[go: up one dir, main page]

JPH01191087A - Radiation detector - Google Patents

Radiation detector

Info

Publication number
JPH01191087A
JPH01191087A JP63014445A JP1444588A JPH01191087A JP H01191087 A JPH01191087 A JP H01191087A JP 63014445 A JP63014445 A JP 63014445A JP 1444588 A JP1444588 A JP 1444588A JP H01191087 A JPH01191087 A JP H01191087A
Authority
JP
Japan
Prior art keywords
scintillator
light
film
radiation detector
transparent film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63014445A
Other languages
Japanese (ja)
Inventor
Minoru Yoshida
稔 吉田
Hideji Fujii
秀司 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP63014445A priority Critical patent/JPH01191087A/en
Publication of JPH01191087A publication Critical patent/JPH01191087A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Radiation (AREA)
  • Luminescent Compositions (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To reduce light losses on the surface of a scintillator and to improve the efficiency of the radiation detector by polishing the surface of the amorphous scintillator specularly, then forming a transparent film which is thick enough to smooth the outermost surface, and forming a light reflecting film on the surface. CONSTITUTION:The light from the amorphous solidified scintillator 1 is easily emitted by scintillator particles by providing a transparent film 2 which has a smaller refractive index than the scintillator 1 and a larger refractive index than air, and guided to the transparent film 2. The surface of this transparent film 2 is close to a mirror surface, so when the outside surface is covered with a metallic reflecting film 3 with a high light reflection factor, the scintillator side serves a light reflecting mirror. The light 6 guided to the transparent film 2 is transmitted through the film 2, and reflected by the border surface between the metallic reflecting film and transparent film to return to be scintillator 1. Consequently, the optical path of the light 6 from the scintillator 1 is selected.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は計算機利用X線断層像撮影袋! (X線CT装
置)に用いる複数のシンチレータと光電変換素子からな
る多素子固体放射線検出器に係り、特にシンチレータか
らの光の有効活用および検出器感度−様性向上に好適な
検出器構造に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is a computer-assisted X-ray tomography bag! The present invention relates to a multi-element solid-state radiation detector consisting of a plurality of scintillators and a photoelectric conversion element used in an X-ray CT apparatus (X-ray CT apparatus), and particularly to a detector structure suitable for effective use of light from the scintillator and improvement of detector sensitivity characteristics.

〔従来の技術〕[Conventional technology]

従来の多結晶質シンチレータを用いた放射線検出器では
特願昭53−142408号に記載のようにシンチレー
タ表面は粗面の状態もしくはある程度鏡面に近く処理さ
れてはいるが、シンチレータ表面での光の有効利用に関
しては特に配慮されていなかった。
In conventional radiation detectors using polycrystalline scintillators, as described in Japanese Patent Application No. 142408/1980, the surface of the scintillator is rough or treated to have a mirror surface to some extent; No particular consideration was given to effective utilization.

【発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は多結晶質シンチレータ表面の特別な処理
が施されて居らず、光の有効利用に関しての配慮がされ
ていない、したがって一般に屈折率の高いシンチレータ
からの発光は空気中には放射されに<<、また放射され
た場合でもその光は散乱して拡散してしまうため受光素
子への集光率が下り放射線検出器としての効率が低下す
ると言う問題があった。
In the above conventional technology, no special treatment is applied to the surface of the polycrystalline scintillator, and no consideration is given to the effective use of light. Therefore, the light emitted from the scintillator, which has a high refractive index, is generally not emitted into the air. <<Also, even if the radiation is emitted, the light is scattered and diffused, so there is a problem that the efficiency of condensing light to the light-receiving element decreases and the efficiency as a radiation detector decreases.

本発明のRIMは多結晶質シンチレータの表面での光損
失を極力少なくシ、シンチレータからの発光を有効に利
用し、放射線検出器の効率を向上させることにある。
The RIM of the present invention minimizes optical loss on the surface of a polycrystalline scintillator, effectively utilizes light emitted from the scintillator, and improves the efficiency of a radiation detector.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題は、第1図に示すように、非晶質シンチレータ
(1)の表面を鏡面もしくは鏡面に近くなるように研磨
し平滑とした後、多結晶質シンチレータの粒界の凹部が
埋まり、かつ最外面が平滑になる程度の厚さの透明な膜
2を形成し、さらにその表面に光反射膜3を形成するこ
とにより達成される。
As shown in Figure 1, the above problem is that after the surface of the amorphous scintillator (1) is polished and smoothed to a mirror surface or close to a mirror surface, the concave portions of the grain boundaries of the polycrystalline scintillator are filled and This is achieved by forming a transparent film 2 thick enough to have a smooth outermost surface, and further forming a light reflecting film 3 on the surface.

〔作用〕[Effect]

第1図に示す非晶質の凝結シンチレータ1からの光は屈
折率がシンチレータ1よりも小さく、空気よりも大きな
光透明膜2を設けることによりシンチレータ粒子から放
射されやすくなり、光透明膜2に導かれる。この光透明
膜2は凝結シンチレータ1の粒子界面を埋めてその外側
が平滑になる程度の厚さであり膜の表面はほぼ鏡面に近
い状態となっているため、外側表面に光反射率の高い金
属反射膜3で被われるとシンチレータ側は光反射鏡とな
る。したがって上記光透明膜2に導かれた光6は間膜2
を透過し、金属反射膜と光透明膜との界面で反射され、
再びシンチレータ1へ戻される。これによりシンチレー
タ1からの光6の光路を選定させることが可能となる。
The light from the amorphous condensed scintillator 1 shown in FIG. be guided. This optically transparent film 2 is thick enough to fill the particle interface of the condensed scintillator 1 and make the outside smooth, and the surface of the film is almost mirror-like, so the outer surface has a high light reflectance. When covered with the metal reflective film 3, the scintillator side becomes a light reflecting mirror. Therefore, the light 6 guided to the transparent film 2 is
is transmitted and reflected at the interface between the metal reflective film and the light transparent film,
It is returned to the scintillator 1 again. This makes it possible to select the optical path of the light 6 from the scintillator 1.

このようにして再びシンチレータ1の方向へ戻された光
は、シンチレータの光取出し面4へと導かれ、光取出し
面λ に設けられたー厚の光透明膜4から集光されて放射され
る。さらに光取出し面以外に設けられた金属反射膜3は
外部からの光7がシンチレータ内部へ入るのを防いでい
る。
The light returned in the direction of the scintillator 1 in this way is guided to the light extraction surface 4 of the scintillator, and is condensed and emitted from the -thick transparent film 4 provided on the light extraction surface λ. . Further, the metal reflective film 3 provided on a surface other than the light extraction surface prevents light 7 from the outside from entering the scintillator.

〔実施例〕〔Example〕

以下1本発明の一実施例を第1図により説明する。シン
チレータ粒子1を樹脂(ポリスチレン樹脂、エポキシ樹
脂、メチルメタアクリレート樹脂等)により凝結、また
は加圧焼結(熱間加圧、熱間静水圧加圧等)した多結品
質シンチレータの表面を研磨し、平滑な面とする。この
場合、非晶質であるため表面は複数のシンチレータ粒子
1の界面が存在することにより完全な鏡面を得ることは
困難である。したがって不完全鏡面に直に光反射膜3を
設けても光が散乱し光反射膜本来の役割を果せない、そ
こで本発明においてはシンチレータ粒子1間の界面の凹
凸を被い平滑な面を得るために、光学的に透明な膜2を
形成する。この膜は、通常シンチレータ材は光屈折率が
1.8〜3と大きい物質が多く臨界角が小さいため、発
光した光はシンチレータ界面で全反射され再びシンチレ
ータ内に戻ってしまう確率が高くシンチレータから空気
中には出にくいと言う間層を解決すべく設、けるもので
、その屈折率はシンチレータと空気との中間の値、すな
わち1〜2程度の物質が望ましい。
An embodiment of the present invention will be described below with reference to FIG. The surface of a multi-crystalline scintillator obtained by coagulating scintillator particles 1 with a resin (polystyrene resin, epoxy resin, methyl methacrylate resin, etc.) or pressure sintering (hot pressing, hot isostatic pressing, etc.) is polished. , a smooth surface. In this case, since the surface is amorphous, it is difficult to obtain a perfect mirror surface due to the presence of interfaces between a plurality of scintillator particles 1 on the surface. Therefore, even if the light reflection film 3 is provided directly on an imperfect mirror surface, the light will be scattered and the light reflection film will not fulfill its original role.Therefore, in the present invention, a smooth surface is formed by covering the irregularities of the interface between the scintillator particles 1. To obtain this, an optically transparent film 2 is formed. This film usually has a high optical refractive index of 1.8 to 3, and the critical angle is small, so there is a high probability that the emitted light will be totally reflected at the scintillator interface and return to the scintillator again. It is provided to solve the problem of interstitial layers that do not easily come out into the air, and it is desirable that the material has a refractive index between that of the scintillator and air, that is, about 1 to 2.

(例えば、SiO2+ MgF 21エポキシ樹脂。(For example, SiO2+ MgF21 epoxy resin.

メチルメタアクリレート樹脂、ポリスチレン樹脂等)、
膜の形成法としては蒸着、スパッタリング。
methyl methacrylate resin, polystyrene resin, etc.),
Film formation methods include vapor deposition and sputtering.

イオンブレーティング、スピニングコート。Ion blasting, spinning coat.

CVD法、ディッピング法1等があるが、いずれの場合
にも膜形成後の膜の表面が平滑な鏡面となることか望ま
しい、膜の厚さは界面の凹部の深さにより異なるが、光
の取出し面4を除く他の面では1〜30μm程度とし、
光の取出し面4においλ では−とする、これらの膜の表面には光を反射させる光
反射膜3を設ける。光反射膜3はAQ。
There are CVD methods, dipping methods 1, etc., but in either case, it is desirable that the surface of the film after film formation becomes a smooth mirror surface.The thickness of the film varies depending on the depth of the recess at the interface, but it is On other surfaces except the extraction surface 4, the thickness should be about 1 to 30 μm,
At the light extraction surface 4, λ is -, and a light reflecting film 3 for reflecting light is provided on the surfaces of these films. The light reflecting film 3 is AQ.

A g e A uなどの金属を用い、膜厚500人〜
1500人の厚さに蒸着(スパッタリング、イオンブレ
ーティングを含む)により形成する。金属は物質により
不安定なものも有るのでさらにその表面をSiO2,T
iO2などの膜で保護すれば酸化、硫化等の化学変化を
防止できる。このようにして形成された形成体を第2図
に示すようにSiフォトダイオード8上に光取出し面4
とSiフォトダイオードの受光面9が密着するように設
置して固体放射線検出器を形成する。Siフォトダイオ
ード8がアレイ状の物の場合には受光面9と上記シンチ
レータ成形体の光取り出し面4との間を30μm以下と
なるように密着すると隣接する素子間へのクロストーク
は減少させることが出来る。
Using metals such as A g e A u, the film thickness is 500 ~
Formed by vapor deposition (including sputtering and ion blasting) to a thickness of 1,500 mm. Some metals are unstable depending on the substance, so the surface is further coated with SiO2, T.
If it is protected with a film such as iO2, chemical changes such as oxidation and sulfurization can be prevented. The thus formed body is placed on a light extraction surface 4 on a Si photodiode 8 as shown in FIG.
A solid-state radiation detector is formed by installing the light-receiving surface 9 of the Si photodiode and the Si photodiode so that they are in close contact with each other. When the Si photodiodes 8 are in the form of an array, crosstalk between adjacent elements can be reduced by closely contacting the light receiving surface 9 and the light extraction surface 4 of the scintillator molded body with a distance of 30 μm or less. I can do it.

また、受光素子はSiフォトダイオード以外の光電管、
光電子増倍管、マルチチャンネルプレート、その他生導
体受光素子を含む光電変換素子にも応用できる。
In addition, the light receiving element may be a phototube other than a Si photodiode,
It can also be applied to photomultiplier tubes, multichannel plates, and other photoelectric conversion devices including live conductor light receiving devices.

X線光子5は光反射膜3および光透明膜2を透過してシ
ンテレ−。夕粒子1に当るとシンチレータ粒子1からは
X線光子5に比例した量の可視光6が発せられる。G 
d x○2S : Pr、F、Ceの場合、500nm
〜900nmの範囲内の波長のスペクトル分布を示す光
を発する。この光6は4π方向に放射され直接光取出し
面4′に向うものと、シンチレータ凝結体の中を透過し
て周囲を被っている光透過膜2に達するものがある。こ
の光透過膜2は、シンチレータ粒子1間の界面を埋め、
かつシンチレータ粒子1の研磨表面に密着されている。
The X-ray photon 5 is transmitted through the light reflecting film 3 and the light transparent film 2 and becomes a syntele. When the scintillator particles 1 hit the evening particles 1, visible light 6 is emitted in an amount proportional to the X-ray photons 5. G
d x○2S: 500 nm for Pr, F, Ce
It emits light with a spectral distribution of wavelengths in the range ~900 nm. Some of this light 6 is emitted in the 4π direction and goes directly to the light extraction surface 4', while others pass through the scintillator aggregate and reach the surrounding light-transmitting film 2. This light-transmitting film 2 fills the interface between the scintillator particles 1,
and is in close contact with the polished surface of the scintillator particles 1.

光透過膜2はMgFIit Sio2.エポキシ樹脂な
どの光屈折率が1.5〜2.0程度の透明膜で膜の厚さ
1μm〜30μmとなっている。
The light transmitting film 2 is MgFIit Sio2. The transparent film is made of epoxy resin or the like and has a light refractive index of about 1.5 to 2.0, and has a thickness of 1 μm to 30 μm.

この膜がシンチレータに密着されているとシンチレータ
内の光の臨界角が大きくなり、シンチレータから外に出
やすくなる。シンチレータを飛び出した光6は光透明膜
2を透過し膜の外側を被った光反射率の高いAQ、Ag
などの金属光反射膜3と透明膜2との界面で反射され再
びシンチレータ1側に戻される。このようにしてシンチ
レータ1からの発光6は最終的には全て光取出し面4′
に集光される。光取出し面の研磨により平滑な鏡面とし
た表面に設けられた透明膜4は光屈折率が1.5〜1.
8程度の範囲内の透明な物質1例えば、MgF 2,5
i02などの膜で、その厚さはシンチレータ1からの発
光スペクトル波長に対しλ/4の値となる厚さとし、シ
ンチレータ1からの光を最も外へ導きやすい状態となっ
ているため、集光された光6は効率よく光取出し面から
外部に放射される。放射された光6は第2図に示すよう
にSiフォトダイオード8の受光面9に導かれ光感変換
され電流として取り出される。したがってこの電流はシ
ンチレータに入射するX線の強度に比 ・倒した量とな
り放射線検出器が形成される。
When this film is in close contact with the scintillator, the critical angle of light within the scintillator increases, making it easier for light to escape from the scintillator. The light 6 that has jumped out of the scintillator passes through the transparent film 2 and covers the outside of the film with high reflectivity AQ, Ag.
The light is reflected at the interface between the metal light reflecting film 3 and the transparent film 2 and is returned to the scintillator 1 side. In this way, all of the light emitted from the scintillator 1 finally reaches the light extraction surface 4'.
The light is focused on. The transparent film 4 provided on the surface made smooth and mirror-like by polishing the light extraction surface has a light refractive index of 1.5 to 1.
Transparent substance 1 within the range of about 8, for example, MgF 2,5
A film such as i02 has a thickness that is λ/4 with respect to the wavelength of the emission spectrum from scintillator 1, and is in a state where light from scintillator 1 is most easily guided to the outside, so it is not focused. The light 6 is efficiently radiated to the outside from the light extraction surface. As shown in FIG. 2, the emitted light 6 is guided to the light-receiving surface 9 of the Si photodiode 8, is photosensitively converted, and is extracted as an electric current. Therefore, this current is compared to the intensity of the X-rays incident on the scintillator, forming a radiation detector.

第3図は上記検出器の長平方向の各部位における感度の
分布を測定したもので曲線■はシンチレータ表面に上記
のような光透明膜2および光反射膜3が無い場合の測定
結果であり1曲線■は本発明による上記光透明膜2.光
反射膜3および光取出し面の光透明膜4を設けた場合の
測定結果を示す。
Figure 3 shows the measurement of the sensitivity distribution at each location in the longitudinal direction of the detector, and the curve ■ is the measurement result when the scintillator surface does not have the optically transparent film 2 and the optically reflective film 3 as described above. Curve 2 represents the optically transparent film 2 according to the present invention. The measurement results are shown when a light reflecting film 3 and a light transparent film 4 on the light extraction surface are provided.

曲線■では均−感度部がほとんど無いのに対し1本発明
による構造では曲線■に示すように、感度の均一部が広
がり、検出器端の感度も高くなっている。
In curve (2), there is almost no uniform sensitivity region, whereas in the structure according to the present invention, as shown in curve (2), the uniform sensitivity region is widened and the sensitivity at the detector end is also high.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、放射線検出器内の感度の一様性範囲が
2〜3倍広がり、絶対感度も約30%向上すると共に多
素子検出器の素子間の感度、感度均一性の向上が図れる
ため、X線CT装置に用いた場合、特にアーチファクト
の少ない画像が得られると言う効果がある。
According to the present invention, the range of uniformity of sensitivity within a radiation detector is expanded by 2 to 3 times, the absolute sensitivity is improved by about 30%, and the sensitivity and sensitivity uniformity between elements of a multi-element detector can be improved. Therefore, when used in an X-ray CT apparatus, there is an effect that images with particularly few artifacts can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例のシンチレータの断面図、第
2図はシンチレータと受光素子とを組合わせた放射線検
出器の一実施例を示す一部欠斜視図、第3図は本発明に
よる放射線検出器の検出器内感度−様性の実測値を示す
図である。 1・・・シンチレータ粒子、2・・・光透明膜、3・・
・光反射膜、4・・・光透明膜、4′・・・光透明膜付
光取出し面、5・・・X線光子、6・・・光、7・・・
外光、8・・・受光素子、9・・・受光素子受光面、1
0・・・基板。 第7目 $21
FIG. 1 is a sectional view of a scintillator according to an embodiment of the present invention, FIG. 2 is a partially cutaway perspective view showing an embodiment of a radiation detector combining a scintillator and a light receiving element, and FIG. 3 is a cross-sectional view of a scintillator according to an embodiment of the present invention. FIG. 2 is a diagram showing actual measured values of intra-detector sensitivity characteristics of a radiation detector according to the present invention. 1... scintillator particles, 2... optically transparent film, 3...
- Light reflecting film, 4... Light transparent film, 4'... Light extraction surface with light transparent film, 5... X-ray photon, 6... Light, 7...
Outside light, 8... Light-receiving element, 9... Light-receiving surface of light-receiving element, 1
0... Board. 7th eye $21

Claims (1)

【特許請求の範囲】 1、シンチレータと半導体受光素子とを組み合わせた放
射線多素子固体検出器において、シンチレータ多面体の
先取り出し面を除くその他の多面表面に光学的に透明で
光屈折率がシンチレータ材料よりも小さな物質からなる
3μm厚以上の膜を設け、シンチレータ表面の凹凸を被
い、上記透明膜の表面を鏡面とし、さらに上記透明膜鏡
面表面上に金属膜の光反射面を設けることおよび上記シ
ンチレータ多面体の光取り出し面を鏡面とし、表面に上
記光学的に透明で光屈折率がシンチレータ材料よりも小
さな物質の薄膜をλ/4の厚さで設けたことを特徴とす
る放射線検出器。 2、前記シンチレータとしてGd_2O_2S:Pr、
Ce、Fの凝結体を用いる事を特徴とする特許請求の範
囲1項記載の放射線検出器。 3、前記シンチレータGd_2O_2S:Pr、Ce、
Fを凝結する手段として熱間静水圧加圧法 (HIP)を用いる事を特徴とする特許請求の範囲第1
項もしくは第2項記載の放射線検出器。 4、前記シンチレータGd_2O_2S:Pr、Ce、
Fを凝結する手段として、透明な樹脂をバインダーとし
て用いる事を特徴とする特許請求の範囲第1項もしくは
第2項記載の放射線検出器。 5、前記透明膜にSiO_2、MgF_2を用いること
を特徴とする特許請求の範囲第1項記載の放射線検出器
。 6、前記金属膜の光反射面にAl、Ag、Auを用いる
ことを特徴とした特許請求の範囲第1項記載の放射線検
出器。 7、前記金属膜の厚さを750Å〜1500Åとするこ
とを特徴とする特許請求の範囲第1項もしくは第6項記
載の放射線検出器。
[Scope of Claims] 1. In a radiation multi-element solid-state detector that combines a scintillator and a semiconductor light receiving element, the other multifaceted surfaces of the scintillator polyhedron except for the first extraction surface are optically transparent and have a light refractive index higher than that of the scintillator material. providing a film with a thickness of 3 μm or more made of a small substance, covering the irregularities on the surface of the scintillator, making the surface of the transparent film a mirror surface, further providing a light reflecting surface of a metal film on the mirror surface of the transparent film, and the scintillator. A radiation detector characterized in that the light extraction surface of the polyhedron is a mirror surface, and a thin film of the above-mentioned optically transparent substance having a light refractive index smaller than that of the scintillator material is provided on the surface with a thickness of λ/4. 2. Gd_2O_2S:Pr as the scintillator,
The radiation detector according to claim 1, characterized in that a condensate of Ce and F is used. 3. The scintillator Gd_2O_2S: Pr, Ce,
Claim 1, characterized in that hot isostatic pressing (HIP) is used as a means for condensing F.
The radiation detector according to item 1 or 2. 4. The scintillator Gd_2O_2S: Pr, Ce,
The radiation detector according to claim 1 or 2, characterized in that the means for condensing F uses a transparent resin as a binder. 5. The radiation detector according to claim 1, wherein SiO_2 and MgF_2 are used for the transparent film. 6. The radiation detector according to claim 1, wherein Al, Ag, or Au is used for the light reflecting surface of the metal film. 7. The radiation detector according to claim 1 or 6, wherein the metal film has a thickness of 750 Å to 1500 Å.
JP63014445A 1988-01-27 1988-01-27 Radiation detector Pending JPH01191087A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63014445A JPH01191087A (en) 1988-01-27 1988-01-27 Radiation detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63014445A JPH01191087A (en) 1988-01-27 1988-01-27 Radiation detector

Publications (1)

Publication Number Publication Date
JPH01191087A true JPH01191087A (en) 1989-08-01

Family

ID=11861228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63014445A Pending JPH01191087A (en) 1988-01-27 1988-01-27 Radiation detector

Country Status (1)

Country Link
JP (1) JPH01191087A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0355229A (en) * 1989-07-24 1991-03-11 Sekisui Plastics Co Ltd Simultaneous molding method using different raw materials
JPH05196742A (en) * 1991-08-21 1993-08-06 General Electric Co <Ge> Solid-state radiation imager having reflecting and protecting film
US5386122A (en) * 1992-06-30 1995-01-31 Hitachi Medical Corporation Radiation detector and method for making the same
WO2000063722A1 (en) * 1999-04-16 2000-10-26 Hamamatsu Photonics K.K. Scintillator panel and radiation image sensor
EP1298455A1 (en) * 1999-04-09 2003-04-02 Hamamatsu Photonics K.K. Scintillator panel and radiation ray image sensor
JP2005189234A (en) * 2003-11-20 2005-07-14 Ge Medical Systems Global Technology Co Llc Scintillator array for radiation detector, and manufacturing method therefor
US7034306B2 (en) 1998-06-18 2006-04-25 Hamamatsu Photonics K.K. Scintillator panel and radiation image sensor
EP1862821A1 (en) * 1999-04-09 2007-12-05 Hamamatsu Photonics K.K. Scintillator panel and radiation ray image sensor
US7852392B2 (en) 1998-10-28 2010-12-14 Canon Kabushiki Kaisha Image pick-up apparatus and image pick-up system, and method for manufacturing image pick-up apparatus
JP2013019796A (en) * 2011-07-12 2013-01-31 Canon Inc Radiation detector
JP5170263B2 (en) * 2009-02-12 2013-03-27 日立金属株式会社 Manufacturing method of radiation detector
US8519339B2 (en) 2009-07-21 2013-08-27 Saint-Gobain Cristaux Et Detecteurs Rare-earth halide scintillator coated with a light absorber or light reflector

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0355229A (en) * 1989-07-24 1991-03-11 Sekisui Plastics Co Ltd Simultaneous molding method using different raw materials
JPH05196742A (en) * 1991-08-21 1993-08-06 General Electric Co <Ge> Solid-state radiation imager having reflecting and protecting film
US5386122A (en) * 1992-06-30 1995-01-31 Hitachi Medical Corporation Radiation detector and method for making the same
US7034306B2 (en) 1998-06-18 2006-04-25 Hamamatsu Photonics K.K. Scintillator panel and radiation image sensor
US7705315B2 (en) 1998-06-18 2010-04-27 Hamamatsu Photonics K.K. Scintillator panel and radiation image sensor
US7408177B2 (en) 1998-06-18 2008-08-05 Hamamatsu Photonics K.K. Scintillator panel and radiation image sensor
US7852392B2 (en) 1998-10-28 2010-12-14 Canon Kabushiki Kaisha Image pick-up apparatus and image pick-up system, and method for manufacturing image pick-up apparatus
EP1298455A1 (en) * 1999-04-09 2003-04-02 Hamamatsu Photonics K.K. Scintillator panel and radiation ray image sensor
US6911658B2 (en) 1999-04-09 2005-06-28 Hamamatsu Photonics K.K. Scintillator panel and radiation image sensor
EP1862821A1 (en) * 1999-04-09 2007-12-05 Hamamatsu Photonics K.K. Scintillator panel and radiation ray image sensor
US6753531B2 (en) 1999-04-09 2004-06-22 Hamamatsu Photonics K.K. Scintillator panel and radiation image sensor
EP1298455A4 (en) * 1999-04-09 2003-04-02 Hamamatsu Photonics Kk Scintillator panel and radiation ray image sensor
WO2000063722A1 (en) * 1999-04-16 2000-10-26 Hamamatsu Photonics K.K. Scintillator panel and radiation image sensor
JP2005189234A (en) * 2003-11-20 2005-07-14 Ge Medical Systems Global Technology Co Llc Scintillator array for radiation detector, and manufacturing method therefor
JP4558457B2 (en) * 2003-11-20 2010-10-06 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー Manufacturing method of scintillator array for radiation detector
JP5170263B2 (en) * 2009-02-12 2013-03-27 日立金属株式会社 Manufacturing method of radiation detector
US8519339B2 (en) 2009-07-21 2013-08-27 Saint-Gobain Cristaux Et Detecteurs Rare-earth halide scintillator coated with a light absorber or light reflector
JP2013019796A (en) * 2011-07-12 2013-01-31 Canon Inc Radiation detector

Similar Documents

Publication Publication Date Title
JPH01191087A (en) Radiation detector
EP0250983B1 (en) Reflective coating for solid-state scintillator bar
US4560882A (en) High-efficiency X-radiation converters
US6655675B2 (en) X-ray detector offering an improved light yield
CN1079947C (en) Radiation detector
Garbuzov et al. Organic films deposited on Si p‐n junctions: accurate measurements of fluorescence internal efficiency, and application to luminescent antireflection coatings
JPS6131854B2 (en)
JPH06205768A (en) X-ray examination apparatus
JPH05196742A (en) Solid-state radiation imager having reflecting and protecting film
JP5900563B1 (en) Fluorescent light source device
JPS6058430B2 (en) radiation detector
JPH10150177A (en) Solid-state imaging device
JP6101443B2 (en) Scintillator and radiation detector using the same
JPH0511060A (en) Two-dimensional mosaic scintillation detector
KR101816537B1 (en) Fibre optic phosphor screen comprising an angular filter
JPS6051099B2 (en) Radiation image information reading device
JP2796320B2 (en) X-ray image intensifier
JPH04102098U (en) Memory luminescent screen with inducible memory luminescent material
Cappellugola et al. Modelisation of light transmission through surfaces with thin film optical coating in Geant4
CN114300493A (en) Photodiode device, radioactivity detector array, detector and detection device
JP2001516888A (en) Scintillation detector, refractive coating for scintillator, and process for producing the coating
JP3228252B2 (en) Radiation detector for radiation CT apparatus and radiation CT apparatus using the same
JP7645742B2 (en) Scintillator panel and radiation imaging device
EP0079651B1 (en) Photo-electric detection structure
JPH09503589A (en) Optoelectronic camera