[go: up one dir, main page]

JPH01201896A - Semiconductor memory - Google Patents

Semiconductor memory

Info

Publication number
JPH01201896A
JPH01201896A JP63026439A JP2643988A JPH01201896A JP H01201896 A JPH01201896 A JP H01201896A JP 63026439 A JP63026439 A JP 63026439A JP 2643988 A JP2643988 A JP 2643988A JP H01201896 A JPH01201896 A JP H01201896A
Authority
JP
Japan
Prior art keywords
circuit
turned
signal
level
power source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63026439A
Other languages
Japanese (ja)
Inventor
Takashi Yamaguchi
孝志 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP63026439A priority Critical patent/JPH01201896A/en
Publication of JPH01201896A publication Critical patent/JPH01201896A/en
Pending legal-status Critical Current

Links

Landscapes

  • Static Random-Access Memory (AREA)

Abstract

PURPOSE:To enhance the universal applicability of a semiconductor memory without separately providing a clearing terminal by detecting a power source input with a power source initializing circuit, generating a pulse signal, and writing '0' information to the all memory cells with a flash clearing circuit in synchronization with the pulse signal with a flash clearing circuit. CONSTITUTION:A chip selection internal signal the inverse of CS of a power initializing circuit 9 is set at '0' level, and an absolute value VTP of a threshold voltage of a P-type MOSFET Q11 and Q12 and a threshold voltage VTN of an N-type MOSFET Q13-Q15 are set at the relation of VTP<VTN. Next, when a power source VCC rises to be the same as the VTP, the Q11 and Q12 are turned on, a nodal point N1 rises to the VCC, and after a prescribed time, the Q13 and Q15 are turned on. When the signal the inverse of CS changes from '1' to '0' due to the input of the power source, the FETQ3 of a row decoder 2 is turned on, the Q6 is turned off, a word line WL is forcibly set at '1' regardless of an address input and the level of a row decoder activating signal the inverse of XE, and '0' is written to a memory cell 3.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体記憶装置、特にメモリセル全てに“0”
情報を書き込むためのフラッシュクリア回路に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a semiconductor memory device, in particular, a semiconductor memory device in which all memory cells are set to “0”.
This invention relates to a flash clear circuit for writing information.

〔従来の技術〕[Conventional technology]

まず、従来の半導体記憶装置のフラッシュクリア回路に
ついて図面を用いて説明する。第4図が従来のメモリセ
ル周辺回路を含むフラッシュクリア回路である。
First, a conventional flash clear circuit of a semiconductor memory device will be described with reference to the drawings. FIG. 4 shows a conventional flash clear circuit including a memory cell peripheral circuit.

第4図において、1はアドレスを入力とするNAND回
路、Q1〜Q、はPチャンネル型MO8FET、Q、〜
Q6はNチャンネル型MO3FET。
In Fig. 4, 1 is a NAND circuit that receives an address as input, Q1 to Q are P-channel type MO8FETs, and Q, to
Q6 is an N-channel MO3FET.

Xl−はロウデコーダ活性化信号、丁で7はフラッシュ
クリア内部信号で、以上によりロウデコーダ2が構成さ
れる。Qr、 Qs、 Ql。はPチャンネル型MO8
FET、Q9はNチャンネル型MO8FET、FC’ 
、Fで7はフラッシュクリア内部信号、WLはワード線
、BL、百Tはビット線、3はメモリセルである。次に
、4,5はインバータ、FCはフラッシュクリア入力信
号、FC’ 、FCはフラッシュクリア内部信号で、以
上によりフラッシュクリア信号発生回路6が構成される
Xl- is a row decoder activation signal, and D7 is a flash clear internal signal, and the row decoder 2 is configured as described above. Qr, Qs, Ql. is P channel type MO8
FET, Q9 is N-channel type MO8FET, FC'
, F, 7 is a flash clear internal signal, WL is a word line, BL, 100T is a bit line, and 3 is a memory cell. Next, 4 and 5 are inverters, FC is a flash clear input signal, FC' and FC are flash clear internal signals, and the flash clear signal generating circuit 6 is configured as described above.

第4図の回路動作について説明する。まず、FCが「0
」から「1」レベルに変化すると、4の出力7丁7は「
1」から「0」レベルに変化し、5の出力FC’は「0
」から「1」レベルに変化する。
The operation of the circuit shown in FIG. 4 will be explained. First, FC is “0”
” to “1” level, the output 7 of 4 becomes “
The output FC' of 5 changes from "1" to "0" level, and the output FC' of 5 becomes "0".
” to “1” level.

FCが「0」レベルにあるため、Q、はオン、Qsはオ
フする。従って、アドレス入力、XEのレベルにかかわ
らず、ワード線WLは強制的に「1」 レベルになる。
Since FC is at the "0" level, Q is on and Qs is off. Therefore, regardless of the address input and the level of XE, the word line WL is forced to the "1" level.

次に、FC’が「1」レベル、FCが「0」レベルにあ
るため、Q v 、 Q sはオフ、Q、。
Next, since FC' is at the "1" level and FC is at the "0" level, Q v and Q s are off, Q,.

Qroはオンする。従って、BLはGNDレベル、百T
はvccレベルとなり、メモリセル3にrOJ情報が書
き込まれる。
Qro turns on. Therefore, BL is GND level, 100T
becomes the vcc level, and rOJ information is written into the memory cell 3.

以上の様に、フラッシュクリア入力信号FCを「1」レ
ベルにすることにより、全メモリセルに「0」情報を書
き込むことが可能である。
As described above, by setting the flash clear input signal FC to the "1" level, it is possible to write "0" information into all memory cells.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来の半導体記憶装置は、全メモリセルに情報
「0」を書き込むためのフラッシュクリア回路にはフラ
ッシュクリア入力端子FCを設けなければならないので
、汎用性がないという欠点がある。
The above-described conventional semiconductor memory device has the disadvantage of lack of versatility because a flash clear input terminal FC must be provided in the flash clear circuit for writing information "0" into all memory cells.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の半導体記憶装置は、電源投入を検知してパルス
信号を発生する電源イニシャライズ回路を有し、前記パ
ルス信号に同期して、メモリセル全てに“0”情報を書
き込むことが可能なフラッシュクリア回路を有すること
を特徴としている。
The semiconductor memory device of the present invention has a power initialization circuit that detects power-on and generates a pulse signal, and has a flash clear circuit that can write "0" information to all memory cells in synchronization with the pulse signal. It is characterized by having a circuit.

〔実施例〕〔Example〕

次に、本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は本発明の一実施例の回路図であり、第2図は実
施例第1図の動作波形図である。
FIG. 1 is a circuit diagram of an embodiment of the present invention, and FIG. 2 is an operation waveform diagram of the embodiment shown in FIG. 1.

第1図において、ロウデコーダ2及びメモリセル3とそ
の周辺回路は従来例第4図と同一であるため、その説明
は省略する。次にQr > r Q 1□はPチャンネ
ル型M OS F E T 、 Q s s〜QISは
Nチャンネル型MO8FET、7.8はインバータ%N
lは節点、F’C’、FC−はそれぞれインバータ8゜
7の出力、C8はチップセレクト内部信号で、以上によ
る電源イニシャライズ回路9が構成される。
In FIG. 1, the row decoder 2, memory cell 3, and their peripheral circuits are the same as those in the conventional example shown in FIG. 4, and therefore their explanation will be omitted. Next, Qr > r Q1□ is P-channel type MOSFET, Qss~QIS is N-channel type MO8FET, and 7.8 is inverter %N
1 is a node, F'C' and FC- are the outputs of the inverter 8.7, and C8 is a chip select internal signal, and the power supply initialization circuit 9 is constructed as described above.

まず、電源イニシャライズ回路9の動作説明を第2図を
用いて行う。ここで説明を簡単にするため、C8は「0
」レベルにあり、PチャンネルMO3FETのスレッシ
ョールド電圧の絶対値(以下単に1VTplと呼ぶ)よ
りもNチャンネル間O8FETのスレッショールド電圧
(以下単にVTNと呼ぶ)の方が大きい、即ちl Vt
p I < VtNの関係があると仮定する。
First, the operation of the power supply initialization circuit 9 will be explained using FIG. To simplify the explanation here, C8 is "0".
” level, and the threshold voltage of the N-channel O8FET (hereinafter simply referred to as VTN) is larger than the absolute value of the threshold voltage of the P-channel MO3FET (hereinafter simply referred to as 1VTpl), that is, l Vt.
Assume that there is a relationship p I < VtN.

電源VccがOvより緩やかに上昇し、vccがlV?
Plと等しくなる時刻t0になると、Ql、。
Power supply Vcc rises more slowly than Ov, and vcc becomes lV?
At time t0 when it becomes equal to Pl, Ql.

Q1□が共にオンするため、節点N1はVccと等しい
電位まで上昇する。次にVccが2・VtN−△Vに等
しくなる時刻t1になると、Qll、 Q1□に加えて
、QlS# Ql5もオンする。ここで、△VはC13
の基板バイアス効果によるNチャンネルMO3FETの
スレッショールド電圧の増加分である。また、直列接続
されているQ 、、、 Q 12と比べて、直列接続さ
れているC13とQl、の方が極めて大きな電流能力を
持つ関係にあるならば、時刻t1において第2図に示す
如<N、の電位は下がる。
Since both Q1□ are turned on, the node N1 rises to a potential equal to Vcc. Next, at time t1 when Vcc becomes equal to 2.VtN-ΔV, in addition to Qll and Q1□, QlS# and Ql5 are also turned on. Here, △V is C13
This is the increase in the threshold voltage of the N-channel MO3FET due to the substrate bias effect. Furthermore, if C13 and Ql, which are connected in series, have an extremely large current capacity compared to Q12, which are connected in series, then at time t1, as shown in FIG. <N, the potential decreases.

以上説明したように、電源VccはOvより緩やかに上
昇する過程において、節点N1は第2図に示す様なパル
ス信号になる。従って、インバータ7を介した丁で−は
N1と逆相のパルス信号となり、さらにインバータ8を
介したFC’はN1と同相のパルス信号となる。
As explained above, in the process in which the power supply Vcc rises more slowly than Ov, the node N1 becomes a pulse signal as shown in FIG. Therefore, the pulse signal - passed through the inverter 7 becomes a pulse signal with the phase opposite to that of N1, and the signal FC' passed through the inverter 8 becomes a pulse signal with the same phase as N1.

次に、電源投入を検知して発生するクロック信号FC’
 、FC7に同期してメモリセルに「0」情報が書き込
まれる迄の回路動作について説明する。Yで7がrlJ
から「0」レベルに変化すると、C3がオン% Qaは
オフするため、アドレス入力、■のレベルにかかわらず
、ワード線WLは強制的に「1」レベルになる。次にF
C’が「0」から「1」レベルに変化すると% Q、Q
lはオフ、Qs、にL。はオンする。従って、BLはG
NDレベル、BL−はvccレベルとなり、メモリセル
3に「0」情報が書き込まれる。次に、Yで−が「0」
から「1」レベルへ、FC’がrlJから「0」レベル
へ変化すると、Qs、Qe、Qloはオフ、Q、〜Q、
はオンするため、ロウデコーダ2やメモリセル周辺回路
は通常の半導体記憶装置と同等となり、Read及びW
rite動作が可能となる。
Next, the clock signal FC' generated upon detecting power-on
, FC7, the circuit operation until "0" information is written into the memory cell will be explained. Y and 7 is rlJ
When the level changes from 0 to 0, C3 is turned on and Qa is turned off, so the word line WL is forcibly set to 1 regardless of the level of the address input. Next F
When C' changes from "0" to "1" level, % Q, Q
L is off, Qs is L. turns on. Therefore, BL is G
The ND level and BL- become the vcc level, and "0" information is written into the memory cell 3. Next, - is "0" in Y
When FC' changes from rlJ to "1" level and from rlJ to "0" level, Qs, Qe, Qlo are off, Q, ~Q,
is turned on, so the row decoder 2 and memory cell peripheral circuits are equivalent to a normal semiconductor memory device, and the Read and W
rite operation becomes possible.

以上のように、電源投入後に全メモリセルに「0」情報
が書き込まれ、その後通常のReadまたはWrite
モードに移ることが可能である。
As described above, "0" information is written to all memory cells after power is turned on, and then normal Read or Write operations are performed.
mode.

次に、本発明の他の実施例について説明する。Next, other embodiments of the present invention will be described.

第3図は本発明の第二の実施例の回路図である。FIG. 3 is a circuit diagram of a second embodiment of the present invention.

第3図は、第一の実施例第1図の電源イニシャライズ回
路に対して改良を行ったものである。第3図において、
QlllQ12はPチャンネル型MO8F E T 、
 Q l 3〜Q18はNチャンネル型MO8FET、
7.8はインバータ、N1は節点、FC’ 。
FIG. 3 shows an improvement on the power supply initialization circuit of FIG. 1 of the first embodiment. In Figure 3,
QlllQ12 is P channel type MO8FET,
Q l 3 to Q18 are N-channel type MO8FETs,
7.8 is an inverter, N1 is a node, FC'.

FC”はそれぞれインバータ8,7の出力、で37はチ
ップセレクト内部信号で、以上により電源イニシャライ
ズ回路10が構成される。
FC'' are the outputs of inverters 8 and 7, respectively, and 37 is a chip select internal signal, and the power supply initialization circuit 10 is configured as described above.

第3図において、第1図と異なる点は、Nチャンネル型
M OS F E T Q 1sが追加された点だけで
ある。
The only difference in FIG. 3 from FIG. 1 is that an N-channel type MOS FET Q 1s is added.

次に、第3図の回路動作について説明する。電源Vcc
がOvから緩やかに上昇し、Vccが1vtplに等し
くなる時刻になると、QllとC12がオンするため、
節点N1はVccと等しい電位まで上昇。次にVccが
3・VTN+△V′に等しくなると、QllI Q+□
に加えてQ、3.Q、、、Q、。
Next, the operation of the circuit shown in FIG. 3 will be explained. Power supply Vcc
When Vcc gradually rises from Ov and Vcc becomes equal to 1vtpl, Qll and C12 turn on, so
Node N1 rises to a potential equal to Vcc. Next, when Vcc becomes equal to 3・VTN+△V', QllI Q+□
In addition to Q, 3. Q,,,Q,.

もオンする。ここで、△V′はC13,C15の基板バ
イアス効果によるNチャンネルMO8FETのスレッシ
ョールド電圧の増加分である。また、直列接続されてい
るQll、Q+□と比べて、直列接続されているC13
1 C151Q+eの方が極めて大きな電流能力を持つ
関係にあるならば、N1の電位は「0」レベル名工がる
。なお、N1の電位が下る時のVccの電位が、第一の
実施例第1図よりも高い所にあるため、N1のパルス幅
が第1図よりも拡がる。以上説明したように、電源V 
c c IJ’h OVより緩やかに上昇する過程にお
いて、節点N1は第1図よりも幅の広いパルス信号とな
り、同様にFC’ 、FCも第1図よりも幅の広いパル
ス信号になる。
Also turns on. Here, ΔV' is an increase in the threshold voltage of the N-channel MO8FET due to the substrate bias effect of C13 and C15. Also, compared to Qll and Q+□ which are connected in series, C13 which is connected in series
1 If C151Q+e has an extremely large current capacity, the potential of N1 will be at the "0" level. Note that since the potential of Vcc when the potential of N1 falls is higher than that of the first embodiment in FIG. 1, the pulse width of N1 is wider than that of FIG. 1. As explained above, the power supply V
c c IJ'h In the process of gradually rising from OV, the node N1 becomes a pulse signal with a wider width than in FIG. 1, and similarly, FC' and FC also become pulse signals with a wider width than in FIG.

従って、本実施例第3図によれば、第一の実施例第1図
よりもFC’ 、FCは幅の広いパルス信号となるため
、メモリセルに「0」情報を書キ込む時間が長くなり、
安定した書き込みが可能となる。なお、ロウデコーダ、
メモリセル周辺回路の動作は第1図の場合と全く同様で
あるため、その説明は省略する。
Therefore, according to FIG. 3 of this embodiment, since FC' and FC are wider pulse signals than in FIG. 1 of the first embodiment, it takes longer to write "0" information into the memory cell. Become,
Stable writing becomes possible. In addition, the row decoder,
Since the operation of the memory cell peripheral circuit is exactly the same as in the case of FIG. 1, its explanation will be omitted.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、電源イニシャライズ回路
の発生するパルス信号に同期して、メモリセル全てに「
0」情報を書き込むことが可能で、従来の様にフラッシ
ュクリア入力端子FCを別に設ける必要がないという効
果がある。
As explained above, the present invention enables all memory cells to be
0'' information can be written, and there is an advantage that there is no need to separately provide a flash clear input terminal FC as in the conventional case.

なお、本発明の実施例において、0MO8構成のSRA
Mの場合について説明を行ったが、本発明はこれに限定
されるものではなく、本発明の主旨を満たす範囲の様々
な応用例が可能であることは言うまでもない。
In addition, in the embodiment of the present invention, the SRA with 0MO8 configuration
Although the case of M has been described, the present invention is not limited thereto, and it goes without saying that various application examples are possible within the range that satisfies the gist of the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第一の実施例を示す回路図、第2図は
第1図の動作波形図、第3図は本発明の第二の実施例を
示す回路図、第4図は従来例を示す回路図である。 1・・・・・・NAND回路、2・・・・・・ロウデコ
ーダ、3・・・・・・メモリセル、4,5,7.8・・
・・・・インバータ、6・・・・・・フラッシュクリア
信号発生回路、9゜10・・・・・・電源イニシャライ
ズ回路、FC・・・・・・フラッシュクリア入力信号、
FC’ 、FC・・・・・・フラッシュクリア内部信号
、XE−・・・・・・ロウデコーダ活性化信号、C8・
・・・・・チップセレクト内部信号、WL・・・・・・
ワード線、BL、BL・・・・・・ビット線。 代理人 弁理士  内 原   音 r   −−=−=−−−I X:Ji  図 第2図 第3回
Fig. 1 is a circuit diagram showing a first embodiment of the present invention, Fig. 2 is an operation waveform diagram of Fig. 1, Fig. 3 is a circuit diagram showing a second embodiment of the invention, and Fig. 4 is a circuit diagram showing a second embodiment of the present invention. FIG. 2 is a circuit diagram showing a conventional example. 1... NAND circuit, 2... Row decoder, 3... Memory cell, 4, 5, 7.8...
... Inverter, 6 ... Flash clear signal generation circuit, 9゜10 ... Power supply initialization circuit, FC ... Flash clear input signal,
FC', FC... Flash clear internal signal, XE-... Row decoder activation signal, C8...
...Chip select internal signal, WL...
Word line, BL, BL...bit line. Agent Patent Attorney Oto Uchihara −−=−=−−−I X:Ji Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims]  行方向と列方向とに配列された多数のメモリセルを有
する半導体記憶装置において、電源投入を検知してパル
ス信号を発生する電源イニシャライズ回路を有し、前記
パルス信号に同期して、前記メモリセル全てに“0”情
報を書き込むことが可能なフラッシュクリア回路を有す
ることを特徴とする半導体記憶装置。
A semiconductor memory device having a large number of memory cells arranged in row and column directions includes a power initialization circuit that detects power-on and generates a pulse signal, and in synchronization with the pulse signal, the memory cells are activated. A semiconductor memory device characterized by having a flash clear circuit that can write "0" information to all.
JP63026439A 1988-02-05 1988-02-05 Semiconductor memory Pending JPH01201896A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63026439A JPH01201896A (en) 1988-02-05 1988-02-05 Semiconductor memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63026439A JPH01201896A (en) 1988-02-05 1988-02-05 Semiconductor memory

Publications (1)

Publication Number Publication Date
JPH01201896A true JPH01201896A (en) 1989-08-14

Family

ID=12193540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63026439A Pending JPH01201896A (en) 1988-02-05 1988-02-05 Semiconductor memory

Country Status (1)

Country Link
JP (1) JPH01201896A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04247394A (en) * 1991-01-31 1992-09-03 Kawasaki Steel Corp Memory cell

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58222489A (en) * 1982-06-18 1983-12-24 Nec Corp Semiconductor storage device
JPS58225416A (en) * 1982-06-25 1983-12-27 Mitsubishi Electric Corp Automatic clearing method of electronic circuit
JPS60191323A (en) * 1984-11-26 1985-09-28 Hitachi Ltd Monolithic integrated circuit
JPS60242587A (en) * 1984-05-16 1985-12-02 Hitachi Micro Comput Eng Ltd Dynamic RAM

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58222489A (en) * 1982-06-18 1983-12-24 Nec Corp Semiconductor storage device
JPS58225416A (en) * 1982-06-25 1983-12-27 Mitsubishi Electric Corp Automatic clearing method of electronic circuit
JPS60242587A (en) * 1984-05-16 1985-12-02 Hitachi Micro Comput Eng Ltd Dynamic RAM
JPS60191323A (en) * 1984-11-26 1985-09-28 Hitachi Ltd Monolithic integrated circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04247394A (en) * 1991-01-31 1992-09-03 Kawasaki Steel Corp Memory cell

Similar Documents

Publication Publication Date Title
KR100673904B1 (en) Semiconductor memory device
JPH04214290A (en) Semiconductor memory device
JPS59178685A (en) Semiconductor storage circuit
JPS6246489A (en) Dynamic differential amplifier
JPH0713857B2 (en) Semiconductor memory device
US6556482B2 (en) Semiconductor memory device
JP2006518910A (en) Low voltage sense amplifier and method
JPH05325540A (en) Semiconductor storage circuit
KR950001428B1 (en) Semiconductor memory device
JP3375504B2 (en) Pulse generating circuit and semiconductor memory device
KR950009074B1 (en) Dynamic Semiconductor Memory
US20110032002A1 (en) Devices and methods for a threshold voltage difference compensated sense amplifier
US5886553A (en) Semiconductor device having a latch circuit for latching data externally input
JP3392497B2 (en) Test potential transfer circuit and semiconductor memory device using the same
US4281399A (en) Semiconductor memory device
JPH03283094A (en) Semiconductor memory
JPH01201896A (en) Semiconductor memory
US6078531A (en) Word line voltage supply circuit
US6628559B2 (en) Semiconductor memory device having refreshing function
JPH06350423A (en) Power-on detection circuit
US5166554A (en) Boot-strapped decoder circuit
JP3192751B2 (en) Semiconductor device
JP2908776B2 (en) Write recovery guarantee circuit for memory device and operation signal control method
JP3048608B2 (en) Semiconductor storage device
JPH04265598A (en) Semiconductor memory