[go: up one dir, main page]

JPH01195351A - Measuring method for crack on surface of concrete - Google Patents

Measuring method for crack on surface of concrete

Info

Publication number
JPH01195351A
JPH01195351A JP1853388A JP1853388A JPH01195351A JP H01195351 A JPH01195351 A JP H01195351A JP 1853388 A JP1853388 A JP 1853388A JP 1853388 A JP1853388 A JP 1853388A JP H01195351 A JPH01195351 A JP H01195351A
Authority
JP
Japan
Prior art keywords
image
black
value
crack
concrete
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1853388A
Other languages
Japanese (ja)
Other versions
JPH087157B2 (en
Inventor
Satoru Miura
悟 三浦
Katsura Ogasawara
桂 小笠原
Masayuki Miura
正之 三浦
Toshikazu Miyajima
宮嶋 俊和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP1853388A priority Critical patent/JPH087157B2/en
Publication of JPH01195351A publication Critical patent/JPH01195351A/en
Publication of JPH087157B2 publication Critical patent/JPH087157B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

PURPOSE:To execute the measurement in a short time and exactly by calculating a suitable threshold level from an image of concrete to be measured, making a binary image consisting of white and black picture elements by setting said level as a boundary, eliminating a contaminated image and measuring a coordinate and a number of the black picture element. CONSTITUTION:A surface image of concrete 1 to be measured is stored in a computer 4 as a gradation value D by a high resolution line sensor 3. Subsequently, a suitable threshold level T is calculated as a reference for discriminating a crack and others, and a binary image consisting of a white picture element in which the value D is above the value T and a black picture element in which the value D is under the value T is formed. Next, from this image, a black part in which the number of black picture elements is small and a black part whose length and breadth are small and hot linear are eliminated. Thereafter, by a coordinate and a number of the black picture element, width and length of a crack measured. In such a way, a measurement of the crack is executed in a short time and exactly, and also, the accuracy of the measurement is raised and time aging can be caught surely.

Description

【発明の詳細な説明】 産・トの矛1 ノ)デ 本発明はコンクリート表面のひび割れ測定方法に関し、
とくにコンクリート表面のひび割れのパターン、幅及び
長さを画像処理技術により測定する方法に関する。
[Detailed Description of the Invention] 1) The present invention relates to a method for measuring cracks on a concrete surface.
In particular, it relates to a method for measuring the pattern, width, and length of cracks on concrete surfaces using image processing technology.

更えゑ且遺 コンクリート表面のひび割れ計測は、コンクリート構造
物の調査・診断に必要なものである。コンクリート表面
のひび割れに関する調査項目としては、ひび割れパター
ン、幅、長さ及びこれらの経時変化がある。ひび割れパ
ターンの調査は、コンクリート表面のひび割れの形態を
目視辱より観察し記録するものであって、その発生時期
、規則性の有無、割れの原因究明等の解析の資料となる
ものである。
Measuring cracks on concrete surfaces is necessary for investigating and diagnosing concrete structures. Investigation items regarding cracks on the concrete surface include crack patterns, widths, lengths, and changes in these over time. Crack pattern investigation involves visually observing and recording the form of cracks on the concrete surface, and serves as data for analysis such as when they occur, whether they are regular, and the cause of the cracks.

ひび割れ幅とは、クラックスケール、ルーペ等を用いて
コンクリート表面でひび割れの長さ方向に直角に測った
寸法であり、ひび割れ幅の調査はひび割れの原因推定、
補修・補強の要否の判定、補修・補強の方法の選定等の
ための資料となるものである0日本コンクリート工学協
会の「コンクリートひびわれ調査、補修・補強指針」に
よればひび割れ幅の限度として耐久性からみた場合に0
.1■、防水性からみた場合に0.05 ffImが提
案されている。
Crack width is the dimension measured perpendicular to the length direction of the crack on the concrete surface using a crack scale, loupe, etc., and investigating the crack width is used to estimate the cause of the crack,
According to the Japan Concrete Institute's "Guidelines for Concrete Crack Investigation, Repair and Reinforcement," which serve as materials for determining whether repair/reinforcement is necessary and selecting repair/reinforcement methods, the crack width limit is 0 in terms of durability
.. 1) 0.05 ffIm is proposed in terms of waterproofness.

ひび割れ長さの調査は、おもに補修・補強の規模(範囲
等)の把握と工事費の算出の資料となるものである。
Crack length surveys are primarily used to determine the scale (range, etc.) of repairs and reinforcement and to provide information for calculating construction costs.

ひび割れ幅の経時変化即ち変動状況の調査は、ひび割れ
の原因推定や補修・補強方法の選定の上で重要な資料と
なるものである。
Investigation of changes in crack width over time, that is, changes in crack width, is important data for estimating the cause of cracks and selecting repair/reinforcement methods.

が  しようと る: 従来のコンクリート表面ひび割れ計測方法は、目視や写
真によるスケッチ作成、通常スケール、クラブクスケー
ル、ルーペ等による測定を雨いるものであるが、 (a
)非常に多くの人手と時間を要し、(b)Lかもパター
ン、幅、長さの正確な測定が困難である等の問題点があ
った。
The conventional method for measuring cracks on concrete surfaces involves making sketches by visual observation or photographs, and measuring with a regular scale, a crack scale, a magnifying glass, etc.;
) It requires a lot of manpower and time, and (b) it is difficult to accurately measure the L pattern, width, and length.

本発明の[1的は、コンピュータ利用の画像処理技術に
よってコンクリート表面ひび割れを測定する方法を提供
し、もって従来技術の上記問題点を解決するにある。
One object of the present invention is to provide a method for measuring concrete surface cracks by computer-based image processing technology, thereby solving the above-mentioned problems of the prior art.

1−III+87   るための1− 第1図及び第2図を参照するに、本発明のコンクリート
表面ひび割れの測定方法によれば、被測定コンクリ−)
1の表面の画像を高解像度ラインセンサ3等により画素
の明るさに比例する濃淡値D(第3図)としてコンピュ
ータ4に記憶する。
1-III+87 1- Referring to FIGS. 1 and 2, according to the method for measuring concrete surface cracks of the present invention, the concrete surface to be measured)
An image of the surface of the pixel 1 is stored in the computer 4 by a high-resolution line sensor 3 or the like as a gradation value D (FIG. 3) proportional to the brightness of the pixel.

好ましくは、被測定コンクリートlを被411定コンク
リート面の写真とする。さらに好ましくは、適当な光源
2により被411定コンクリートlを照明する。
Preferably, the concrete to be measured 1 is a photograph of the concrete surface to be measured 411. More preferably, the concrete to be covered 411 is illuminated by a suitable light source 2.

第3図は、濃淡値りの一例として高解像度ラインセンサ
3が画素の明るさに比例して発生する0−255の25
6階調を有する濃淡値信号を示す。
FIG. 3 shows, as an example of the gradation value, 25 of 0-255, which is generated by the high-resolution line sensor 3 in proportion to the brightness of the pixel.
A gray value signal having six gradations is shown.

第3図及び第4図から明らかな様に被測定コンクリート
lの表面画像の濃淡値りには、ひび割れlO以外のもの
を表わすものが含まれる。本発明によれば、ひび割れl
Oのr&’JL値りをひび割れ10以外のものを表わす
濃淡値りから識別する一基準として、上記画素の濃淡値
りに対し適当な閾値Tを算出する0次に上記濃淡値りで
表わされる画像から、濃淡値りが閾値T以上である白画
素と濃淡値りが閾値1未満である黒画素とからなる二値
画像を作る。さらに非線状の黒画素部分を、面積に相当
する黒画素の数が非常に少ないこと又は縦・横の長さI
IX、 Qy (第6図)が非常に短いことに基づいて
除去する。最後に黒画素の座標と数によりひび割れの幅
と長さとを測定する。
As is clear from FIGS. 3 and 4, the gradation values of the surface image of the concrete to be measured 1 include values representing things other than cracks 1O. According to the invention, crack l
As a standard for distinguishing the r&'JL value of O from the shading value representing something other than crack 10, an appropriate threshold T is calculated for the shading value of the above pixel. A binary image is created from the image, consisting of white pixels whose gradation value is equal to or greater than a threshold value T and black pixels whose gradation value is less than a threshold value 1. Furthermore, the non-linear black pixel portion is defined by the fact that the number of black pixels corresponding to the area is very small, or the vertical and horizontal length I
Eliminated on the basis that IX, Qy (Figure 6) are very short. Finally, the width and length of the crack are measured using the coordinates and number of black pixels.

1」 第4図のひび割れ10を測定する場合を参照して本発明
のコンクリート表面ひび割れの測定方法の作用を説明す
る。コンクリート面を示す第4図の濃淡値りの画像には
ひび割れlO以外のものを示すものが多く含まれる。本
発明者は、各種実験研究の結果、画像内の濃淡値りの分
布に基づいて適当な閾値T (=f(D))を選定し、
その閾値Tによって濃淡値りを二値化するならば、ひび
割れlO及びひび割れに近い像を分離できることを見出
した。上記の256階調を有する濃淡値りによる第4図
のコンクリート表面画像の場合、適当な閾値Tは次式で
グーえられる。
1'' The operation of the method for measuring concrete surface cracks of the present invention will be explained with reference to the case of measuring cracks 10 in FIG. The gray scale image of FIG. 4 showing the concrete surface contains many things that show things other than cracks 1O. As a result of various experimental studies, the present inventor selected an appropriate threshold T (=f(D)) based on the distribution of gradation values in the image,
It has been found that if the gradation values are binarized using the threshold value T, it is possible to separate the crack lO and an image close to the crack. In the case of the concrete surface image shown in FIG. 4 based on the 256-gradation scale described above, an appropriate threshold value T can be determined using the following equation.

T=f(D)=A−N         −−” (1
)ここに、Aは画像内の濃淡値りの平均値、Nは5ない
しlOの定数である。第3図の例ではT = leOと
して良好な結果を得た。細かいひび割れまで抽出するに
は24rti Tを大きく選ぶ必要がある。
T=f(D)=A−N −−” (1
) Here, A is the average value of the grayscale values in the image, and N is a constant between 5 and 1O. In the example shown in FIG. 3, good results were obtained by setting T=leO. In order to extract even the smallest cracks, it is necessary to choose a large 24rti T.

第4図の画像を、濃淡値りが(1)式の閾値T以−Lで
ある白画素とe淡値りが闇値1未満である黒画素とから
なる画像に変えると、第5図の様にひび;+、lれ10
及びそれに近い汚れが抽出された二値画像を作ることが
できる。
If we change the image in Figure 4 to an image consisting of white pixels whose gray level is less than the threshold T - L in equation (1) and black pixels whose gray level is less than the dark value 1, we get the image shown in Figure 5. Cracks like +, l 10
It is possible to create a binary image in which dirt and stains similar to those are extracted.

第5図の二値画像から汚れを分離するため、ひび割れ1
Gを「画像の一辺に近い長さを持つ線状の黒部分、」と
考え、次のものを除去する。
In order to separate dirt from the binary image in Figure 5, crack 1
Consider G as "a linear black part with a length close to one side of the image" and remove the following:

i)面積が非常に小さいもの、即ち黒画素の数が非常に
少ない黒部分 ii)第6図の様に面積が大きくても縦横が小さ〈線状
でないもの、即ちQ!及び1!yが非常に小さい黒部分 この処理を行なった後の画像を第7図に示す。
i) A black area with a very small area, that is, a very small number of black pixels; ii) A black area with a very small number of black pixels; ii) Even if the area is large, the vertical and horizontal dimensions are small (non-linear, i.e., Q!) as shown in Figure 6. and 1! A black portion where y is very small. An image after this processing is shown in FIG.

コンクリート面の汚損が少ない場合には、第7図に相ち
する段階でひび割れ画像のみが残るので、黒画素の座標
と数によりひび割れの幅と長さとを測定することができ
る。
If the concrete surface is only slightly soiled, only the crack image remains at a stage corresponding to FIG. 7, so the width and length of the crack can be measured by the coordinates and number of black pixels.

濃淡の変化に基づく汚れ分離の手法を次に説明する。第
7図の二値化画像に対し黒部分の幅の中心のみを残す細
線化処理を施すと第8図のようになる。第8図において
、3本以上に細線が交差する分岐部Jを除去すると、画
像は第9図のように始点と終点を1つづつ持った個別点
部分Sの集合となる。第10図のように各個別点部分S
に番号を付してそれぞれを識別する。
A dirt separation method based on changes in shading will be explained below. When the binarized image of FIG. 7 is subjected to line thinning processing that leaves only the center of the width of the black portion, the result is as shown in FIG. 8. In FIG. 8, if a branch J where three or more thin lines intersect is removed, the image becomes a collection of individual point portions S having one starting point and one ending point, as shown in FIG. 9. As shown in Figure 10, each individual point part S
Identify each one by assigning a number to it.

本発明者は、実験によりひび割れ10における濃淡値り
の変化幅ΔDが一定の範囲内にある事実、即ちL記の2
56階調を有する濃淡値りの場合にはその変化幅ΔDが
5−10の範囲内にある事実を見出した。各個別点部分
Sについて、最初に記録したC淡値画像におけるL記変
化幅ΔDがひび割れ10のそれの範囲内にあるか否かを
検査し、範囲外の個別点部分Sを除去すると第11図の
様になる。さきに第8図から除去されれた分岐部Jのう
ち第11図の残存点部分Sに嵌合するものを回復させれ
ば第12図の様になり、それらの残存点部分S及び回復
させた分岐部Jに対して第7図から除去された中心以外
の黒画素を回復させると第13図の様になる。こうして
濃淡値りの変化幅ΔDの大きい汚れを除くことができる
The inventor of the present invention discovered the fact that the variation range ΔD of the gradation value in the crack 10 is within a certain range through experiments, that is, 2 of L.
It has been found that in the case of a gradation value having 56 gradations, the variation width ΔD is within the range of 5-10. For each individual point portion S, it is inspected whether the L change width ΔD in the C light value image recorded first is within the range of that of the crack 10, and individual point portions S outside the range are removed. It will look like the figure. If the branch parts J removed earlier from Fig. 8 that fit into the remaining point parts S in Fig. 11 are restored, the result will be as shown in Fig. 12. When the black pixels other than the center removed from FIG. 7 are restored for the branch J, the result is as shown in FIG. 13. In this way, it is possible to remove stains with a large variation range ΔD in the gradation value.

第13図までの処理を終了すれば、コンピュータ4から
ひび割れパターンのハードコピーを例えばプロッタ5に
よって随時出力することが可能であり、さらにひび割れ
の幅及び長さの測定結果を例えばプリンタ6により第1
4図の様にヒストグラムとして出力することができる。
Once the processing up to FIG. 13 is completed, it is possible to output a hard copy of the crack pattern from the computer 4 using, for example, a plotter 5 at any time, and furthermore, the measurement results of the width and length of the crack can be outputted from the computer 4 using, for example, a printer 6.
It can be output as a histogram as shown in Figure 4.

見立」 第3図から第14図までの例においては、第2図の高解
像度ラインセンサ3として2000 X 3000画素
のものを用いた。また、被測定コンクリート1としては
、現実の幅約0.1 +u+のひび割れが上記高解像度
ラインセンサ3によって識別できる程度の大きさに撮影
したコンクリート面の写真を用いた。
In the examples shown in FIGS. 3 to 14, a 2000×3000 pixel high-resolution line sensor 3 in FIG. 2 was used. Further, as the concrete to be measured 1, a photograph of a concrete surface taken at a size such that an actual crack with a width of about 0.1 +u+ could be identified by the high-resolution line sensor 3 was used.

小さいフィルムに広い範囲のコンクリート面を撮影すれ
ば高解像度ラインセンサ3の解像力をもってしても現実
に存在するひび割れをフィルム画像上で識別することが
困難であり、大きいフィルムに狭い範囲のコンクリート
面を撮影すればひび割れの識別は容易になるが所要フィ
ルム量及び撮影の手間が増大する。
If a wide area of the concrete surface is photographed on a small film, it will be difficult to identify cracks that actually exist on the film image even with the resolution of the high-resolution line sensor 3. Although cracks can be easily identified by photographing them, the amount of film required and the effort involved in photographing them increase.

コンピュータ4としては、1024 X 1024画素
の画面を8画面記憶できる画像メモリ及び主メモリ4M
Byteを有するミニ・コンピュータを用いた。さらに
外部メモリとして磁気ディスクEt8MB x 2を用
いた。
The computer 4 has an image memory that can store 8 screens of 1024 x 1024 pixels and a main memory of 4M.
A mini-computer with Byte was used. Furthermore, a magnetic disk Et8MB x 2 was used as an external memory.

λlΣ私釆 以上説明した如く、本発明によるコンクリート表面ひび
割れの測定方法は、被測定コンクリート表面の濃淡値画
像に基づきコンピュータ画像処理技術によって適当な閾
値を境として白画素と黒画素からなる7−値画像を作り
、必要に応じひび割れ以外の汚れの画像を除いた上で黒
画素の座標と数によりひび割れの幅と長さとを測定する
ので1次の効果を奏する。
As explained above, the method for measuring concrete surface cracks according to the present invention uses computer image processing technology to calculate 7-values consisting of white pixels and black pixels with an appropriate threshold value as the boundary based on the gray value image of the concrete surface to be measured. An image is created, images of dirt other than cracks are removed as necessary, and the width and length of the crack are measured based on the coordinates and number of black pixels, so the first-order effect is achieved.

(イ)ひび割れ測定を短時間内に簡単に行なうことがで
きる。
(a) Cracks can be measured easily within a short time.

(ロ)ひび割れ測定の正確さを高めることができる。(b) The accuracy of crack measurement can be improved.

(ハ)ひびt1れの経時変化を確実に捕捉することがで
きる。
(c) Changes in the crack t1 over time can be reliably captured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の手順を示すブロック図、第2図は
本発明方法に使われる装置の説明図、第3図は濃淡信号
及びその闇値を示すグララ、第4図から第14図までは
一実施例の説明図である。 1、・・・被測定コンクリート、  2・・・光源、 
 3・・・高解像度ラインセンサ、  4・・・コンピ
ュータ、5・・・プロッタ、  6・・・プリンタ、 
 10・・・ひび割れ、  J・・・分岐部、 S・・
・個別点部分。 第1 = :l> 2しI C1→3し1 こ、τ4図       第5図 第60 −1×→ 第7図     −(8図 第9図      第10図 第11図      第12図
Fig. 1 is a block diagram showing the procedure of the method of the present invention, Fig. 2 is an explanatory diagram of the apparatus used in the method of the present invention, Fig. 3 is a grayscale signal showing the gray level signal and its darkness value, and Figs. 4 to 14 The foregoing are explanatory diagrams of one embodiment. 1. Concrete to be measured, 2. Light source,
3...High resolution line sensor, 4...Computer, 5...Plotter, 6...Printer,
10...Crack, J...Branch, S...
・Individual point part. 1 = :l> 2 I C1→3 1 This, τ4 Figure Figure 5 60 -1×→ Figure 7 - (Figure 8 Figure 9 Figure 10 Figure 11 Figure 12

Claims (2)

【特許請求の範囲】[Claims] (1)被測定コンクリート表面の画像を画素の明るさに
比例する濃淡値(D)により記憶すること、上記画素の
濃淡値(D)の適当な閾値(T)を算出し上記画像から
濃淡値(D)が閾値(T)以上の白画素と濃淡値(D)
が閾値(T)未満の黒画素との二値画像を作ること、非
線状の黒画素部分を除くこと、及び黒画素の座標と数に
よりひび割れの幅と長さとを測定することからなるコン
クリート表面ひび割れの測定方法。
(1) Storing an image of the concrete surface to be measured as a gradation value (D) proportional to the brightness of the pixel, calculating an appropriate threshold value (T) for the gradation value (D) of the pixel, and calculating the gradation value from the above image. White pixels whose (D) is above the threshold (T) and the gray value (D)
Concrete processing consists of creating a binary image with black pixels whose values are less than a threshold (T), removing non-linear black pixel parts, and measuring the width and length of cracks based on the coordinates and number of black pixels. How to measure surface cracks.
(2)特許請求の範囲第1項記載の測定方法において、
上記非線状の黒画素部分を除いた後上記黒画素の画像に
おける分岐部を除き複数の個別黒部分を形成すること、
各個別黒部分内の画素の濃淡値(D)の変化幅(ΔD)
を算出しその変化幅(ΔD)が所定値以上である個別黒
部分を除くことを含めてなるコンクリートのひび割れ測
定方法。
(2) In the measuring method according to claim 1,
After removing the non-linear black pixel portion, forming a plurality of individual black portions excluding branch portions in the image of the black pixel;
Width of change (ΔD) in gray value (D) of pixels within each individual black area
A method for measuring cracks in concrete, which includes calculating the width of change (ΔD) and excluding individual black portions where the width of change (ΔD) is greater than a predetermined value.
JP1853388A 1988-01-30 1988-01-30 Method for measuring cracks on concrete surface Expired - Fee Related JPH087157B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1853388A JPH087157B2 (en) 1988-01-30 1988-01-30 Method for measuring cracks on concrete surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1853388A JPH087157B2 (en) 1988-01-30 1988-01-30 Method for measuring cracks on concrete surface

Publications (2)

Publication Number Publication Date
JPH01195351A true JPH01195351A (en) 1989-08-07
JPH087157B2 JPH087157B2 (en) 1996-01-29

Family

ID=11974265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1853388A Expired - Fee Related JPH087157B2 (en) 1988-01-30 1988-01-30 Method for measuring cracks on concrete surface

Country Status (1)

Country Link
JP (1) JPH087157B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06109723A (en) * 1992-09-25 1994-04-22 Takashi Nishiyama Analyzing method for structure of base rock, concrete and the like
JPH06229930A (en) * 1993-02-06 1994-08-19 Iwata:Kk Method and apparatus fro inspecting concrete block product
JPH07113753A (en) * 1993-10-15 1995-05-02 Touyoko Erumesu:Kk Crack measuring device
JP2000009448A (en) * 1998-06-26 2000-01-14 Nichiha Corp Surface form data generating system and recording medium
JP2001280960A (en) * 2000-03-29 2001-10-10 Nkk Corp Telemetering method and instrument
JP2002228417A (en) * 2001-02-01 2002-08-14 Shinei Denshi Keisokki Kk Crack measuring device
JP2005241471A (en) * 2004-02-26 2005-09-08 Keisoku Kensa Kk Method of measuring microfine crack width
JP2009085785A (en) * 2007-09-28 2009-04-23 Sanyo Electric Co Ltd Crack width measuring system, operating device, crack width measuring method, and crack width measuring program
JP2009103719A (en) * 2009-02-10 2009-05-14 Keisoku Kensa Kk Measuring method of minute crack width
JP2009103720A (en) * 2009-02-10 2009-05-14 Keisoku Kensa Kk Measuring method of minute crack width
JP2018128315A (en) * 2017-02-07 2018-08-16 大成建設株式会社 Crack detection method
WO2019150799A1 (en) * 2018-01-31 2019-08-08 富士フイルム株式会社 Repair length determination method and repair length determination device
CN115217084A (en) * 2022-07-22 2022-10-21 中国华能集团清洁能源技术研究院有限公司 Reservoir area expansive soil surface crack rate detection method and system

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06109723A (en) * 1992-09-25 1994-04-22 Takashi Nishiyama Analyzing method for structure of base rock, concrete and the like
JPH06229930A (en) * 1993-02-06 1994-08-19 Iwata:Kk Method and apparatus fro inspecting concrete block product
JPH07113753A (en) * 1993-10-15 1995-05-02 Touyoko Erumesu:Kk Crack measuring device
JP2000009448A (en) * 1998-06-26 2000-01-14 Nichiha Corp Surface form data generating system and recording medium
JP2001280960A (en) * 2000-03-29 2001-10-10 Nkk Corp Telemetering method and instrument
JP2002228417A (en) * 2001-02-01 2002-08-14 Shinei Denshi Keisokki Kk Crack measuring device
JP2005241471A (en) * 2004-02-26 2005-09-08 Keisoku Kensa Kk Method of measuring microfine crack width
JP2009085785A (en) * 2007-09-28 2009-04-23 Sanyo Electric Co Ltd Crack width measuring system, operating device, crack width measuring method, and crack width measuring program
JP2009103719A (en) * 2009-02-10 2009-05-14 Keisoku Kensa Kk Measuring method of minute crack width
JP2009103720A (en) * 2009-02-10 2009-05-14 Keisoku Kensa Kk Measuring method of minute crack width
JP2018128315A (en) * 2017-02-07 2018-08-16 大成建設株式会社 Crack detection method
WO2019150799A1 (en) * 2018-01-31 2019-08-08 富士フイルム株式会社 Repair length determination method and repair length determination device
JPWO2019150799A1 (en) * 2018-01-31 2021-02-25 富士フイルム株式会社 Repair length determination method and repair length determination device
US11263739B2 (en) 2018-01-31 2022-03-01 Fujifilm Corporation Repair length determination method and repair length determination apparatus
CN115217084A (en) * 2022-07-22 2022-10-21 中国华能集团清洁能源技术研究院有限公司 Reservoir area expansive soil surface crack rate detection method and system
CN115217084B (en) * 2022-07-22 2023-07-28 中国华能集团清洁能源技术研究院有限公司 A method and system for detecting surface crack ratio of expansive soil in reservoir area

Also Published As

Publication number Publication date
JPH087157B2 (en) 1996-01-29

Similar Documents

Publication Publication Date Title
JP4675949B2 (en) Method and apparatus for measuring crack width of structures and products using image processing technique
Hodgson What size window for image classification? A cognitive perspective
CN108416766B (en) Double-side light-entering type light guide plate defect visual detection method
EP0585759A1 (en) Process for detecting and mapping dirt on the surface of a photographic element
JPH01195351A (en) Measuring method for crack on surface of concrete
JP2017053819A (en) Crack detection method and detection program of concrete
JPWO2020059706A1 (en) Learning data collection device, learning data collection method, and program
JP2002310920A (en) Method for detecting crack in concrete wall and device thereof
Zoon et al. A rapid quantitative measurement of root length and root branching by microcomputer image analysis
RU2237922C2 (en) Automatic control of printing quality by means of elastic template
Ritchie Digital imaging concepts and applications in pavement management
Chua et al. Simple procedure for identifying pavement distresses from video images
JP2008267943A (en) Crack detection method
JP4416825B2 (en) Image inspection processing apparatus, image inspection processing method, program, and recording medium
JP2001099784A (en) Method for detecting crack on floor board of existing bridge and method for displaying the same
KR20010098460A (en) Appearance inspection method and appearance inspection apparatus having high inspection processing speed
Mendelsohn Automated pavement crack detection: An assessment of leading technologies
JP3396960B2 (en) Automatic coating deterioration diagnosis method
CN102999904B (en) Plane-based micro-nano object image tilt correction method
JP2710527B2 (en) Inspection equipment for periodic patterns
JPH05333160A (en) Cloud amount measuring method and device
JP2961140B2 (en) Image processing method
JP2018077719A (en) Fracture surface analysis device and fracture surface analysis method
JPH0624014B2 (en) Gray image processing method
JP2965370B2 (en) Defect detection device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees