insulating layer.

この発明は、上述の事情に照らし、酸素含有雰囲気中で
の高温熱処理を経ても電気抵抗が増大しない透明電極基
板、ならびに該基板の使用によって絶縁層がスパッタリ
ング法にて形成される酸化物薄膜である場合でも高い絶
縁耐圧および発光効率を示すEL素子を提供することを
目的としている。
In light of the above-mentioned circumstances, the present invention provides a transparent electrode substrate whose electrical resistance does not increase even after high-temperature heat treatment in an oxygen-containing atmosphere, and an oxide thin film in which an insulating layer is formed by sputtering using the substrate. The object of the present invention is to provide an EL element that exhibits high dielectric strength and luminous efficiency even in certain cases.

〔課題を解決するための手段〕[Means to solve the problem]

この発明者らは、上記の目的を達成するために鋭意検討
を重ねた結果、透光性基板の片面に形成する透明電極を
特定の透明性導電材料にて構成した場合、酸素含有雰囲
気中での高温加熱処理を経ても該電極の電気抵抗が増大
せず、したがってこの透明電極基板を用いたEL素子で
は透明電極に接する酸化物絶縁層がスパッタリング法に
て形成されたり空気中でアニール処理されたものであっ
ても高い絶縁耐圧および発光効率が得られることを見い
出し、この発明をなすに至った。
As a result of intensive studies to achieve the above object, the inventors found that when a transparent electrode formed on one side of a transparent substrate is made of a specific transparent conductive material, The electrical resistance of the electrode does not increase even after high-temperature heat treatment. Therefore, in an EL device using this transparent electrode substrate, the oxide insulating layer in contact with the transparent electrode is formed by sputtering or annealed in air. The present inventors have discovered that high dielectric strength and luminous efficiency can be obtained even with a high dielectric strength, and have thus come to form this invention.

すなわち、この発明の第1は、透光性基板の片面にフッ
素を含有する酸化スズ薄膜からなる透明電極が形成され
てなる透明電極基板に係るものである。また、この発明
の第2は、透光性基板の片面に形成されたフッ素を含有
する酸化スズ薄膜からなる透明電極とこれに対向する背
面電極との間に、上記透明電極に接する酸化物絶縁層と
発光体層とが配設されてなるEL素子に係るものである
That is, the first aspect of the present invention relates to a transparent electrode substrate in which a transparent electrode made of a thin film of tin oxide containing fluorine is formed on one side of a transparent substrate. The second aspect of the present invention is to provide an oxide insulator in contact with the transparent electrode between a transparent electrode made of a fluorine-containing tin oxide thin film formed on one side of the transparent substrate and a back electrode opposing the transparent electrode. The present invention relates to an EL element including a layer and a light emitting layer.

〔発明の構成・作用〕[Structure and operation of the invention]

この発明の透明電極基板における透明電極に使用される
フッ素を含有する酸化スズ薄膜(以下、5nOt:F膜
という)は、その導電機能が酸化スズ中にフッ素が不純
物として存在していることによって発揮されるものであ
って、このため酸化や還元を受けても電気抵抗の変化を
生じない。したがって、このような透明電極を有する透
明電極基板をEL素子の表示側基板として使用した場合
、この透明電極上に酸素含有雰囲気中でのスパッタリン
グ法によって酸化物絶縁層を形成したり、その成膜後に
空気中でアニール処理を施しても該電極膜は高抵抗化せ
ず、高い絶縁耐圧および発光効率を示すEL素子が得ら
れる。
The fluorine-containing tin oxide thin film (hereinafter referred to as 5nOt:F film) used for the transparent electrode in the transparent electrode substrate of this invention exhibits its conductive function due to the presence of fluorine as an impurity in the tin oxide. Therefore, even when subjected to oxidation or reduction, no change in electrical resistance occurs. Therefore, when a transparent electrode substrate having such a transparent electrode is used as a display side substrate of an EL element, an oxide insulating layer is formed on the transparent electrode by sputtering in an oxygen-containing atmosphere, or Even if annealing treatment is performed in air afterwards, the resistance of the electrode film does not increase, and an EL element exhibiting high dielectric strength and luminous efficiency can be obtained.

これに対し、従来より透明電極として汎用されているI
TO膜では、その導電性が膜中の酸素欠陥部の存在に基
づくものであるため、酸化を受けると酸素欠陥部に酸素
が供給されて導電性が損なわれる。とくに、酸素含有雰
囲気中でのスパッタリング法では酸素がプラズマ化され
て極めて活性な状態にあることから酸化反応を生じやす
く、ITo膜では著しく高抵抗化を招くことになる。な
お、透明電極として酸化スズ単独の薄膜も知られるが、
この酸化スズ膜の導電性もITO膜と同様の酸素欠陥部
に基づ(ものであるため、やはり上記の如き酸化による
高抵抗化を生じることになる。
In contrast, I
The conductivity of a TO film is based on the presence of oxygen vacancies in the film, so when it is oxidized, oxygen is supplied to the oxygen vacancies and the conductivity is impaired. In particular, in a sputtering method in an oxygen-containing atmosphere, oxygen is turned into plasma and is in an extremely active state, which tends to cause an oxidation reaction, resulting in a significantly high resistance in an ITo film. Note that thin films made of tin oxide alone are also known as transparent electrodes, but
Since the conductivity of this tin oxide film is also based on oxygen vacancies similar to those of the ITO film, the resistance increases due to oxidation as described above.

この発明で用いるSnO2:F膜としては、フッ素とス
ズの原子比F / S nが1/1〜9/1程度のもの
が好適であり、フッ素の比率が小さすぎては充分な導電
性が得られず、逆に上記比率が高すぎては可視域での光
透過率が減少するという問題があるとともに成膜自体も
困難となる。またSn0、:F膜の厚さは、用途によっ
て異なるが、一般には1,000〜5.000人で、E
L素子などの電極膜としては1,500〜3,000人
程変色するのがよい。
The SnO2:F film used in this invention preferably has a fluorine to tin atomic ratio F/Sn of about 1/1 to 9/1; if the fluorine ratio is too small, sufficient conductivity may not be obtained. On the other hand, if the above ratio is too high, there is a problem that the light transmittance in the visible range decreases, and the film formation itself becomes difficult. In addition, the thickness of the Sn0,:F film varies depending on the application, but in general, the thickness is 1,000 to 5,000, and the thickness of the E
For an electrode film such as an L element, it is preferable to change color by about 1,500 to 3,000.

このようなSnO□:F膜の形成手段は、とくに限定さ
れず、種々の方法を採用できるが、CVD(Chemi
cal Vapor Deposition)法が最も
好ましい。
The means for forming such a SnO□:F film is not particularly limited, and various methods can be adopted, but CVD
The cal vapor deposition method is most preferred.

この発明のEL素子は、表示側の透明電極を有する基板
として上記のSnO,:F膜を形成した透明電極基板を
使用し、かつ上記透明電極とこれに対向する背面電極と
の間に、透明電極に接する酸化物絶縁層と発光体層を配
設したものであり、上記絶縁層とともに発光体層と背面
電極との間にも絶縁層を有する二重絶縁形EL素子なら
びに発光体層上に直接に背面電極が形成された卓絶縁形
EL素子を包含する。
The EL element of the present invention uses the above-mentioned transparent electrode substrate on which the SnO,:F film is formed as a substrate having a transparent electrode on the display side, and a transparent A double insulation type EL element has an oxide insulating layer and a light emitter layer in contact with the electrode, and has an insulating layer between the light emitter layer and the back electrode as well as the above insulating layer, and a double insulation type EL element that has an insulating layer on the light emitter layer. It includes a desk-insulated EL element in which a back electrode is directly formed.

第1図はこの発明を適用した二重絶縁形EL素子の構造
例を示すものである。
FIG. 1 shows an example of the structure of a double insulation type EL element to which the present invention is applied.

図において、lはガラス仮などの透光性材料からなる基
板、2は前記のSnO□:F膜からなる表示側の透明電
極、3は表示側の第1の絶縁層、4は発光体層、5は背
面側の第2の絶縁層、6は背面電極である。
In the figure, l is a substrate made of a transparent material such as glass, 2 is a transparent electrode on the display side made of the SnO□:F film, 3 is the first insulating layer on the display side, and 4 is a luminescent layer. , 5 is a second insulating layer on the back side, and 6 is a back electrode.

第1の絶縁層3は前記のように酸化物からなる厚さ3.
000〜6,000人程変色ものであり、その形成手段
としては、スパッタリング法、真空蒸着法、CVD法、
イオンブレーティング法などの既存の種々の真空中薄膜
形成を採用可能であるが、酸素含有雰囲気中で成膜する
方法、とくに該雰囲気中でのスパッタリング法を採用し
た場合にこの発明の適用効果が大きい。この第1の絶縁
層3を構成する酸化物としては、たとえばPbTiO3
、Ta2o3、BaTi0i 、Yz Os 、Alz
 O3、SiO□などが挙げられる。
The first insulating layer 3 is made of oxide and has a thickness of 3.0 mm as described above.
000 to 6,000 people, and its formation methods include sputtering method, vacuum evaporation method, CVD method,
Although it is possible to employ various existing methods of forming thin films in vacuum, such as ion blasting, the application effect of the present invention is limited when a method of forming a film in an oxygen-containing atmosphere, especially a sputtering method in such an atmosphere, is adopted. big. As the oxide constituting the first insulating layer 3, for example, PbTiO3
, Ta2o3, BaTi0i, YzOs, Alz
Examples include O3, SiO□, and the like.

また、第2の絶縁層5は、上記同様の酸化物あるいはS
i3N、などの酸化物以外の絶縁材料からなり、上記の
各種真空中薄膜形成法により1,000〜6,000人
程変色厚みに形成される。
Further, the second insulating layer 5 is made of an oxide similar to the above or S
It is made of an insulating material other than oxide, such as i3N, and is formed to a thickness of about 1,000 to 6,000 with discoloration by the various vacuum thin film forming methods described above.

発光体層4の構成材料としては、EL素子用として知ら
れる各種発光体材料がいずれも使用可能であり、通常で
はZnSなどの母材に少量の発光付活剤を配合したもの
で、たとえばZ n S : T bF3(緑色発光)
 、Z n S : Sml”、(赤色発光)、ZnS
:Mn(黄橙色発光)、ZnS:TmFz(青色発光)
、ZnS:PrF3(白色発光)、ZnS:DyF=(
黄色発光)などが好適に使用される。
As the constituent material of the luminescent layer 4, any of the various luminescent materials known for use in EL devices can be used. Usually, a base material such as ZnS is mixed with a small amount of a luminescence activator, such as ZnS. nS: T bF3 (green emission)
, ZnS: Sml”, (red emission), ZnS
:Mn (yellow-orange light emission), ZnS:TmFz (blue light emission)
, ZnS:PrF3 (white light emission), ZnS:DyF=(
(yellow emission) etc. are preferably used.

このような発光体層4は、上記絶縁層5と同様の各種薄
膜形成方法によって3,000〜s、ooo人程度の厚
みに形成される。
Such a light emitter layer 4 is formed to a thickness of about 3,000 to 3,000 seconds by various thin film forming methods similar to those for the above-mentioned insulating layer 5.

背面電極6は、Al膜や前記SnO,:F膜あるいはI
TO膜などからなり、前記の各種薄膜形成方法によって
1,000〜3,000人程変色厚みに形成される。
The back electrode 6 is made of an Al film, the SnO, :F film, or I
It is made of a TO film or the like, and is formed to a thickness of about 1,000 to 3,000 with discoloration using the various thin film forming methods described above.

上記構成のEL素子では、発光体層4にその発光開始し
きい値電界を超える電界がかかりうる電圧を画電極2.
6間に印加することにより、発光体層4が発光し、この
発光が基板1を通して視認される。このとき、第1の絶
縁層3が酸素含有雰囲気中でのスパッタリング法により
形成されていても、また該絶縁層3の形成後にアニール
処理を施したものであっても、透明電極2の電気抵抗が
小さく導電性にすぐれるため、高い絶縁耐圧および発光
効率が得られる。
In the EL element having the above configuration, a voltage that can apply an electric field exceeding the luminescence initiation threshold electric field to the luminescent layer 4 is applied to the picture electrode 2.
6, the light emitting layer 4 emits light, and this light emission is visually recognized through the substrate 1. At this time, even if the first insulating layer 3 is formed by a sputtering method in an oxygen-containing atmosphere, or even if an annealing treatment is performed after the formation of the insulating layer 3, the electrical resistance of the transparent electrode 2 Since it has a small value and excellent conductivity, high dielectric strength voltage and luminous efficiency can be obtained.

なお、この発明は、透明電極と発光体層との間に複数層
の絶縁層を有するEL素子、発光体層が相互間に絶縁層
を介在して複数層積層されたEL素子などにも同様に適
用可能である。また、これらEL素子における表示側透
明電極に接しない位置にある絶縁層には、前記した第2
の絶縁層5と同様に酸化物以外の絶縁材料も使用可能で
ある。
Note that the present invention is applicable to EL devices having multiple insulating layers between a transparent electrode and a light-emitting layer, and EL devices in which a plurality of light-emitting layers are stacked with an insulating layer interposed between them. Applicable to In addition, in the insulating layer at a position not in contact with the display-side transparent electrode in these EL elements, the second
Similarly to the insulating layer 5, insulating materials other than oxides can also be used.

〔発明の効果〕〔Effect of the invention〕

この発明に係る透明電極基板は、透明電極としてSnO
,:F膜を用いたものであるため、酸素含有雰囲気中で
熱処理を施しても透明電極が従来汎用のITO膜などか
らなるもののように高抵抗化せず、安定したすぐれた導
電性を発揮する。
The transparent electrode substrate according to the present invention uses SnO as the transparent electrode.
, :F film is used, so even if heat treated in an oxygen-containing atmosphere, the transparent electrode does not have high resistance unlike conventional general-purpose ITO films, and exhibits stable and excellent conductivity. do.

また、この発明に係るEL素子は、上記透明電極基板を
表示側に使用したものであることから、透明電極に接す
る酸化物絶縁層が酸素含有雰囲気中でのスパッタリング
法によって形成されたちのであっても、またその成膜後
に空気中でのアニール処理を施したものであっても、従
来構成のEL素子に比較してすぐれた絶縁耐圧および発
光効率を示す。
Furthermore, since the EL element according to the present invention uses the transparent electrode substrate described above on the display side, the oxide insulating layer in contact with the transparent electrode is formed by sputtering in an oxygen-containing atmosphere. Even when the film is annealed in air after film formation, it exhibits superior dielectric strength and luminous efficiency compared to EL elements with conventional configurations.

〔実施例〕〔Example〕

以下、この発明を実施例に基づいて具体的に説明する。 Hereinafter, this invention will be specifically explained based on examples.

実施例1 厚さ1.1)1のガラス板からなる透光性基板の片面全
面にCVD法により厚さ2,000人のSnOよ:F膜
(F/Snの原子比6/4)を形成して表示側の透明電
極とした。
Example 1 A 2,000-thick SnO:F film (F/Sn atomic ratio 6/4) was deposited on one side of the entire surface of a transparent substrate made of a glass plate with a thickness of 1.1) 1. A transparent electrode was formed on the display side.

つぎに、上記透明電極上に高周波スパッタリング法によ
って厚さs、ooo人のPbTi0zからなる第1の絶
縁層を、スパッタガスとしてアルゴンガスと酸素ガスの
混合ガス(Ar:02の容積比=90:10)を用いて
、真空度2 X 10−’Torr、基板温度640℃
、成膜速度80人/分の条件で形成し、さらにこの絶縁
層上に順次、電子ビーム蒸着法による厚さ5,000人
のZnS :TbF、からなる発光体層、プラズマCV
D法による厚さ1.000人の窒化ケイ素からなる第2
の絶縁層、抵抗加熱蒸着法による厚さ1,500人のA
l膜からなる背面電極を形成し、第1図で示す構成のE
L素子A1を作製した。
Next, a first insulating layer made of PbTi0z with a thickness of s and ooo is deposited on the transparent electrode by high-frequency sputtering using a mixed gas of argon gas and oxygen gas (volume ratio of Ar:02=90: 10) at a vacuum level of 2 x 10-'Torr and a substrate temperature of 640°C.
, formed at a deposition rate of 80 people/min, and then sequentially deposited on this insulating layer a phosphor layer of ZnS:TbF with a thickness of 5,000 people by electron beam evaporation, and plasma CVD.
A second layer made of silicon nitride with a thickness of 1.000 mm by the D method.
Insulating layer, 1,500 mm thick by resistance heating evaporation method
A back electrode consisting of a film is formed, and an E of the configuration shown in FIG.
An L element A1 was produced.

なお、第1の絶縁層の形成前と形成後の透明電極の面抵
抗は、ともに20Ω/口であって変化はなかった。また
上記とは別に第1の絶縁層の形成後に空気中で400℃
にて1時間のアニール処理を施して透明電極の面抵抗を
測定したが、やはり20Ω/口で変化はなかった。
Note that the sheet resistance of the transparent electrode before and after the formation of the first insulating layer was both 20Ω/hole, and there was no change. In addition to the above, after forming the first insulating layer,
The sheet resistance of the transparent electrode was measured after annealing for 1 hour at , but it remained unchanged at 20Ω/hole.

比較例l 5nO□:F膜の代わりにEB(電子ビーム)蒸着法に
て形成された厚さ2,000人のITO膜からなる透明
電極を有する基板を使用した以外は、実施例1と同様に
してEL素子A2を作製した。
Comparative Example 1 Same as Example 1 except that instead of the 5nO□:F film, a substrate having a transparent electrode made of a 2,000-layer ITO film formed by EB (electron beam) evaporation was used. An EL element A2 was produced.

この場合、透明電極の面抵抗は、第1の絶縁層の形成前
では1097口であったが、同形成後には40倍の40
0Ω/口と著しく増大し、また実施例1と同様のアニー
ル処理後には300Ω/口となった。
In this case, the sheet resistance of the transparent electrode was 1097 before the formation of the first insulating layer, but after the same formation, the sheet resistance was 40 times as high as 40.
The resistance increased significantly to 0Ω/hole, and after the same annealing treatment as in Example 1, it became 300Ω/hole.

実施例2 実施例1と同様にして基板上に形成したSnOよ:F膜
からなる透明電極上に、厚さ4.000人のTaxes
からなる第1の絶縁層を、スパッタガスとしてアルゴン
ガスと酸素ガスの混合ガス(Ar:0□の容積比=80
:20)を用いて、真空度2X10−”Torr、基板
温度300℃、成膜速度60人/分の条件の高周波スパ
ッタリング法により形成し、さらにこの絶縁層上に順次
、実施例1と同様の発光体層、第1の絶縁層と同様の高
周波スパッタリング法による厚さ4.000人のTat
O,からなる第2の絶縁層、実施例1と同様の背面電極
を形成し、第1図で示す構成のEL素子B1を作製した
。この場合、透明電極の両抵抗は、実施例1と同様に第
1の絶縁層の形成前後で20Ω/口と変化はなかった。
Example 2 Taxes with a thickness of 4,000 were placed on a transparent electrode made of a SnO:F film formed on a substrate in the same manner as in Example 1.
A mixed gas of argon gas and oxygen gas (volume ratio of Ar:0□=80
:20), by high frequency sputtering method under the conditions of a vacuum degree of 2 x 10-'' Torr, a substrate temperature of 300°C, and a film formation rate of 60 people/min. The light emitter layer and the first insulating layer are formed to a thickness of 4,000 mm using the same high frequency sputtering method.
A second insulating layer made of O, and a back electrode similar to that in Example 1 were formed to produce an EL element B1 having the configuration shown in FIG. In this case, as in Example 1, the resistance of the transparent electrode remained unchanged at 20Ω/hole before and after the formation of the first insulating layer.

比較例2 SnOz:F膜の代わりにEI3蒸着法にて形成された
厚さ2.000人のITO膜からなる透明電極を有する
基板を使用した以外は、実施例2と同様にしてEL素子
B2を作製した。この場合、透明電極の面抵抗は、第1
の絶縁層の形成前では10Ω/口であったが、同形成後
には30倍の300Ω/口と著しく増大していた。
Comparative Example 2 EL element B2 was produced in the same manner as in Example 2, except that instead of the SnOz:F film, a substrate having a transparent electrode made of a 2,000-thick ITO film formed by the EI3 vapor deposition method was used. was created. In this case, the sheet resistance of the transparent electrode is the first
Before the formation of the insulating layer, the resistance was 10 Ω/hole, but after the same formation, it increased significantly to 300 Ω/hole, which is 30 times as large.

上記の実施例および比較例のEL素子A1.B1、A2
.B2について、5KIIzの交流正弦波電圧の印加に
よる輝度−電圧特性を測定したところ、第2図で示す結
果が得られた。なお、図中の各曲線の符号はEL素子の
符号に対応している。
EL element A1 of the above example and comparative example. B1, A2
.. Regarding B2, when the brightness-voltage characteristics were measured by applying an AC sinusoidal voltage of 5KIIz, the results shown in FIG. 2 were obtained. Note that the symbol of each curve in the figure corresponds to the symbol of the EL element.

第2図の曲線AIとA2の比較ならびに曲線B1と82
の比較から明らかなように、この発明のEL素子(Al
、Bl)は、表示側の透明電極としてITO膜を使用し
た従来構成のEL素子(A2、B2)に比べて絶縁破壊
電圧が大幅に高くかつ最大輝度も増大しており、絶縁耐
圧および発光効率にすぐれることが判る。
Comparison of curves AI and A2 in Figure 2 and curves B1 and 82
As is clear from the comparison, the EL element of the present invention (Al
, Bl) have a significantly higher dielectric breakdown voltage and increased maximum brightness compared to the conventionally configured EL elements (A2, B2) that use an ITO film as the transparent electrode on the display side, and have improved dielectric breakdown voltage and luminous efficiency. It turns out that it is excellent.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明に係るエレクトロルミネッセンス素子
の構造例を示す断面図、第2図はこの発明の実施例およ
び比較例のエレクトロルミネッセンス素子の輝度−電圧
特性図である。 1・・・透光性基板、2・・・透明電極、3・・・第1
の絶縁層(酸化物絶縁層)、4・・・発光体層、5・・
・第2の絶縁層(背面側絶縁層)6・・・背面電極特許
出願人  日立マクセル株式会社
FIG. 1 is a sectional view showing a structural example of an electroluminescent device according to the present invention, and FIG. 2 is a brightness-voltage characteristic diagram of electroluminescent devices according to an example of the present invention and a comparative example. 1... Transparent substrate, 2... Transparent electrode, 3... First
insulating layer (oxide insulating layer), 4... luminescent layer, 5...
・Second insulating layer (back side insulating layer) 6...Back electrode patent applicant Hitachi Maxell, Ltd.

Claims (6)

【特許請求の範囲】[Claims] (1) 透光性基板の片面にフツ素を含有する酸化スズ
薄膜からなる透明電極が形成されてなる透明電極基板。
(1) A transparent electrode substrate in which a transparent electrode made of a thin film of tin oxide containing fluorine is formed on one side of a transparent substrate.
(2) 透明電極のフツ素とスズの原子比F/Snが1
/1〜9/1の範囲にある請求項(1)に記載の透明電
極基板。
(2) The atomic ratio F/Sn of fluorine and tin in the transparent electrode is 1
The transparent electrode substrate according to claim 1, which is in the range of /1 to 9/1.
(3) 透明電極の厚みが1,000〜5,000Åで
ある請求項(1)または(2)に記載の透明電極基板。
(3) The transparent electrode substrate according to claim (1) or (2), wherein the transparent electrode has a thickness of 1,000 to 5,000 Å.
(4) 透光性基板の片面に形成されたフツ素を含有す
る酸化スズ薄膜からなる透明電極とこれに対向する背面
電極との間に、上記透明電極に接する酸化物絶縁層と発
光体層が配設されてなるエレクトロルミネツセンス素子
(4) An oxide insulating layer and a luminescent layer in contact with the transparent electrode are provided between the transparent electrode made of a thin film of tin oxide containing fluorine formed on one side of the transparent substrate and the back electrode facing the transparent electrode. An electroluminescent element that is equipped with.
(5) 透明電極に接する酸化物絶縁層が酸素含有雰囲
気中でのスパツタリング法により形成されたものからな
る請求項(4)に記載のエレクトロルミネツセンス素子
(5) The electroluminescent device according to claim (4), wherein the oxide insulating layer in contact with the transparent electrode is formed by sputtering in an oxygen-containing atmosphere.
(6) 発光体層と背面電極との間に背面側絶縁層が介
在された請求項(4)または(5)に記載のエレクトロ
ルミネツセンス素子。
(6) The electroluminescence device according to claim (4) or (5), wherein a back side insulating layer is interposed between the light emitter layer and the back electrode.
JP63038068A 1988-02-20 1988-02-20 Transparent electrode substrate and electroluminescence element utilizing same Pending JPH01213991A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63038068A JPH01213991A (en) 1988-02-20 1988-02-20 Transparent electrode substrate and electroluminescence element utilizing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63038068A JPH01213991A (en) 1988-02-20 1988-02-20 Transparent electrode substrate and electroluminescence element utilizing same

Publications (1)

Publication Number Publication Date
JPH01213991A true JPH01213991A (en) 1989-08-28

Family

ID=12515173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63038068A Pending JPH01213991A (en) 1988-02-20 1988-02-20 Transparent electrode substrate and electroluminescence element utilizing same

Country Status (1)

Country Link
JP (1) JPH01213991A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19628119A1 (en) * 1996-07-12 1998-01-29 Univ Bayreuth Vertreten Durch Light-emitting apparatus
JP2008520463A (en) * 2004-11-19 2008-06-19 アクゾ ノーベル ナムローゼ フェンノートシャップ Method for preparing a flexible, mechanically compensated transparent laminate material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19628119A1 (en) * 1996-07-12 1998-01-29 Univ Bayreuth Vertreten Durch Light-emitting apparatus
JP2008520463A (en) * 2004-11-19 2008-06-19 アクゾ ノーベル ナムローゼ フェンノートシャップ Method for preparing a flexible, mechanically compensated transparent laminate material

Similar Documents

Publication Publication Date Title
JPH01213991A (en) Transparent electrode substrate and electroluminescence element utilizing same
JPH0156517B2 (en)
JPH08281857A (en) Transparent conductive laminate
JPS5829880A (en) Electric field luminescent element
JPS6396896A (en) Electroluminescence device
JPH03112089A (en) Thin film el element
JPS6345797A (en) Thin film light emitting device
JPH0124358B2 (en)
JPH0460317B2 (en)
JPH0294289A (en) Manufacture of thin film type electroluminescence element
JPS63239797A (en) Electroluminescence device
JPH0369158B2 (en)
JPH01225096A (en) Thin film type electroluminescence element
JPH02132791A (en) Thin-film el element
JPS6147096A (en) Method of producing thin film el element
JPS63224192A (en) Thin film EL panel
JPH0218895A (en) Thin film type el element
JPH02262295A (en) Thin film el element
JPS6314833B2 (en)
JPH01204394A (en) Thin film el element
JPS62115691A (en) How to manufacture electroluminescent panels
JPH01206596A (en) Film type electroluminescence element
JPH02195684A (en) Thin film el device
JPH03205786A (en) Manufacture of double insulating thin film electroluminescence device
JPH02199792A (en) Thin film el element