JPH01201440A - Seawater resistant non-magnetic steel material - Google Patents
Seawater resistant non-magnetic steel materialInfo
- Publication number
- JPH01201440A JPH01201440A JP28884787A JP28884787A JPH01201440A JP H01201440 A JPH01201440 A JP H01201440A JP 28884787 A JP28884787 A JP 28884787A JP 28884787 A JP28884787 A JP 28884787A JP H01201440 A JPH01201440 A JP H01201440A
- Authority
- JP
- Japan
- Prior art keywords
- less
- steel material
- steel
- seawater
- rust
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Hard Magnetic Materials (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は鋼構造、コンクリート構造物の中でも、とくに
磁気浮上式高速鉄道、核融合施設、海洋機器、構造物で
非磁性が望まれる用途に利用される非磁性鋼材に関する
ものである。[Detailed Description of the Invention] (Field of Industrial Application) The present invention is applicable to steel structures and concrete structures, especially magnetic levitation high-speed railways, nuclear fusion facilities, marine equipment, and structures where non-magnetism is desired. This relates to the non-magnetic steel materials used.
すなわち、本発明は前述のような用途に適する鋼材を提
供することを目的とするもので鋼材自身の耐食性が良好
なことから、海洋、海浜地帯に設置される構造物の劣化
防止にも役立つ非磁性鋼材に係るものである。That is, the purpose of the present invention is to provide a steel material suitable for the above-mentioned uses, and since the steel material itself has good corrosion resistance, it can also be used as a non-ferrous material that is useful for preventing deterioration of structures installed in oceans and coastal areas. This relates to magnetic steel materials.
(従来の技術)
最近、海洋、海浜地帯に設置された鋼構造建造物、コン
クリート建造物の劣化防止のために種りの防止法が提案
されたり、実施に移されている。(Prior Art) Recently, seed prevention methods have been proposed and put into practice in order to prevent deterioration of steel structures and concrete structures installed in oceans and coastal areas.
鋼構造物の劣化の最大の原因は海水自身による腐食や、
海塩粒子等による腐食によるものであるが、コンクリー
ト劣化p最大の原因はコンクリート壁を浸透して(る塩
分によってコンクリート中に埋設された鉄筋が腐食し、
その体積が鉄の約2.2倍になるため、その膨張力に耐
え切れなくなって埋設鉄筋に沿ったコンクリートに亀裂
が発生することである。その亀裂が0.2 m以上にな
ると外部の腐食因子たる酸素や塩分、空気中の炭酸ガス
がこの亀裂を通してより容易に内部の埋設鉄筋付近に浸
透し、さらに−層鉄の腐食を助長したり、コンクリート
の中性化を促進してコンクリートの劣化を早めることに
なる。The biggest cause of deterioration of steel structures is corrosion caused by seawater itself,
This is due to corrosion caused by sea salt particles, etc., but the biggest cause of concrete deterioration is that the salt that permeates through concrete walls corrodes the reinforcing bars embedded in the concrete.
Since its volume is about 2.2 times that of steel, it cannot withstand the expansion force and cracks occur in the concrete along the buried reinforcing bars. If the crack is 0.2 m or more, external corrosion factors such as oxygen, salt, and carbon dioxide gas in the air can more easily penetrate through the crack to the vicinity of the buried reinforcing steel inside, further promoting corrosion of the steel layer. , which promotes the carbonation of concrete and accelerates its deterioration.
本発明者らはこのようなコンクリートの劣化を防止する
ために鉄筋自体の化学組成を制御し、鉄筋自体の耐塩性
を向上する研究を実施し、その成果として耐塩性を著し
く向上したコンクリート用鉄筋(特開昭57−4805
4号公報、特開昭59−44457号公報)を開発し、
これらの内容は既に他の各方面でも公表されている。(
“0FFSltORE GOTEBORG ’81”P
aper Na42 Goteborg 5WEDEN
1981年、+1セメントコンクリート” Nα43
4(1983) P、23/31 、 “コロージッ
ン オプ ラインフォースメント インコンクリート
コンストラクション(Corros tonof Re
inforcement in Concrete C
on5truction)”P 4191983年、“
建築の技術施工” 1985年、Nα229号1月号P
155/164.彰国社)。In order to prevent such deterioration of concrete, the present inventors conducted research to improve the salt resistance of the reinforcing bars themselves by controlling the chemical composition of the reinforcing bars themselves, and as a result of their research, they developed reinforcing bars for concrete with significantly improved salt resistance. (Unexamined Japanese Patent Publication No. 57-4805
4, Japanese Patent Application Laid-Open No. 59-44457).
These contents have already been published in various other areas. (
“0FFSltORE GOTEBORG '81”P
aper Na42 Goteborg 5WEDEN
1981, +1 Cement Concrete” Nα43
4 (1983) P, 23/31,
Construction (Corros tonof Re
information in concrete C
on5truction)"P 4191983,"
Architectural Technology and Construction” 1985, Nα229 January issue P
155/164. Shokokusha).
又、鉄筋自体の耐塩性向上に寄与する鉄筋の鋼成分の初
期の段階で耐塩機構についても、これらの公表論文の中
に詳細に記載されている。しかしこれらはいずれも非磁
性化は達成できない。In addition, the salt resistance mechanism of the steel components of reinforcing bars at an early stage, which contributes to improving the salt resistance of reinforcing bars themselves, is also described in detail in these published papers. However, none of these can achieve nonmagnetization.
さて、最近、前記のように非磁性化を目的としてMnを
15%以上含有した鋼材の試作がおこなわれているが、
いずれの鋼材においても僅少の塩分存在で発錆が著しく
現行の普通鋼よりむしろ錆発生傾向が大きく、腐食速度
が大きいのが難点の一つになっている。Now, recently, as mentioned above, prototype steel materials containing 15% or more of Mn have been made for the purpose of non-magnetization.
One of the disadvantages of any of these steel materials is that they rust significantly even in the presence of even a small amount of salt, and have a greater tendency to rust than current ordinary steel, and have a high corrosion rate.
(発明が解決しようとする問題点)
本発明は従来の本発明者等の開発を軸にして、最近、と
くに問題となってきた海浜地帯の非磁性鋼材構造物の腐
食と、非磁性鋼材を埋設したコンクリート構造物の劣化
を完全に防止することにある。(Problems to be Solved by the Invention) The present invention is based on the conventional development by the present inventors, and aims to solve the problem of corrosion of non-magnetic steel structures in coastal areas, which has recently become a particular problem, and to solve the problem of non-magnetic steel structures. The purpose is to completely prevent deterioration of buried concrete structures.
現在、各方面で問題となっている20年以上経過した鋼
構造物表面の錆層中には濃厚な塩分が蓄積しており、コ
ンクリート構造物中の埋設鋼材近傍のフリー塩分は砂中
NaCj2換算で約1.0%にも達して埋設鋼材の著し
い腐食とそれに伴うコンクリートの亀裂発生、成長をひ
き起こしている事例もある。したがってきわめて高濃度
の塩分に曝らされても鋼構造物の腐食、コンクリートの
亀裂発生を殆ど完全に停止できることが望ましい。Currently, thick salt accumulates in the rust layer on the surface of steel structures that are more than 20 years old, which is a problem in various fields, and the free salt near the buried steel in concrete structures is equivalent to NaCj2 in sand. In some cases, it has reached approximately 1.0%, causing significant corrosion of buried steel materials and accompanying cracking and growth in concrete. Therefore, it is desirable to be able to almost completely stop corrosion of steel structures and cracking of concrete even when exposed to extremely high concentrations of salt.
(問題点を解決するための手段)
本発明の前記の目的は下記のとおりの構成の非磁性鋼を
提供することによって達成される。(Means for Solving the Problems) The above objects of the present invention are achieved by providing a non-magnetic steel having the following configuration.
(1)C,1,0%以下、Si;0.25%以下、Mn
;2.0%以下、Al ; 20.0超〜37.3%、
P 、 0.015%以下、s ; 0.005%以下
、Cr ; 5.5超〜15.0%を含有し、残部鉄お
よび不可避的不純物からなる耐海水性非磁性鋼材。(1) C, 1.0% or less, Si; 0.25% or less, Mn
; 2.0% or less, Al; more than 20.0 to 37.3%,
A seawater-resistant nonmagnetic steel material containing P, 0.015% or less, s, 0.005% or less, Cr, more than 5.5 to 15.0%, and the balance consisting of iron and inevitable impurities.
(2)C;1.0%以下、Si;0.25%以下、Mn
;2.0%以下、I’J ; 20.0超〜37.3%
、P ; 0.015%以下、s 、 0.005%以
下、Cr ; 5.5超〜15.0%およびCe、 L
a、 Y等の希土類元素を単独ないし複合して0.O1
〜0.5%含有し、残部鉄および不可避的不純物からな
る耐海水性非磁性鋼材。(2) C: 1.0% or less, Si: 0.25% or less, Mn
; 2.0% or less, I'J; more than 20.0 to 37.3%
, P; 0.015% or less, s, 0.005% or less, Cr; more than 5.5 to 15.0%, and Ce, L
rare earth elements such as a, Y, etc. alone or in combination with 0. O1
A seawater-resistant non-magnetic steel material containing ~0.5%, with the remainder consisting of iron and inevitable impurities.
(3)C;1.0%以下、Si;0.25%以下、Mn
;2.0%以下、Aj ; 20.0超〜37.3%、
P 、 0.015%以下、s 、 0.005%以下
、Cr ; 5.5超〜15.0%を含有し、Ti、
V、 Nb、 W、 Co、 Mo、 Bの1種又は2
種以上を、B以外の元素では合計で0.01〜0.5%
、Bは0.0001〜0.005%含有し、残部鉄およ
び不可避的不純物からなる耐海水性非磁性鋼材。(3) C: 1.0% or less, Si: 0.25% or less, Mn
; 2.0% or less, Aj; more than 20.0 to 37.3%,
Contains P, 0.015% or less, S, 0.005% or less, Cr; more than 5.5 to 15.0%, Ti,
One or two of V, Nb, W, Co, Mo, B
0.01 to 0.5% in total for elements other than B
A seawater-resistant nonmagnetic steel material containing 0.0001 to 0.005% of B, with the balance consisting of iron and inevitable impurities.
(4)C;10%以下、Si;0.25%以下、Mn;
2.0%以下、/V ; 20.0超〜37.3%、P
; 0.015%以下、S ; 0.005%以下、
Cr ; 5.5超〜15.0%、Ce、 La、 Y
等の希土類元素を単独ないし複合して0.01〜0.5
%含有し、さらにTi、 V、 Nb、 W、 Co
。(4) C; 10% or less, Si; 0.25% or less, Mn;
2.0% or less, /V; more than 20.0 to 37.3%, P
; 0.015% or less, S; 0.005% or less,
Cr; more than 5.5 to 15.0%, Ce, La, Y
Rare earth elements such as 0.01 to 0.5 alone or in combination
%, and further contains Ti, V, Nb, W, Co
.
Mo、 Bの1種又は2種以上を、B以外の元素では合
計で0.01〜0.5%、Bは0.0001〜0.00
5%含有し、残部鉄および不可避的不純物からなる耐海
水性非磁性鋼材。One or more of Mo and B, with a total of 0.01 to 0.5% of elements other than B, and 0.0001 to 0.00 of B.
A seawater-resistant non-magnetic steel material containing 5%, with the balance consisting of iron and inevitable impurities.
(5)C;1.0%以・下、Si;0.25%以下、M
n;2.0%以下、/u ; 20.0超〜37.3%
、P 、 0.015%以下、s 、 0.005%以
下、Cr ; 5.5超〜15.0%を含有し、Cu、
Niの1種又は2種を0.1〜5.5%含有し、残部
鉄および不可避的不純物からなる耐海水性非磁性鋼材。(5) C: 1.0% or less, Si: 0.25% or less, M
n: 2.0% or less, /u: more than 20.0 to 37.3%
, P, 0.015% or less, s, 0.005% or less, Cr; contains more than 5.5 to 15.0%, Cu,
A seawater-resistant non-magnetic steel material containing 0.1 to 5.5% of one or two types of Ni, with the balance consisting of iron and unavoidable impurities.
(6)C;1.0%以下、5ii0.25%以下、Mn
;2.0%以下、I’J ; 20.0超〜37.3%
、P 、 0.015%以下、s ; 0.005%以
下、Cr ; 5.5超〜15.0%を含有し、Cu、
Niの1種又は2種を0.1〜5.5%含有し、さら
にCe、 La、 Y等の希土類元素を単独ないし複合
して0.01〜0.5%含有し、残部鉄および不可避的
不純物からなる耐海水性非磁性鋼材。(6) C; 1.0% or less, 5ii 0.25% or less, Mn
; 2.0% or less, I'J; more than 20.0 to 37.3%
, P, 0.015% or less, s; 0.005% or less, Cr; contains more than 5.5 to 15.0%, Cu,
Contains 0.1 to 5.5% of one or two types of Ni, further contains 0.01 to 0.5% of rare earth elements such as Ce, La, Y, etc. alone or in combination, and the balance is iron and unavoidable A seawater-resistant non-magnetic steel material made of impurities.
(7)C;1.0%以下、Si;0.25%以下、Mn
;2.0%以下、j’J ; 20.0超〜37.3%
、P 、 0.015%以下、S ; 0.005%以
下、Cr ; 5.5超〜15.0%を含有し、Ti、
V、 Nb、 W、 Co、 Mo、 Bの1種
又は2種以上を、B以外の元素では合計で0.01〜0
.5%、Bは0.0001〜0.005%含有し、さら
にCu。(7) C: 1.0% or less, Si: 0.25% or less, Mn
; 2.0% or less, j'J; more than 20.0 to 37.3%
, P: 0.015% or less, S: 0.005% or less, Cr: more than 5.5 to 15.0%, Ti,
One or more of V, Nb, W, Co, Mo, and B, with a total of 0.01 to 0 for elements other than B.
.. 5%, B contains 0.0001 to 0.005%, and further Cu.
Niの1種又は2種をO,1〜5.5%含有し、残部鉄
および不可避的不純物からなる耐海水性非磁性鋼材。A seawater-resistant non-magnetic steel material containing one or two types of Ni and 1 to 5.5% O, with the balance consisting of iron and inevitable impurities.
(8)C;1.0%以下、Si;0.25%以下、Mn
;2.0%以下、Al ; 20.0超〜37.3%、
P ; 0.015%以下、S 、 0.005%以下
、Cr ; 5.5超〜15.0%を含有し、Ti、
V、 Nb、 W、 Co、 Mo、 Bの1種又は2
種以上を、B以外の元素では合計でo、oi〜0.5%
、Bは0.0001〜0.005%含有し、さらにCu
。(8) C: 1.0% or less, Si: 0.25% or less, Mn
; 2.0% or less, Al; more than 20.0 to 37.3%,
Contains P: 0.015% or less, S: 0.005% or less, Cr: more than 5.5 to 15.0%, Ti,
One or two of V, Nb, W, Co, Mo, B
For elements other than B, the total content is o, oi ~ 0.5%
, B contains 0.0001 to 0.005%, and Cu
.
Niの1種又は2種を0.1〜5.5%含有し、さらに
またCe、 La、 Y等の希土類元素を単独ないし複
合して0.01〜0.5%含有し、残部鉄および不可避
的不純物からなる耐海水性非磁性鋼材。Contains 0.1 to 5.5% of one or two types of Ni, further contains 0.01 to 0.5% of rare earth elements such as Ce, La, Y, etc. singly or in combination, and the balance is iron and A seawater-resistant non-magnetic steel material that contains unavoidable impurities.
以下、本発明を詳述する。The present invention will be explained in detail below.
本発明の最大の特徴は、鋼中のSi、 Slを下げか
つ非磁性化を安定にするためにMとCrを比較的多量添
加する点にあり、又熱間加工性向上のためにCe +
L a + Y等の希土類元素を若干量添加した点であ
る。これは、Silを下げることによって、錆の生成、
成長を抑え、slの低下に伴い錆発生点となるMnS
ilを著しく低下させることにより耐食性の劣化を小さ
くすると同時に、八!■を比較的多量とすることにより
、鋼材表面の不働態被膜を強固にして濃度の高い塩分に
曝らされても不働態被膜が破壊されず錆発生に至らない
ようにするためである。The greatest feature of the present invention is that relatively large amounts of M and Cr are added to lower Si and Sl in the steel and to stabilize non-magnetization, and Ce + is added to improve hot workability.
The point is that a small amount of a rare earth element such as L a + Y is added. This reduces the formation of rust by lowering Sil.
MnS suppresses growth and becomes a rust generation point as sl decreases.
By significantly lowering il, the deterioration of corrosion resistance is minimized, and at the same time, 8! By making the amount of (2) relatively large, the passive film on the surface of the steel material is strengthened so that even if exposed to high concentration salt, the passive film will not be destroyed and rust will not occur.
以下に本発明で各成分を限定した理由を説明する。The reasons for limiting each component in the present invention will be explained below.
Cf、を1.0%以下に限定した理由は(Jlが1.0
%超では脆化を惹き起こすためである。The reason for limiting Cf to 1.0% or less is (Jl is 1.0%)
This is because exceeding % will cause embrittlement.
なお、Cは熱処理等により磁性を帯びた(Fe、 jV
)3C等の複合炭化物を生成し易いので、CIは低い方
が望ましい。好ましい範囲としてはC〒0.2%以下、
より好ましくは0.001〜0.1%である。In addition, C becomes magnetic due to heat treatment etc. (Fe, jV
) Since complex carbides such as 3C are likely to be generated, a lower CI is desirable. The preferred range is C〒0.2% or less;
More preferably, it is 0.001 to 0.1%.
Si量を0.25%以下とした理由は、Si量を下げれ
ば下げるほど錆生成量を飛躍的に低下させるが、強度保
証と介在物制御の目的でSiを添加させる必要があるた
め、Silを0.25%以下とした。より好ましい範囲
はSi0.05%以下である。The reason why the amount of Si is set to 0.25% or less is that the lower the amount of Si, the more the amount of rust formation will be dramatically reduced, but it is necessary to add Si for the purpose of guaranteeing strength and controlling inclusions. was set to 0.25% or less. A more preferable range is 0.05% or less of Si.
Mn量を2.0%以下とした理由は2.0%超では熱間
圧延が困難になるためである。耐錆性の観点から好まし
い範囲は1.0%以下である。The reason why the Mn content is set to 2.0% or less is that if it exceeds 2.0%, hot rolling becomes difficult. From the viewpoint of rust resistance, the preferable range is 1.0% or less.
Pを0. O15%以下とした理由は、Pが0.015
%を超えるとコンクリートのようなアルカリ性雰囲気で
錆成長を抑制する効果がなく、むしろ助長する傾向があ
るためである。P is 0. The reason why O is 15% or less is that P is 0.015
This is because if the content exceeds %, there is no effect of suppressing rust growth in an alkaline atmosphere such as concrete, and the rust growth tends to be promoted.
/Vは本発明鋼の化学成分の中で最も重要な鍵を握る金
属元素である。AIを20.0超〜37.3%と限定し
た理由は20.0%以下では非磁性化が不完全で、37
.3%超ではMとFeとの金属間化合物が生成しやすく
、鋼の脆化を惹き起こし熱間圧延不能になるためである
。最も好ましい範囲は20.5〜28.0%である。/V is the most important metal element among the chemical components of the steel of the present invention. The reason why the AI was limited to more than 20.0 to 37.3% is that below 20.0%, demagnetization is incomplete.
.. This is because if it exceeds 3%, intermetallic compounds between M and Fe are likely to form, causing embrittlement of the steel and making hot rolling impossible. The most preferred range is 20.5-28.0%.
’Jを0.005%以下とした理由は、錆の発生起源で
あるMnS量を減らすことにあり、このSi低下のため
に脱硫剤として使用されるCa、希土類元素によりMn
Sが(MnCa)S等に変化することによる耐食性向上
効果も期待できる。また鋼中の’Jを低下するために上
記のような操業を行うことは常識となっているので、若
干のCa、 Ce等が混入してくることがあるが、°こ
れらの元素は耐食性などに悪影響を及ぼすものではない
ので、Ca、 Ce等の少量の存在は差支えない。The reason why J is set to 0.005% or less is to reduce the amount of MnS, which is the source of rust.
An effect of improving corrosion resistance can also be expected by changing S to (MnCa)S or the like. In addition, it is common knowledge that the above-mentioned operations are carried out to lower the 'J' in steel, so a small amount of Ca, Ce, etc. may be mixed in, but these elements have important effects such as corrosion resistance. The presence of small amounts of Ca, Ce, etc. does not pose a problem since they do not have a negative effect on the metal.
CrNを5.5%超とした理由は、7V量が20.0%
超の場合、熱間圧延性能が向上するためであるが、15
.0%を超えると逆に脆化する場合が認められたのでC
r1iを5.5超〜15.0%とした。最も好ましい範
囲は7.0〜10.0%の範囲である。The reason why CrN was made more than 5.5% was that the 7V amount was 20.0%.
This is because the hot rolling performance improves when the temperature exceeds 15
.. If it exceeds 0%, it has been observed that embrittlement may occur, so C
r1i was set to more than 5.5 to 15.0%. The most preferred range is 7.0-10.0%.
Ce、 La、 Y等希土類元素は酸素との結合力が大
きく加熱時の鋼材表面の酸化物の特性を変え熱延の際に
加工特性を著しく改善し表面特性が著しく良好になる。Rare earth elements such as Ce, La, and Y have a strong bonding force with oxygen and change the properties of the oxide on the surface of the steel material during heating, significantly improving the processing properties during hot rolling and resulting in significantly better surface properties.
この効果は0.01%未満では認められず0.5%超で
はその効果に変化が認められない。This effect is not observed when the content is less than 0.01%, and no change is observed when the content exceeds 0.5%.
したがってこれらの添加量は単独ないし複合して0、O
1〜0.5%とした。Therefore, the amount of these added alone or in combination is 0, O
The content was set at 1% to 0.5%.
又、本発明においては必要に応じてTi、 V、 N
b。In addition, in the present invention, Ti, V, N
b.
W、 Co、 Mo、 Bなどを添加するが鉄筋の強
度、靭性向上のための公知の元素として添加するもので
、1種又は2種以上を選択して添加し、B以外の元素で
は0.01〜0.5%、Bは0.0001〜0.005
%の添加量とするが、上記の目的としてはすでに一般に
よく知られているものである。之等の選択元素は類似し
た添加効果を示すことが多いので、通常2種を合わせて
添加することで目的を達成することができる。W, Co, Mo, B, etc. are added as known elements to improve the strength and toughness of reinforcing bars, and one or more of them are selected and added, and elements other than B are added at 0. 01-0.5%, B is 0.0001-0.005
%, which is already generally well known for the above purpose. Since these selected elements often exhibit similar addition effects, the objective can usually be achieved by adding two types together.
又、必要に応じてコンクリートに埋設されるまでの耐候
性向上のためにCu、 Niの1種または2種を0.1
〜5.5%添加する。In addition, if necessary, one or both of Cu and Ni may be added at 0.1% to improve weather resistance before being buried in concrete.
Add ~5.5%.
なお必要に応じて例えばネジ付き鉄筋などで快削性が要
求される場合には、pbを0.01〜0.5%添加する
こともできる。Note that if necessary, for example, when free machinability is required for threaded reinforcing bars, 0.01 to 0.5% of PB can be added.
本発明に従い前記の化学成分で構成された鋼は転炉、電
気炉等で溶製され、次いで造塊、分塊の工程を経るか、
あるいは連続鋳造後、圧延された後に、必要に応じて焼
き入れ、焼き戻し、あるいは規準等の熱処理が施された
り、パテンティング等の熱処理が施され、線引きされて
使用に供される。最終製品としては鋼管、H形鋼、鋼矢
板、鉄筋棒鋼、ワイヤー、鋼板等の形状で供給され、必
要に応じて亜鉛メツキ、有機被覆を施すこともできる。According to the present invention, the steel composed of the above chemical components is melted in a converter, electric furnace, etc., and then undergoes the steps of ingot making and blooming, or
Alternatively, after being continuously cast and rolled, it is subjected to heat treatment such as quenching, tempering, or standardization, or heat treatment such as patenting, as required, and then drawn into wire for use. The final products are supplied in the form of steel pipes, H-beams, steel sheet piles, reinforcing steel bars, wires, steel plates, etc., and can be galvanized or coated with organic coatings as required.
(実施例)
実施例1
表1に記載した成分の鋼を真空溶解炉で溶製し、造塊1
分塊後、熱間圧延した鋼と従来鋼からなる鋼との成分お
よび腐食試験結果を示した。(Example) Example 1 Steel having the components listed in Table 1 was melted in a vacuum melting furnace, and ingot 1 was produced.
The composition and corrosion test results of hot-rolled steel and conventional steel after blooming are shown.
準備した鋼板の中央部より幅25M×長さ60mmX厚
さ2III11の試片を採取し、機械研削して表面を研
磨した。A sample measuring 25M in width x 60mm in length x 2III11 in thickness was taken from the center of the prepared steel plate, and the surface was polished by mechanical grinding.
他方、海浜地帯、海水中での鋼の腐食を実験室で促進な
いし再現する環境として人工海水を準備した。On the other hand, artificial seawater was prepared as an environment to promote or reproduce the corrosion of steel in seashore areas and seawater in the laboratory.
しかる後、前記のように表面研削し、側面と裏面をシリ
コンレジンで被覆した試片を脱脂後、乾燥し、直ちに上
記の人工海水中に浸漬した。この人工海水液は7日毎に
変えて50日間連続浸漬し、錆の発生状況を観察した。Thereafter, the surface of the specimen was ground as described above, the side and back surfaces were coated with silicone resin, and the specimen was degreased, dried, and immediately immersed in the artificial seawater described above. This artificial seawater solution was changed every 7 days and was continuously immersed for 50 days, and the occurrence of rust was observed.
つぎに又、コンクリート中の埋設鉄筋の塩分による腐食
を促進ないし再現するために、コンクリートの主成分で
あるCaOを3.6%NaC12水溶液中に溶解させて
pH12のCa (Of+) 2 + NaCJ水溶液
を準備した。Next, in order to promote or reproduce the salt-induced corrosion of buried reinforcing bars in concrete, CaO, which is the main component of concrete, was dissolved in a 3.6% NaC12 aqueous solution to create a Ca (Of+) 2 + NaCJ aqueous solution with a pH of 12. prepared.
しかる後、前記のように表面研削し、側面と裏面をシリ
コンレジンで被覆した試片を脱脂後、乾燥し、直ちに上
記のCa (OH) ! + 3.6%NaCj水溶液
中に浸漬した。なお試験中は液の表面を流動パラフィン
でシールし、3日毎に液を置換して20日間連続浸漬し
、錆の発生状況を観察した。これらの結果を表1に示す
。Thereafter, the surface of the sample was ground as described above, the side and back surfaces were coated with silicone resin, and then the sample was degreased and dried, and immediately the above Ca(OH)! + Immersed in 3.6% NaCj aqueous solution. During the test, the surface of the liquid was sealed with liquid paraffin, the liquid was replaced every 3 days, and the samples were immersed continuously for 20 days to observe the occurrence of rust. These results are shown in Table 1.
実施例2
表1の成分からなる熱延鋼板の表面を研削後、海浜地帯
に1年間曝露し、発錆状況を調べた。Example 2 After grinding the surface of a hot-rolled steel plate made of the ingredients shown in Table 1, it was exposed to a beach area for one year, and the state of rusting was investigated.
又、NaC1を1.0%含んだ砂、ポルトランドセメン
ト、水、砂利からなるコンクリートモルタルに表1の成
分からなる熱延鉄筋(9mmφ)を埋め込み、28日間
常温養生した後、海浜地帯に1年間曝露した。In addition, hot-rolled reinforcing bars (9 mmφ) made of the ingredients shown in Table 1 were embedded in a concrete mortar made of sand containing 1.0% NaCl, Portland cement, water, and gravel, and after curing at room temperature for 28 days, they were placed in a seaside area for one year. exposed.
なお、コンクリートの水セメント比は0.60、カブリ
厚さは2cmとした。The water-cement ratio of the concrete was 0.60, and the fog thickness was 2 cm.
1年間曝露後コンクリートを破砕して鉄筋の発錆状況を
調べた。これらの調査結果を表1に示す。After one year of exposure, the concrete was crushed and the rusting status of the reinforcing bars was investigated. The results of these investigations are shown in Table 1.
表1の結果から本発明の鋼は海水中でも請発生が皆無で
、コンクリート中の塩分が砂中Na(j換算で1.0%
の高濃度、水中で3.6%NaCItの高濃度でも錆発
生が皆無であることが明瞭に認められ、錆発生、錆成長
に伴なうコンクリートの劣化を完全に停止できることが
わかった。したがって極めて厳しい海洋環境においても
鋼構造物、コンクリート構造物いずれもその劣化を完全
に抑止することが推定される。The results in Table 1 show that the steel of the present invention does not cause any damage even in seawater, and the salt content in the concrete is 1.0% in terms of Na in sand (calculated as 1.0% in terms of j).
It was clearly observed that no rust occurred even at a high concentration of 3.6% NaClt in water, and it was found that the deterioration of concrete caused by rust occurrence and rust growth could be completely stopped. Therefore, it is presumed that the deterioration of both steel structures and concrete structures can be completely suppressed even in extremely harsh marine environments.
(発明の効果)
本発明は塩害に曝される非磁性鋼材、ならびに非磁性鋼
材埋設のコンクリート構造物の耐久性を維持するのに飛
躍的に有効な鋼材、コンクリート用鋼材として役立つも
のであり、海浜地帯等塩害に曝らされる磁気浮上鉄道等
の非磁性を必要とする広範囲の用途に使用できる。(Effects of the Invention) The present invention is useful as a steel material and concrete steel material that is extremely effective in maintaining the durability of non-magnetic steel materials exposed to salt damage and concrete structures in which non-magnetic steel materials are buried. It can be used in a wide range of applications that require non-magnetism, such as magnetic levitation railways that are exposed to salt damage such as coastal areas.
Claims (8)
;2.0%以下、Al;20.0超〜37.3%、P;
0.015%以下、S;0.005%以下、Cr;5.
5超〜15.0%を含有し、残部鉄および不可避的不純
物からなる耐海水性非磁性鋼材。(1) C: 1.0% or less, Si: 0.25% or less, Mn
; 2.0% or less, Al; more than 20.0 to 37.3%, P;
0.015% or less, S; 0.005% or less, Cr;5.
A seawater-resistant nonmagnetic steel material containing more than 5% to 15.0%, with the balance consisting of iron and inevitable impurities.
;2.0%以下、Al;20.0超〜37.3%、P;
0.015%以下、S;0.005%以下、Cr;5.
5超〜15.0%およびCe、La、Y等の希土類元素
を単独ないし複合して0.01〜0.5%含有し、残部
鉄および不可避的不純物からなる耐海水性非磁性鋼材。(2) C: 1.0% or less, Si: 0.25% or less, Mn
; 2.0% or less, Al; more than 20.0 to 37.3%, P;
0.015% or less, S; 0.005% or less, Cr;5.
A seawater-resistant nonmagnetic steel material containing more than 5% to 15.0% and 0.01 to 0.5% of rare earth elements such as Ce, La, and Y, singly or in combination, with the balance being iron and inevitable impurities.
;2.0%以下、Al;20.0超〜37.3%、P;
0.015%以下、S;0.005%以下、Cr;5.
5超〜15.0%を含有し、Ti、V、Nb、W、Co
、Mo、Bの1種又は2種以上を、B以外の元素では合
計で0.01〜0.5%、Bは0.0001〜0.00
5%含有し、残部鉄および不可避的不純物からなる耐海
水性非磁性鋼材。(3) C: 1.0% or less, Si: 0.25% or less, Mn
; 2.0% or less, Al; more than 20.0 to 37.3%, P;
0.015% or less, S; 0.005% or less, Cr;5.
Contains more than 5 to 15.0% of Ti, V, Nb, W, Co
, Mo, and B, the total content of elements other than B is 0.01 to 0.5%, and B is 0.0001 to 0.00%.
A seawater-resistant non-magnetic steel material containing 5%, with the balance consisting of iron and inevitable impurities.
;2.0%以下、Al;20.0超〜37.3%、P;
0.015%以下、S;0.005%以下、Cr;5.
5超〜15.0%、Ce、La、Y等の希土類元素を単
独ないし複合して0.01〜0.5%含有し、さらにT
i、V、Nb、W、Co、Mo、Bの1種又は2種以上
を、B以外の元素では合計で0.01〜0.5%、Bは
0.0001〜0.005%含有し、残部鉄および不可
避的不純物からなる耐海水性非磁性鋼材。(4) C: 1.0% or less, Si: 0.25% or less, Mn
; 2.0% or less, Al; more than 20.0 to 37.3%, P;
0.015% or less, S; 0.005% or less, Cr;5.
5 to 15.0%, rare earth elements such as Ce, La, Y, etc. alone or in combination 0.01 to 0.5%, and further T
Contains one or more of i, V, Nb, W, Co, Mo, and B, with a total of 0.01 to 0.5% of elements other than B, and 0.0001 to 0.005% of B. , a seawater-resistant non-magnetic steel material consisting of the balance iron and unavoidable impurities.
;2.0%以下、Al;20.0超〜37.3%、P;
0.015%以下、S;0.005%以下、Cr;5.
5超〜15.0%を含有し、Cu、Niの1種又は2種
を0.1〜5.5%含有し、残部鉄および不可避的不純
物からなる耐海水性非磁性鋼材。(5) C: 1.0% or less, Si: 0.25% or less, Mn
; 2.0% or less, Al; more than 20.0 to 37.3%, P;
0.015% or less, S; 0.005% or less, Cr;5.
A seawater-resistant non-magnetic steel material containing more than 5% to 15.0%, 0.1 to 5.5% of one or both of Cu and Ni, and the balance consisting of iron and inevitable impurities.
;2.0%以下、Al;20.0超〜37.3%、P;
0.015%以下、S;0.005%以下、Cr;5.
5超〜15.0%を含有し、Cu、Niの1種又は2種
を0.1〜5.5%含有し、さらにCe、La、Y等の
希土類元素を単独ないし複合して0.01〜0.5%含
有し、残部鉄および不可避的不純物からなる耐海水性非
磁性鋼材。(6) C: 1.0% or less, Si: 0.25% or less, Mn
; 2.0% or less, Al; more than 20.0 to 37.3%, P;
0.015% or less, S; 0.005% or less, Cr;5.
5 to 15.0%, one or both of Cu and Ni to 0.1 to 5.5%, and rare earth elements such as Ce, La, Y, etc. alone or in combination. A seawater-resistant nonmagnetic steel material containing 01 to 0.5%, with the remainder consisting of iron and unavoidable impurities.
;2.0%以下、Al;20.0超〜37.3%、P;
0.015%以下、S;0.005%以下、Cr;5.
5超〜15.0%を含有し、Ti、V、Nb、W、Co
、Mo、Bの1種又は2種以上を、B以外の元素では合
計で0.01〜0.5%、Bは0.0001〜0.00
5%含有し、さらにCu、Niの1種又は2種を0.1
〜5.5%含有し、残部鉄および不可避的不純物からな
る耐海水性非磁性鋼材。(7) C: 1.0% or less, Si: 0.25% or less, Mn
; 2.0% or less, Al; more than 20.0 to 37.3%, P;
0.015% or less, S; 0.005% or less, Cr;5.
Contains more than 5 to 15.0% of Ti, V, Nb, W, Co
, Mo, and B, the total content of elements other than B is 0.01 to 0.5%, and B is 0.0001 to 0.00%.
5%, and further contains one or two of Cu and Ni at 0.1%.
A seawater-resistant non-magnetic steel material containing ~5.5%, with the balance consisting of iron and inevitable impurities.
;2.0%以下、Al;20.0超〜37.3%、P;
0.015%以下、S;0.005%以下、Cr;5.
5超〜15.0%を含有し、Ti、V、Nb、W、Co
、Mo、Bの1種又は2種以上を、B以外の元素では合
計で0.01〜0.5%、Bは0.0001〜0.00
5%含有し、さらにCu、Niの1種又は2種を0.1
〜5.5%含有し、さらにまたCe、La、Y等の希土
類元素を単独ないし複合して0.01〜0.5%含有し
、残部鉄および不可避的不純物からなる耐海水性非磁性
鋼材。(8) C: 1.0% or less, Si: 0.25% or less, Mn
; 2.0% or less, Al; more than 20.0 to 37.3%, P;
0.015% or less, S; 0.005% or less, Cr;5.
Contains more than 5 to 15.0% of Ti, V, Nb, W, Co
, Mo, and B, the total content of elements other than B is 0.01 to 0.5%, and B is 0.0001 to 0.00%.
5%, and further contains one or two of Cu and Ni at 0.1%.
~5.5%, and further contains 0.01~0.5% of rare earth elements such as Ce, La, and Y, singly or in combination, with the balance consisting of iron and unavoidable impurities. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28884787A JPH01201440A (en) | 1986-12-02 | 1987-11-16 | Seawater resistant non-magnetic steel material |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28722086 | 1986-12-02 | ||
JP61-287220 | 1986-12-02 | ||
JP62-249378 | 1987-10-02 | ||
JP28884787A JPH01201440A (en) | 1986-12-02 | 1987-11-16 | Seawater resistant non-magnetic steel material |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01201440A true JPH01201440A (en) | 1989-08-14 |
Family
ID=26556630
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28884787A Pending JPH01201440A (en) | 1986-12-02 | 1987-11-16 | Seawater resistant non-magnetic steel material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01201440A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100466497B1 (en) * | 2000-12-21 | 2005-01-13 | 주식회사 포스코 | Device for manufact uring the hot strip with high seaside corrosion resistance |
-
1987
- 1987-11-16 JP JP28884787A patent/JPH01201440A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100466497B1 (en) * | 2000-12-21 | 2005-01-13 | 주식회사 포스코 | Device for manufact uring the hot strip with high seaside corrosion resistance |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Jia et al. | Development and optimization of Ni-advanced weathering steel: A review | |
US4844865A (en) | Seawater-corrosion-resistant non-magnetic steel materials | |
US4861548A (en) | Seawater-corrosion-resistant non-magnetic steel materials | |
US4836981A (en) | Concrete reinforcing steel bar or wire | |
JPH01201440A (en) | Seawater resistant non-magnetic steel material | |
JPH0742549B2 (en) | High Mn non-magnetic steel for linear motor car steel bridge | |
JPS63105949A (en) | Seawater resistant non-magnetic steel material | |
JPS62297434A (en) | Nonmagnetic steel having resistance to sea-water corrosion | |
JPH09263886A (en) | Steel material for concrete rebar | |
JPH02138440A (en) | Seawater resistant steel with excellent rust resistance | |
CA1285402C (en) | Reinforcing steel having resistance to salt and capable of preventing deterioration of concrete | |
JPS62199748A (en) | Seawater resistant reinforced steel bar | |
JPH06100992A (en) | Seawater resistant non-magnetic material | |
KR100489025B1 (en) | Seaside corrosion resistance steel with superior tensile strength and method for manufacturing it | |
JPH02138441A (en) | Seawater resistant steel with improved rust resistance | |
JPH0480112B2 (en) | ||
JPS6311422B2 (en) | ||
JPS62214156A (en) | Nonmagnetic steel stock for preventing concrete deterioration | |
JPS63149355A (en) | Seawater resistant steel material | |
JPH03183740A (en) | Salt-resistant reinforcing bar for preventing deterioration of concrete | |
JPS62274050A (en) | Seawater resistant reinforced steel bar | |
JPH03111540A (en) | Salt resisting reinforcing bar for concrete for reducing deterioration in concrete | |
JPS6017060A (en) | Steel fiber for reinforcing concrete or mortar | |
JP7705047B2 (en) | steel material | |
JPH0320441A (en) | Salt-resistant reinforcing bar for preventing deterioration of concrete |