JPH01195678A - Cell - Google Patents
CellInfo
- Publication number
- JPH01195678A JPH01195678A JP2044088A JP2044088A JPH01195678A JP H01195678 A JPH01195678 A JP H01195678A JP 2044088 A JP2044088 A JP 2044088A JP 2044088 A JP2044088 A JP 2044088A JP H01195678 A JPH01195678 A JP H01195678A
- Authority
- JP
- Japan
- Prior art keywords
- battery
- gas diffusion
- membrane
- thin film
- diffusion electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000010409 thin film Substances 0.000 claims abstract description 37
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 31
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 31
- 239000001301 oxygen Substances 0.000 claims abstract description 31
- 239000007789 gas Substances 0.000 claims abstract description 26
- 238000009792 diffusion process Methods 0.000 claims abstract description 21
- 239000010408 film Substances 0.000 claims abstract description 20
- 239000011149 active material Substances 0.000 claims abstract description 5
- 229920003242 poly[1-(trimethylsilyl)-1-propyne] Polymers 0.000 claims abstract description 3
- 239000012528 membrane Substances 0.000 claims description 49
- 239000002131 composite material Substances 0.000 claims description 39
- 239000012982 microporous membrane Substances 0.000 claims description 19
- -1 polytetrafluoroethylene Polymers 0.000 claims description 16
- 239000003513 alkali Substances 0.000 claims description 9
- 239000004745 nonwoven fabric Substances 0.000 claims description 9
- 239000011148 porous material Substances 0.000 claims description 6
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 5
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 5
- 239000004743 Polypropylene Substances 0.000 claims description 4
- 229920001155 polypropylene Polymers 0.000 claims description 4
- 239000004698 Polyethylene Substances 0.000 claims description 3
- 229920000573 polyethylene Polymers 0.000 claims description 3
- MWWATHDPGQKSAR-UHFFFAOYSA-N propyne Chemical compound CC#C MWWATHDPGQKSAR-UHFFFAOYSA-N 0.000 claims description 3
- 229920002492 poly(sulfone) Polymers 0.000 claims description 2
- 229920000098 polyolefin Polymers 0.000 claims description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 21
- 239000003792 electrolyte Substances 0.000 abstract description 17
- 230000007774 longterm Effects 0.000 abstract description 6
- 230000035699 permeability Effects 0.000 abstract description 5
- 230000007935 neutral effect Effects 0.000 abstract description 4
- 238000003860 storage Methods 0.000 abstract description 3
- 150000001875 compounds Chemical class 0.000 abstract 2
- DCGLONGLPGISNX-UHFFFAOYSA-N trimethyl(prop-1-ynyl)silane Chemical compound CC#C[Si](C)(C)C DCGLONGLPGISNX-UHFFFAOYSA-N 0.000 abstract 1
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 30
- 239000001569 carbon dioxide Substances 0.000 description 15
- 229910002092 carbon dioxide Inorganic materials 0.000 description 15
- 230000000052 comparative effect Effects 0.000 description 10
- 230000000694 effects Effects 0.000 description 10
- 238000000034 method Methods 0.000 description 9
- 239000007864 aqueous solution Substances 0.000 description 6
- 230000000903 blocking effect Effects 0.000 description 6
- 239000010410 layer Substances 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 4
- HGCIXCUEYOPUTN-UHFFFAOYSA-N cyclohexene Chemical compound C1CCC=CC1 HGCIXCUEYOPUTN-UHFFFAOYSA-N 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 description 4
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 239000004205 dimethyl polysiloxane Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000012466 permeate Substances 0.000 description 3
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 3
- 229920001296 polysiloxane Polymers 0.000 description 3
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 2
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 2
- 239000004677 Nylon Substances 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 229910001882 dioxygen Inorganic materials 0.000 description 2
- 239000008151 electrolyte solution Substances 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229920001778 nylon Polymers 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 238000003892 spreading Methods 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- 239000011592 zinc chloride Substances 0.000 description 2
- 235000005074 zinc chloride Nutrition 0.000 description 2
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 239000011358 absorbing material Substances 0.000 description 1
- 238000005273 aeration Methods 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000007773 negative electrode material Substances 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 230000020978 protein processing Effects 0.000 description 1
- 239000005871 repellent Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- RAHZWNYVWXNFOC-UHFFFAOYSA-N sulfur dioxide Inorganic materials O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 239000004711 α-olefin Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M12/00—Hybrid cells; Manufacture thereof
- H01M12/04—Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
- H01M12/06—Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Hybrid Cells (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、酸素を活物質に用いるガス拡散電極と、アル
カリ水溶液等の電解液と、亜鉛、マグネシウム、アルミ
ニウム等の金属もしくはアルコール、ヒドラジン、水素
等の負極活物質とを備えた電池に関するものである。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a gas diffusion electrode using oxygen as an active material, an electrolyte such as an alkaline aqueous solution, a metal such as zinc, magnesium, or aluminum, or an alcohol, hydrazine, hydrogen, etc. The present invention relates to a battery comprising a negative electrode active material.
従来の技術
ガス拡散電極を備え、酸素を活物質とする電池としては
、空気電池、燃料電池等がある。特にアルカリ水溶液、
中性水溶液を電解質として使用する電池においては、ガ
ス拡散電極(酸素極)より内部の蒸気圧に応じて水蒸気
の出入りがあり、電池内電解液の濃度変化2体積変化が
起こり、これが電池緒特性に影響を与えていた。ボタン
型空気電池を例にとり、第3図を用いてその状況を説明
する。1は酸素極(空気極)、2はガス拡散性はあるが
液体は阻止するポリテトラフルオロエチレン(PTFE
)よりなる酸素極を支持する多孔膜である。3は外部
からの空気取入れ孔、4は空気の拡散を行う多孔体、6
,6はセパレータ、了は水酸化カリウム水溶液と汞化亜
鉛粉末との混合体から成る負極である。一般にアルカリ
電解液は水酸化カリウム水溶液を使用し、その濃度は3
o〜35%である。このため相対湿度が47〜69%よ
り高いと外部の湿気を取り込み、電解液濃度の低下と体
積膨張とが起こり、放電性能の低下、電解液の漏液を生
じていた。一方、相対湿度が前記以下の場合には電解液
の蒸発が起こり、内部抵抗の増大や放電性能の低下をも
たらしていた。従って、環境雰囲気によって著しい影響
を受は易いため長期間保存後の特性に問題があり、空気
電池や燃料電池はある特定の分野用に設計されるにとど
まり、汎用化を図る上で大きな課題を有していた。BACKGROUND OF THE INVENTION BACKGROUND ART Batteries equipped with gas diffusion electrodes and using oxygen as an active material include air cells, fuel cells, and the like. Especially alkaline aqueous solution,
In a battery that uses a neutral aqueous solution as an electrolyte, water vapor flows in and out from the gas diffusion electrode (oxygen electrode) depending on the internal vapor pressure, causing changes in concentration and volume of the electrolyte in the battery, which affect the battery characteristics. was influencing. Taking a button-type air battery as an example, the situation will be explained using FIG. 3. 1 is an oxygen electrode (air electrode), 2 is polytetrafluoroethylene (PTFE) that has gas diffusion properties but blocks liquids.
) is a porous membrane that supports an oxygen electrode. 3 is an air intake hole from the outside, 4 is a porous body that diffuses air, 6
, 6 is a separator, and 6 is a negative electrode made of a mixture of potassium hydroxide aqueous solution and zinc chloride powder. Generally, an aqueous potassium hydroxide solution is used as an alkaline electrolyte, and its concentration is 3
o~35%. For this reason, when the relative humidity is higher than 47 to 69%, external moisture is taken in, resulting in a decrease in electrolyte concentration and volume expansion, resulting in a decrease in discharge performance and leakage of the electrolyte. On the other hand, when the relative humidity is below the above range, evaporation of the electrolytic solution occurs, resulting in an increase in internal resistance and a decrease in discharge performance. Therefore, since they are easily affected by the environmental atmosphere, there are problems with their properties after long-term storage. Air cells and fuel cells are only designed for use in a specific field, and there are major challenges in making them more general-purpose. had.
なお2図中8は負極容器、9は絶縁ガスケット、10は
正極容器である。In Figure 2, 8 is a negative electrode container, 9 is an insulating gasket, and 10 is a positive electrode container.
発明が解決しようとする課題
これらの課題を解決するため、従来より種々の対策が検
討されてきた。例えば、空気取入れ孔周辺の一部に電解
液と反応する物質を挿入し、電池外部への電解液漏出を
防止する。あるいは紙または高分子材料より成る不織布
等の電解液吸収材を設けて、電池外部への電解液漏出を
防止する。さらには空気取入れ孔を極端に小さくして酸
素の供給量を制限してまでも、水蒸気や炭酸ガスの電池
内部への侵入を防止する等の提案がなされているが、い
ずれの方法も漏液防止や放電性能、特に長期間放電での
性能に大きな問題を残していた。これらの主要原因は空
気中の水蒸気の電池内への侵入による電解液の希釈と体
積膨張、及び炭酸ガスの侵入による炭酸塩の生成に基づ
く放電反応の阻害と空気流通経路の閉塞によるもので、
外気が低湿の場合には逆に電解液中の水分の逸散が性能
低下の原因となっていた。この原因を取り除くため、近
年では、水蒸気や炭酸ガスの透過を抑制し、選択的に酸
素を優先して透過する膜を介して空気を酸素極に供給す
る方法2例えばポリシロキサン系の無孔性の均一な薄膜
や金属酸化物、あるいは金属原子を含有する有機化合物
の薄膜と適宜な多孔性膜とを一体化させた膜を用いる方
法が提案されていた。Problems to be Solved by the Invention In order to solve these problems, various countermeasures have been considered in the past. For example, a substance that reacts with the electrolyte is inserted into a portion around the air intake hole to prevent the electrolyte from leaking to the outside of the battery. Alternatively, an electrolyte absorbing material such as a nonwoven fabric made of paper or a polymeric material is provided to prevent leakage of the electrolyte to the outside of the battery. Furthermore, proposals have been made to prevent water vapor and carbon dioxide from entering the battery by making the air intake holes extremely small and limiting the amount of oxygen supplied, but none of these methods work. There remained major problems in prevention and discharge performance, especially in long-term discharge performance. The main causes of these are the dilution and volumetric expansion of the electrolytic solution due to the intrusion of water vapor from the air into the battery, and the inhibition of the discharge reaction due to the formation of carbonates due to the intrusion of carbon dioxide gas and the blockage of the air circulation path.
Conversely, when the outside air is low-humidity, the loss of moisture in the electrolyte causes a decline in performance. In order to eliminate this cause, in recent years, methods have been developed in which air is supplied to the oxygen electrode through a membrane that suppresses the permeation of water vapor and carbon dioxide gas and selectively allows oxygen to permeate. A method using a film that integrates a uniform thin film of , a thin film of a metal oxide, or a thin film of an organic compound containing metal atoms with a suitable porous film has been proposed.
しかしながら、現在までのところ、充分に有効な酸素ガ
ス選択透過性が得られないことや水蒸気。However, to date, it has not been possible to obtain sufficiently effective selective permselectivity for oxygen gas and water vapor.
炭酸ガスの透過阻止能が充分でないことなどから、満足
な放電性能が得られず、長期の使用や貯蔵に耐えないの
で、実用化に至っていないという技術課題をもっていた
。Due to insufficient carbon dioxide permeation blocking ability, satisfactory discharge performance cannot be obtained, and the device cannot withstand long-term use or storage, so it has not been put into practical use.
そこで本発明は上記の電池の貯蔵性、長期使用における
性能を改善するとともに軽負荷から重負荷に至る放電条
件で満足な放電性能を得るために、大気中の酸素ガスを
込択的に充分な速度で電池内に取り入れ、大気中の水蒸
気及び炭酸ガスの電池内への侵入を長期にわたり防止す
る有効な手段を提供することを目的とするものである。Therefore, the present invention aims to improve the storability and long-term use performance of the above-mentioned battery, and to obtain satisfactory discharge performance under discharge conditions ranging from light loads to heavy loads. The purpose of this invention is to provide an effective means for preventing atmospheric water vapor and carbon dioxide from entering the battery over a long period of time.
課題を解決するだめの手段
本発明は酸素を活物質とするガス拡散電極と、外気に通
じる空気取入れ孔を有する電池容器を備えた電池のガス
拡散電極の空気取入れ側と電池容器の内面との間に、C
1−(1−リメチルシリル)−1−プロピン〕の薄膜と
この薄膜を支持する微多孔膜から形成される酸素選択透
過性の複合膜を介在させたものである。Means for Solving the Problems The present invention provides a method for connecting the air intake side of the gas diffusion electrode and the inner surface of the battery container of a battery comprising a gas diffusion electrode using oxygen as an active material and a battery container having an air intake hole communicating with the outside air. In between, C
An oxygen-selective permeability composite membrane formed from a thin film of 1-(1-limethylsilyl)-1-propyne] and a microporous membrane supporting this thin film is interposed.
上記ポリ (1−()リメチルシリル)−1−プロピン
〕の薄膜は無孔性の均質な薄膜で酸素の選択透過性を有
し、充分な酸素透過速度と水蒸気。The poly(1-()limethylsilyl)-1-propyne) thin film is a non-porous, homogeneous thin film that has selective oxygen permeability, and has a sufficient oxygen permeation rate and water vapor permeability.
炭酸ガスの透過阻止能を得るには、通常1.0μm以下
、好ましくは0.05〜0.5μmの厚さが適している
。この薄膜を支持する微多孔膜は気体が容易に透過し、
なおかつ、その表面は上記の薄膜を均一に無孔状態で支
持するに適した平滑性と孔径を備えた微多孔膜が好まし
く、前記微多孔膜表面の平均孔径が3〜0.01μmで
あることが好ましい。In order to obtain carbon dioxide permeation blocking ability, a thickness of usually 1.0 μm or less, preferably 0.05 to 0.5 μm is suitable. The microporous membrane that supports this thin film allows gas to easily permeate through it.
Furthermore, it is preferable that the surface thereof is a microporous membrane with smoothness and pore size suitable for supporting the above-mentioned thin film in a uniform and non-porous state, and the average pore size of the microporous membrane surface is 3 to 0.01 μm. is preferred.
また、本発明は、特にアルカリ水溶液の電解液を用いる
電池にも適用できることに重要な配慮を以ってなされた
もので、選択性酸素透過能の優れた薄膜としてポリ 〔
1−()リメチルシリル)−1−プロピン〕の均質薄膜
の特性に着目し、さらに、この薄膜を支持する微多孔膜
には耐アルカリ性に優れたポリプロピレン、ポリエチレ
ン等のポリオレフィン、フッ素樹脂、ポリスルフォン等
を選び検討を深めて完成した。なお、微多孔膜は単層で
あっても良いが、取り扱いや製造時、或は使用時の強度
を確保するために、必要に応じて耐アルカリ性不織布を
さらに一体化した二層以上の構成としても良い。In addition, the present invention has been made with important consideration given to the fact that it can be applied to batteries that use an alkaline aqueous electrolyte.
We focused on the characteristics of a homogeneous thin film of [1-()limethylsilyl)-1-propyne], and furthermore, the microporous membrane that supports this thin film contains polyolefins such as polypropylene and polyethylene, which have excellent alkali resistance, fluororesin, polysulfone, etc. After careful consideration, the project was completed. The microporous membrane may be a single layer, but in order to ensure strength during handling, manufacturing, or use, it may have a two-layer or more structure with an alkali-resistant nonwoven fabric further integrated as necessary. Also good.
上記のポリ rl−(トリメチルシリル)−1−プロピ
ン〕の薄膜を微多孔膜で支持した複合膜は、特開昭55
4−56985号公報などに開示されているようなポリ
ジメチルシロキサン、オルガノポリシロキサン共重合体
、ポリビニ/L/ )リオルガノシランなどのポリシロ
キサン誘導体及びα−オレフィン二酸化硫黄共重合体な
どとともに、高炉送風用、燃焼補助用2石油蛋白プロセ
ス用、廃液処理曝気用、医療における呼気用などの用途
で実用化が検討されているが、主として酸素富化を目的
とし、酸素と窒素の分離係数や酸素透過速度のみを評価
の対象にしている。これらの膜を重負荷での放電条件で
も満足な放電性能を得られる電池用として適用するだめ
には、酸素透過速度が充分大きいことと、水蒸気及び炭
酸ガスの透過阻止能が優れていることが重要な要件であ
るが、従来、これらの特性は未知な点が多く、電池への
適用を検討された例は少なく、例えば特開昭59−75
582号公報で開示されているように、ポリシロキサン
系の膜の適用が提案されているが、酸素透過速度が充分
でなく重負荷での放電において満足な性能が得られない
。本発明は、種々の酸素透過膜を電池用として鋭意検討
の結果、ポIJ(1−()リメチルシリル)−1−プロ
ピン〕の薄膜が電池用としての上述の緒特性を総合的に
満たし、これを適用した電池の性能がきわめて優れてい
ることを見出し完成したものである。A composite membrane in which a thin film of the above-mentioned poly(rl-(trimethylsilyl)-1-propyne) was supported by a microporous membrane was disclosed in Japanese Unexamined Patent Publication No. 55
Along with polydimethylsiloxane, organopolysiloxane copolymers, polysiloxane derivatives such as polyvinyl/L/)liorganosilane, and α-olefin sulfur dioxide copolymers, etc., as disclosed in Publication No. 4-56985, blast furnace Practical applications are being considered for purposes such as ventilation, combustion assistance, petroleum protein processing, waste liquid treatment aeration, and exhalation in medical care. Only the permeation rate is evaluated. In order for these membranes to be applied to batteries that can obtain satisfactory discharge performance even under heavy load discharge conditions, they must have a sufficiently high oxygen permeation rate and excellent water vapor and carbon dioxide permeation blocking ability. Although these are important requirements, until now many aspects of these characteristics have been unknown, and there have been few cases where their application to batteries has been considered.
As disclosed in Japanese Patent No. 582, it has been proposed to use a polysiloxane membrane, but the oxygen permeation rate is insufficient and satisfactory performance cannot be obtained in discharge under heavy loads. As a result of extensive studies on various oxygen-permeable membranes for batteries, the present invention has found that a thin film of polyIJ(1-()limethylsilyl)-1-propyne comprehensively satisfies the above-mentioned characteristics for batteries. It was discovered and completed that the performance of the battery to which this was applied was extremely superior.
本発明で用いる複合膜の製法は種々あるが、類型的には
特開昭54−148277号公報で開示されているよう
に、ポリ 〔1−(1−リメチルシリ/L/ )−1−
プロピン〕をシクロヘキセン、シクロヘキサン、トルエ
ン等の溶解度の大きい溶媒に溶解した溶液をガラス板な
どの平面に博く塗布して乾燥し、薄膜をガラス面から剥
離し、多孔質膜上に重ね合わせる方法や、上記の溶液を
水面上に滴下し、水面上に延展させて形成された薄膜を
水面下の、支持体としての微多孔膜上にのせてのち乾燥
する水上延展法、さらには、支持体である前記微多孔膜
上に上記の溶液を直接塗布して乾燥する方法などに分類
され、いずれの方法をとっても良いが、ピンホールのな
い薄膜が形成され、微多孔膜中にポリ 〔1−(トリメ
チルシリル)−1−プロピン〕が浸透して孔が閉塞され
ないことが必要である。There are various methods for producing the composite membrane used in the present invention, but typically, as disclosed in JP-A-54-148277, poly [1-(1-limethylsilyl/L/)-1-
Propyne] dissolved in a highly soluble solvent such as cyclohexene, cyclohexane, toluene, etc. is widely spread on a flat surface such as a glass plate, dried, the thin film is peeled off from the glass surface, and the film is superimposed on a porous film. , an on-water spreading method in which the above solution is dropped onto the water surface and the thin film formed by spreading it on the water surface is placed on a microporous membrane as a support below the water surface and then dried; It is classified as a method in which the above solution is directly applied onto a certain microporous membrane and dried. Either method may be used, but a thin film without pinholes is formed and poly[1-( It is necessary that the pores are not blocked by penetrating the pores.
作 用
この構成により上述の複合膜は後述の実施例における電
池試験の結果からも明らかなように、電池用としての酸
素透過速度と同時に、水蒸気や炭酸ガスを大気から遮断
する効果も共に満足すべき状態であることにより、実用
的な電池に要求される重負荷放電性能と、高湿や低湿の
雰囲気下で長時間放電した場合の性能も共に満足するこ
ととなる。Function: With this configuration, the above-mentioned composite membrane satisfies both the oxygen permeation rate for batteries and the effect of blocking water vapor and carbon dioxide from the atmosphere, as is clear from the results of battery tests in Examples described later. Due to this condition, both the heavy load discharge performance required of a practical battery and the performance when discharged for a long time in a high humidity or low humidity atmosphere are satisfied.
実施例
本発明の効果をポリr1−()リメチルシリル)−1−
プロピン〕複合膜を使用した電池、ポリジメチルシロキ
サン複合膜を使用した電池、および上記複合膜を使用し
ない電池を試作評価して検討した。まず、上記複合膜を
使用してない比較例の場合は第3図と全く同一に構成し
た。複合膜を使用した実施例及び比較例も第3図とほぼ
同様であり、第1図に示すようにPTFEの多孔膜2と
酸素の拡散を行う多孔体4との間に複合膜が介在し、複
合膜のポリ 〔1−()リメチルシリル)−1−プロピ
ン〕の薄膜の側が空気取入れ孔3の側に対向するよう配
設した点が第3図と異なる。Example The effect of the present invention was demonstrated by polyr1-()rimethylsilyl)-1-
Propyne] A battery using a composite membrane, a battery using a polydimethylsiloxane composite membrane, and a battery not using the above composite membrane were prototyped and evaluated. First, in the case of a comparative example in which the above-mentioned composite membrane was not used, the structure was exactly the same as that shown in FIG. 3. Examples and comparative examples using composite membranes are almost the same as those shown in FIG. 3, and as shown in FIG. 1, the composite membrane is interposed between the porous PTFE membrane 2 and the porous body 4 that diffuses oxygen. , is different from FIG. 3 in that the thin film side of poly[1-()limethylsilyl)-1-propyne] of the composite membrane is arranged so as to face the side of the air intake hole 3.
供試したポリ〔1−(トリメチルシリル)−1−プロピ
ン〕複合膜は、ポリ 〔1−()リメチルシIJ )し
)−1−プロピン)(1−()リメチルシリル)−1−
プロピンを重合したもの)をシクロヘキセンに溶解した
ポリマー溶液を水面上に滴下して得られた極薄膜を水中
で多孔質の支持膜にのせて後、乾燥して作製した。ポリ
C1−()リメチルシリル)−1−プロピン〕の薄膜
層の厚さはポリマー溶液と、これを滴下する水の温度を
変えることによシ調節した。また、比較例として供試し
たポリジメチルシロキサン薄膜と多孔質の支持膜との複
合膜も水面上で薄膜形成し、支持体と一体化する方法で
作製した。支持体膜はいずれも微多孔膜(孔径;約0.
1〜o、05μm、厚さ;約30Jim)の単層、まだ
はこれと不織布(厚さ;約160μm)を一体止した複
合層を用い、微多孔膜側に薄膜層を形成させた。The poly[1-(trimethylsilyl)-1-propyne] composite membrane tested was poly[1-()limethylsilyl)-1-propyne)(1-()limethylsilyl)-1-
An extremely thin film obtained by dropping a polymer solution of propyne (propylene polymerized) dissolved in cyclohexene onto the water surface was placed on a porous support film in water, and then dried. The thickness of the thin film layer of poly(C1-()limethylsilyl)-1-propyne) was adjusted by changing the temperature of the polymer solution and the water to which it was added dropwise. Further, a composite membrane of a polydimethylsiloxane thin film and a porous support membrane, which was used as a comparative example, was also prepared by forming a thin film on the water surface and integrating it with the support. All support membranes are microporous membranes (pore diameter: approximately 0.
A thin film layer was formed on the microporous membrane side using a single layer of 1 to 05 μm, thickness: about 30 Jim, and a composite layer in which this and a nonwoven fabric (thickness: about 160 μm) were integrally bonded.
試作した電池の形状は直径11.6mm、総高6.4咽
であり、比較的重負荷(75Ω)で20°C1常湿(6
0%RH)での連続放電により電池内への空気中の酸素
の取り込み速度の充足性を評価し、比較的軽負荷(3K
(1)で20°C2高湿(90%RH)。The prototype battery has a diameter of 11.6 mm and a total height of 6.4 mm, and is resistant to relatively heavy loads (75 Ω) at 20°C and normal humidity (6.
The sufficiency of the oxygen uptake rate from the air into the battery was evaluated by continuous discharging at a relatively light load (3K).
(1) at 20°C2 high humidity (90% RH).
及び低湿(20%RH)での長期間連続放電により、長
期の放電期間中の、雰囲気中の水蒸気の取り込みや電池
内の水分の逸散、及び炭酸ガスの取り込みなど電池性能
への影響度を評価した。Continuous discharge for a long period of time at low humidity (20% RH) reduces the effects on battery performance, such as the intake of water vapor in the atmosphere, the dissipation of moisture within the battery, and the intake of carbon dioxide gas during the long-term discharge period. evaluated.
試作した電池の内訳は第1表に示す通りである。The details of the prototype battery are shown in Table 1.
また第2表には試作電池の性能試験結果を示す。Table 2 also shows the performance test results of the prototype batteries.
第2表において放電終止電圧はいずれも0.9vであり
、重量変化は放電試験前後の増減を示しており、主とし
て放電中の水分の取り込み、あるいは逸散の多少を示唆
する数値である。In Table 2, the end-of-discharge voltage is 0.9 V in all cases, and the change in weight indicates the increase or decrease before and after the discharge test, and is a numerical value that mainly indicates the amount of moisture taken in or dissipated during discharge.
実施例1〜6は、ピンホールがない均一性薄膜が得られ
る範囲の膜厚のうち、比較的薄い均一性の薄膜を形成し
たもので、実施例の6,9は均一性の薄膜を若干厚く形
成しており、前者は酸素の透過速度を大きくすることを
第一義に考え、後者は水蒸気や炭酸ガスの透過を阻止す
ることを第一義に考え電池を構成している。これらの場
合、複合膜の支持体は耐アルカリ性の材料で構成されて
いる。これらの電池の特性を複合膜を使用していない比
較例3と対比すると最も端的に本発明の詳細な説明でき
る。まず20℃、常湿での重負荷試験では放電期間が短
く、水分の取り込みや逸散の影響や炭酸ガスの影響が少
ないので、電池の性能は酸素の供給速度が充分であれば
水分や炭酸ガスの透過阻止はあまり考慮する必要がない
。従フて、このような条件では比較例3でも優れた特性
が得られる。これに対し、前述の実施例のうち、1〜6
は比較例3と同等の放電特性が得られており、複合膜を
酸素が透過する速度が放電反応で酸素が消費される速度
に充分追従していることを示している。実施例6,9の
場合は若干放電9電圧、持続時間とも劣っているがあま
り遜色のない良好な特性を示し、はぼ酸素の供給が満足
な状態で行われている。一方、軽負荷放電の場合は放電
期間が長く、しかも外気が高湿あるいは低湿の場合には
酸素の供給速度よりも水分や炭酸ガス、特に水分の透過
防止が優れた性能を得るために重要となり、水分や炭酸
ガスの透過阻止機構をもたない比較例3の電池、は水分
の枯渇、あるいは逆に水分の逝剰取入れによる漏液によ
る空気孔の閉塞などにより、放電の途中で電圧が低下し
、重負荷試験で得られた放電容量の一部分に相当する容
量が得られるにすぎない。また、放電途中での漏液は実
用面で致命的な問題であることはいうまでもない。これ
に対し実施例はきわめて優れた性能を示し、これらは重
負荷試験の放電容量とほぼ等しい容量が得られ、中でも
均一薄膜層が比較的厚い実施例6,9がより優れている
。これらの傾向は試験雰囲気が高湿、低湿いずれの場合
とも同様である。このことは、実施例の場合、複合膜の
水分や炭酸ガスの透過阻止効果が充分に発揮されている
ことを示している。また、実施例7,8は微多孔膜に耐
アルカリ性の弱い材質を用いているため、放電期間中に
徐々に電解液に侵されて酸素の誘過性が劣下するので、
重負荷特性、軽負荷特性とも実施例1〜8.9より性能
は若干劣るが、比較例3と対比すると軽負荷特性ははる
かに優れている。また、比較例1,2は均一薄膜の水蒸
気及び炭酸ガス透過阻止能は充分であるが、酸素透過速
度が充分ではないために軽負荷の場合の放電特性は実施
例と対比してあまり遜色ないが、重負荷特性は実施例よ
り著しく劣る。In Examples 1 to 6, relatively thin uniform thin films were formed within the range in which a uniform thin film without pinholes could be obtained, and in Examples 6 and 9, the uniform thin films were slightly thinner. The former is designed to increase the permeation rate of oxygen, while the latter is designed to prevent the permeation of water vapor and carbon dioxide. In these cases, the support of the composite membrane is composed of an alkali-resistant material. The present invention can be most clearly explained in detail by comparing the characteristics of these batteries with Comparative Example 3 in which no composite membrane was used. First, in a heavy load test at 20°C and normal humidity, the discharge period is short, and the effects of moisture uptake and dissipation, as well as the effects of carbon dioxide gas, are small. There is no need to give much consideration to gas permeation prevention. Therefore, under such conditions, excellent characteristics can also be obtained in Comparative Example 3. On the other hand, among the above-mentioned examples, 1 to 6
Discharge characteristics equivalent to those of Comparative Example 3 were obtained, indicating that the rate at which oxygen permeates through the composite membrane sufficiently follows the rate at which oxygen is consumed in the discharge reaction. In the case of Examples 6 and 9, although the discharge voltage and duration were slightly inferior, they showed comparable good characteristics, and the supply of oxygen was carried out in a satisfactory manner. On the other hand, in the case of light load discharge, the discharge period is long, and when the outside air is high or low humidity, preventing the permeation of moisture and carbon dioxide gas, especially moisture, becomes more important than the oxygen supply rate in order to obtain excellent performance. The battery of Comparative Example 3, which does not have a mechanism to prevent the permeation of moisture and carbon dioxide gas, has a voltage drop during discharge due to depletion of moisture or, conversely, blockage of air holes due to leakage due to excess moisture intake. However, the capacity obtained is only a portion of the discharge capacity obtained in the heavy load test. Furthermore, it goes without saying that liquid leakage during discharge is a fatal problem from a practical standpoint. On the other hand, the Examples showed extremely excellent performance, with a capacity almost equal to the discharge capacity in the heavy load test, and among them, Examples 6 and 9, which had a relatively thick uniform thin film layer, were better. These trends are the same whether the test atmosphere is high humidity or low humidity. This shows that, in the case of the example, the composite membrane sufficiently exhibits the permeation blocking effect of moisture and carbon dioxide gas. In addition, since Examples 7 and 8 use a material with weak alkali resistance for the microporous membrane, it is gradually corroded by the electrolyte during the discharge period and the oxygen permeability deteriorates.
The performance is slightly inferior to Examples 1 to 8.9 in both heavy load characteristics and light load characteristics, but when compared with Comparative Example 3, the light load characteristics are far superior. In addition, in Comparative Examples 1 and 2, the water vapor and carbon dioxide gas permeation blocking ability of the uniform thin film is sufficient, but the oxygen permeation rate is not sufficient, so the discharge characteristics under light load are not much inferior to those of the example. However, the heavy load characteristics are significantly inferior to those of the examples.
以上を総合して、ポリ (1−(+−リメチルシリ/l
/)−1−プロピン〕の均一性薄膜と微多孔膜との複合
膜を用いた試作電池は重負荷特性、軽負荷特性ともに優
れ、外部雰囲気の変化への対応性も良好であり、特にポ
リ[′1−()リメチルシリル)−1−プロピン〕の均
一性薄膜の厚さを0.06〜1゜Q/1mとし耐アルカ
リ性の多孔質膜を支持体に用いた場合に優れた電池を提
供できることが結論できる。Taking all the above into consideration, poly(1-(+-limethylsilicon/l)
Prototype batteries using a composite film of a uniform thin film of (1-propyne) and a microporous film have excellent both heavy-load and light-load characteristics, and are also responsive to changes in the external atmosphere. Provides an excellent battery when the uniform thin film of ['1-()limethylsilyl)-1-propyne] has a thickness of 0.06 to 1°Q/1m and an alkali-resistant porous film is used as the support. We can conclude that it is possible.
また、上記の実施例ではボ’J 〔1−(1−リメチル
シリル)−1−プロピン〕の薄膜を微多孔性の支持膜あ
るいは微多孔膜と不織布を一体化した支持膜の片面につ
けた複合膜を用いた場合について説明したが、本発明は
薄膜を支持膜の両面に形成させた複合膜の場合でも、ポ
IJ 〔1()IJメチルシリル)−1−プロピン〕
の膜厚が総計で0.05〜1.0μmであれば、上記と
同様に優れた電池性能が得られる。さらに実施例に示し
たポリ(1−()IJメチルシリル)−1−プロピン〕
ヲ支持する微多孔膜は他の耐アルカリ性を有する微多孔
膜(例えばナイロン製微多孔膜)でも同様の効果が得ら
れる。また、実施例では支持体が微多孔膜とポリプロピ
レン製の不織布と一体化した複合層とした場合を説明し
たが、前記不織布がポリエチレン、ナイロン等の他の耐
アルカリ性のあるものであれば同様の効果が得られる。In addition, in the above example, a composite film in which a thin film of Bo'J [1-(1-limethylsilyl)-1-propyne] is attached to one side of a microporous support film or a support film that integrates a microporous film and a nonwoven fabric is used. However, the present invention also applies to the case of a composite film in which thin films are formed on both sides of a support film.
If the total film thickness is 0.05 to 1.0 μm, excellent battery performance can be obtained as described above. Furthermore, poly(1-()IJmethylsilyl)-1-propyne] shown in Examples
Similar effects can be obtained by using other alkali-resistant microporous membranes (for example, nylon microporous membranes) as the supporting microporous membrane. In addition, in the examples, a case where the support is a composite layer in which a microporous membrane and a nonwoven fabric made of polypropylene are integrated is explained, but if the nonwoven fabric is made of other alkali-resistant material such as polyethylene or nylon, a similar method may be used. Effects can be obtained.
なお1本発明の複合膜を上記実施例では電池容器との間
に空気拡散用の多孔体を介して設置したが、本発明の複
合膜は微多孔膜、場合によってはさらに不織布を一体化
した支持体より構成されて 。Note that in the above embodiments, the composite membrane of the present invention was installed between the battery container and the porous body for air diffusion, but the composite membrane of the present invention is a microporous membrane, and in some cases, a nonwoven fabric is further integrated into the composite membrane of the present invention. It is composed of a support.
おり、前記空気拡散用の多孔体を除いても電池特性の差
異はない。但し、複合膜の強度が充分でなく空気取入れ
孔側に変形するような場合には、多孔体を設置すること
により複合膜が安定形状を保つ。さらに、上記実施例で
は本発明の複合膜を酸素極との間に酸素極を支持する多
孔膜を介して設置したが、酸素極の強度が充分であれば
前記多孔膜は不用であり、除いても電池特性は変わらな
い。Therefore, there is no difference in battery characteristics even if the porous body for air diffusion is removed. However, if the composite membrane does not have sufficient strength and deforms toward the air intake hole, the composite membrane can maintain a stable shape by installing a porous body. Furthermore, in the above example, the composite membrane of the present invention was installed between the oxygen electrode and the porous membrane that supported the oxygen electrode, but if the oxygen electrode had sufficient strength, the porous membrane was unnecessary and could be removed. However, the battery characteristics remain unchanged.
また、塩化アンモニウム、塩化亜鉛などの中性塩の水溶
液を電解液に用いた空気電池に対しても、実施例で示し
たアルカリ性の電解液に用いた電池と同様の効果がある
ことも確認した。It was also confirmed that an air battery using an aqueous solution of a neutral salt such as ammonium chloride or zinc chloride as an electrolyte has the same effect as a battery using an alkaline electrolyte shown in the example. .
発明の効果
以上の説明で明らかなように、本発明による酸素ガス拡
散電極によれば、中性もしくはアルカリ性の水溶液を電
解液とする電池の重負荷から軽負荷にわたる優れた実用
性能と、優れた耐漏液性。Effects of the Invention As is clear from the above explanation, the oxygen gas diffusion electrode according to the present invention has excellent practical performance across heavy to light loads for batteries using a neutral or alkaline aqueous solution as the electrolyte, and excellent performance. Leak resistant.
長期貯蔵性を具備させることができるという効果が得ら
れる。The effect is that it can be stored for a long time.
第1図は本発明の実施例及び比較例の検討に用いたボタ
ン形空気亜鉛電池の半断面図、第2図は第1図の要部の
部分拡大図、第3図は複合膜を使用していない従来のボ
タン形空気亜鉛電池の断面構造図である。
1・・・・・・酸素極(空気極)、2・・・・・・撥水
膜、3・・・・・・空気取入れ孔、4・・・・・・多孔
膜、6,6・・・・・・セパレータ、7・・・・・・負
極亜鉛、8・・・・・・負極容器、9・・・・・・絶縁
ガスケット、1o・・・・・・正極容器、11・・・・
・・複合膜。Figure 1 is a half-sectional view of a button-type zinc-air battery used to study examples and comparative examples of the present invention, Figure 2 is a partially enlarged view of the main parts of Figure 1, and Figure 3 is a composite membrane used. FIG. 2 is a cross-sectional structural diagram of a conventional button-type zinc-air battery. 1... Oxygen electrode (air electrode), 2... Water-repellent membrane, 3... Air intake hole, 4... Porous membrane, 6, 6. ... Separator, 7 ... Negative electrode zinc, 8 ... Negative electrode container, 9 ... Insulating gasket, 1o ... Positive electrode container, 11 ...・・・
...Composite membrane.
Claims (7)
る空気取入れ孔を有する電池容器を備え、前記ガス拡散
電極の空気取り入れ側と前記電池容器の内面との間に、
ポリ〔1−(トリメチルシリル)−1−プロピン〕の薄
膜と、この薄膜を支持する一層または二層以上の微多孔
質体膜とから形成された複合膜を介在させたことを特徴
とする電池。(1) A gas diffusion electrode having oxygen as an active material and a battery container having an air intake hole communicating with the outside air, between the air intake side of the gas diffusion electrode and the inner surface of the battery container,
A battery characterized by interposing a composite film formed from a thin film of poly[1-(trimethylsilyl)-1-propyne] and one or more microporous membranes supporting the thin film.
プロピン〕の薄膜側が、空気取り入れ孔を有する前記電
池容器の内面に当接され、前記複合膜の微多孔膜側にガ
ス拡散電極が接していることを特徴とする特許請求の範
囲第1項記載の電池。(2) Composite membrane poly[1-(trimethylsilyl)-1-
Claim 1, characterized in that the thin film side of the composite membrane (propyne) is in contact with the inner surface of the battery container having an air intake hole, and the gas diffusion electrode is in contact with the microporous membrane side of the composite membrane. battery.
介在させたことを特徴とする特許請求の範囲第2項記載
の電池。(3) The battery according to claim 2, characterized in that an air diffusion porous body is interposed between the composite membrane and the battery container.
ルオロエチレン等よりなるガス拡散電極支持用の微多孔
膜を介在させたことを特徴とする特許請求の範囲第2項
記載の電池。(4) The battery according to claim 2, characterized in that a microporous membrane for supporting the gas diffusion electrode made of polytetrafluoroethylene or the like is interposed between the composite membrane and the gas diffusion electrode.
散多孔体を介在させ、かつ前記複合膜と前記ガス拡散電
極との間にポリテトラフルオロエチレン等よりなるガス
拡散電極支持用の微多孔膜を介在させたことを特徴とす
る特許請求の範囲第2項記載の電池。(5) An air diffusion porous material such as a nonwoven fabric is interposed between the composite membrane and the battery container, and a gas diffusion electrode support made of polytetrafluoroethylene or the like is provided between the composite membrane and the gas diffusion electrode. The battery according to claim 2, characterized in that a microporous membrane is interposed.
リオレフィン、フッ素樹脂、ポリスルホン等を主成分と
する耐アルカリ性の膜であることを特徴とする特許請求
の範囲第1項〜第5項のいずれかに記載の電池。(6) Any one of claims 1 to 5, wherein the microporous membrane is an alkali-resistant membrane whose main component is polyolefin such as polypropylene or polyethylene, fluororesin, polysulfone, etc. Batteries listed.
ルカリ性不織布を一体化した複合層であることを特徴と
する特許請求の範囲第1項〜第6項のいずれかに記載の
電池。(7) The battery according to any one of claims 1 to 6, wherein the microporous membrane is a composite layer in which an alkali-resistant nonwoven fabric whose main component is polypropylene or the like is integrated.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2044088A JPH01195678A (en) | 1988-01-29 | 1988-01-29 | Cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2044088A JPH01195678A (en) | 1988-01-29 | 1988-01-29 | Cell |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01195678A true JPH01195678A (en) | 1989-08-07 |
Family
ID=12027104
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2044088A Pending JPH01195678A (en) | 1988-01-29 | 1988-01-29 | Cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01195678A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2408055A1 (en) * | 2009-03-09 | 2012-01-18 | Sumitomo Chemical Company, Limited | Air battery |
-
1988
- 1988-01-29 JP JP2044088A patent/JPH01195678A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2408055A1 (en) * | 2009-03-09 | 2012-01-18 | Sumitomo Chemical Company, Limited | Air battery |
EP2408055A4 (en) * | 2009-03-09 | 2013-11-13 | Sumitomo Chemical Co | Air battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0417259A (en) | Battery | |
JPH07105991A (en) | Oxygen enriched film for battery | |
JPH01195678A (en) | Cell | |
JP2782837B2 (en) | Battery | |
JPH04312771A (en) | Air battery | |
JPH01267974A (en) | Battery | |
JP2757383B2 (en) | Battery | |
JP2778078B2 (en) | Battery | |
JPH01267971A (en) | Battery | |
JPH01267972A (en) | Battery | |
JPH0562687A (en) | Oxygen transmitting composite film and cell provided with the composite film | |
JPH01267970A (en) | Battery | |
JPH01267973A (en) | Battery | |
JPH0287459A (en) | Battery | |
JP2743574B2 (en) | Battery | |
JPH02109254A (en) | Battery | |
JP2817343B2 (en) | Battery | |
JP2822485B2 (en) | Battery | |
JP2782911B2 (en) | Battery | |
JPH0287458A (en) | Battery | |
JPH04162374A (en) | Battery | |
JPH05205784A (en) | Oxygen permeable composite film and battery employing said composite film | |
JPH042067A (en) | Battery | |
JP2734057B2 (en) | Battery manufacturing method | |
JP2817341B2 (en) | Battery |