[go: up one dir, main page]

JPH01175829A - Ophthalmologic apparatus - Google Patents

Ophthalmologic apparatus

Info

Publication number
JPH01175829A
JPH01175829A JP62334800A JP33480087A JPH01175829A JP H01175829 A JPH01175829 A JP H01175829A JP 62334800 A JP62334800 A JP 62334800A JP 33480087 A JP33480087 A JP 33480087A JP H01175829 A JPH01175829 A JP H01175829A
Authority
JP
Japan
Prior art keywords
eye
alignment
examined
ophthalmologic apparatus
subject
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62334800A
Other languages
Japanese (ja)
Other versions
JPH0753155B2 (en
Inventor
Shinya Tanaka
信也 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP62334800A priority Critical patent/JPH0753155B2/en
Publication of JPH01175829A publication Critical patent/JPH01175829A/en
Publication of JPH0753155B2 publication Critical patent/JPH0753155B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Eye Examination Apparatus (AREA)

Abstract

PURPOSE:To carry out accurate alignment quickly by providing a means for detecting predetermined information of eye to be inspected, a means for receiving light of the front portion of said eye to detect the alignment of the light with said eye and a transmitting means for transmitting the output information of said alignment detecting means to a patient. CONSTITUTION:A light flux from an infrared ray source 5 is transmitted through a liquid crystal shutter 6 and then focused on the proximity of an outlet of a nozzle 1a through a lens 7 and a dichroic mirror 8. The light flux diverges again to be reflected by the cornea of eye E to be inspected and focused on a two-dimensional position detector 11 through a concave dichroic mirror 1', transparent windows 2, 3 by lenses 9, 10. The light flux is converted to the positional signal thereof by a calculating circuit 12 to be sent to a controller 13. By comparing a position of infrared ray source 5 image reflected by the cornea in said detector 11 with a reference position is detected a positional deflection of the eye E from the optical axis in the vertical plane. On the other hand, a horizontal positional deflection is detected by selecting the light flux with the liquid crystal shutter 6.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は被検者自身が被検眼を眼科機器の適正位置に合
わせる。ことができる自己眼位置合わせ装置を有する眼
科機器に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] In the present invention, the subject himself/herself adjusts the subject's eye to the proper position of the ophthalmological equipment. The present invention relates to an ophthalmological device having a self-eye alignment device that can perform self-eye alignment.

[従来の技術] 近年、検者及び被検者双方によって省力化か可能なよう
に、被検者自身が操作し得る眼科機器の普及が望まれて
いる。例えば、眼圧は血圧と同様に定期的に測定し、家
庭用血圧計のように家庭で眼圧を簡便にしかも正確に測
定できることが望ましい。
[Prior Art] In recent years, it has been desired to popularize ophthalmological equipment that can be operated by the examiner and the examinee themselves so that both the examiner and the examinee can save labor. For example, it is desirable that intraocular pressure be measured periodically like blood pressure, and that intraocular pressure can be easily and accurately measured at home using a home-use blood pressure monitor.

ところで、眼科機器を被検者自身が操作するに際して、
被検者は自己銀を装置に対して正確に所定位置に合わせ
る必要がある。この位置合わせは装置と被検眼までの距
離、即ち作動距離(ワーキングデイスタンス)WDを所
定の距離にすることと、装置の光軸と被検眼の眼軸とを
一致させるアライメントから成り、1mm以下程度の精
度を必要とする。
By the way, when the patient himself/herself operates the ophthalmological equipment,
The subject must align their own silver precisely in place with respect to the device. This alignment consists of setting the distance between the device and the eye to be examined, that is, the working distance (WD), to a predetermined distance, and aligning the optical axis of the device and the eye axis of the eye to be examined, to within 1 mm. Requires a degree of precision.

従来この種の位置合わせ装置として角膜に端子を押し付
ける接触型の形式のものがあるが。
Conventionally, as this type of positioning device, there is a contact type device in which a terminal is pressed against the cornea.

この接、触形式の装置では麻酔及び消毒等が必要となり
、被検者が容易に操作できるとは云い難い。このように
自己眼位置合わせが困難であることが、家庭でも使用で
きる眼科機器の普及を妨げる原因の1つとなっている。
This touch-and-touch type device requires anesthesia, disinfection, etc., and cannot be said to be easy to operate by a subject. This difficulty in self-aligning the eyes is one of the reasons that prevents the spread of ophthalmological equipment that can be used at home.

このような要求に対して本件出願人は特開昭61−27
8533に示す如くの装置を提案している。84図はそ
の一例であって非接触眼圧計を示す。装置の光軸O1上
には眼科装置の作動距離を焦点距離とする凹面鏡lか配
置されており、眼圧計に適用するために凹面鏡1の中心
には開口部か設けられ、その開口部にはノズルlaが貫
通されている。そして光軸O1上に位置した被検眼Eに
、不図示の空気圧縮装置によりノズル1aを介して空気
を吹き付け、この吹き付けられた空気の圧力に対する被
検眼Eの角膜の変形によって、被検眼Eの眼圧を測定で
きるようになっている。その際、所定の圧力を被検眼E
に与えるためには、被検眼Eの眼軸かノズル1aの軸と
一致し、しかも被検眼Eはノズルlaから所定の作動距
離に位置していなければならない。なおノズルlaの軸
は光軸o1と一致しているので、被検眼Eのアライメン
トは眼軸と光軸とを一致させればよい。
In response to such a request, the present applicant filed the patent application
8533 has been proposed. Figure 84 is an example of this, and shows a non-contact tonometer. A concave mirror 1 whose focal length is the working distance of the ophthalmological device is arranged on the optical axis O1 of the device, and an opening is provided in the center of the concave mirror 1 in order to apply it to a tonometer. Nozzle la is penetrated. Then, air is blown onto the eye E located on the optical axis O1 through a nozzle 1a by an air compressor (not shown), and the cornea of the eye E is deformed in response to the pressure of the blown air. It is possible to measure intraocular pressure. At that time, apply a predetermined pressure to the eye to be examined.
In order to give the same, the eye axis of the eye E to be examined must match the axis of the nozzle 1a, and the eye E must be located at a predetermined working distance from the nozzle la. Note that since the axis of the nozzle la coincides with the optical axis o1, the alignment of the eye E to be examined can be made by aligning the eye axis and the optical axis.

ところで調節を休ませた正規用においては。By the way, for regular use with a rest of adjustment.

無限遠にある物体が網膜上に像を結像する。An object at infinity forms an image on the retina.

従って凹面鏡1の焦点距離f1に被検眼Eが位置すると
、被検眼Eの前眼部のいかなる位置から発した光束でも
凹面鏡lによって平行光束として反射されるので、被検
者には自己の被検眼Eの前眼部の像E′が凹面鏡l内に
鮮明に見えることになる。従って眼圧測定装置の作動距
離WDをflとすると、flを焦点距離とする凹面超重
、即ち曲率半径rl=2flの凹面鏡lを光束01上に
配し、被検眼Eの像E′が鮮明に見える位置に被検者が
自己の被検眼Eを位置させることにより、被検眼Eを凹
面鏡lの焦点圧glfl、即ち装置の作動距離flに固
定させることがてきる。また被検眼Eの眼軸を光軸01
に一致させるアライメントに関しては凹面鏡1の中心位
置に自己の被検眼Eの前眼部の像E′を位置させること
により達成することができる。即ち眼圧測定装置の作動
距離WDの2倍の曲率半径を有する凹面鏡lを光軸O1
上に配し、被検者はこの凹面illの中心に鮮明に自己
の被検眼Eの前眼部の像E′を見るように自己の被検眼
Eを位置させることによ′す、容易に自分で被検眼Eの
位置合わせを行うことができるように構成されている。
Therefore, when the eye E to be examined is located at the focal length f1 of the concave mirror 1, the light beam emitted from any position of the anterior segment of the eye E will be reflected as a parallel light beam by the concave mirror l, so that the examinee will be able to see his own eye. An image E' of the anterior segment of E is clearly visible in the concave mirror l. Therefore, if the working distance WD of the intraocular pressure measuring device is fl, a concave mirror l with a focal length of fl, that is, a concave mirror l with a radius of curvature rl = 2 fl, is placed on the light beam 01, and the image E' of the eye E to be examined becomes clear. By positioning the subject's eye E in a visible position, the subject's eye E can be fixed at the focal pressure glfl of the concave mirror l, that is, at the working distance fl of the device. In addition, the eye axis of the eye E to be examined is optical axis 01.
The alignment can be achieved by positioning the image E' of the anterior segment of the subject's eye E at the center of the concave mirror 1. That is, a concave mirror l having a radius of curvature twice the working distance WD of the intraocular pressure measuring device is placed on the optical axis O1.
The patient can easily position his/her own eye E to be examined so that the image E' of the anterior segment of the eye E is clearly seen in the center of this concave surface ill. It is configured so that the subject's eye E can be aligned by oneself.

[発明が解決しようとしている問題点]しかしながら前
述の従来例においては、被検眼の微妙な位置合せは行な
いにくいという欠点があった。なぜならば被検者が自ら
の瞳等の像を見て、すなわち眼底に結像させることによ
りアライメントを行なうため被検眼の視度によりワーキ
ングデイスタンスが微妙にずれてしまい、又瞳の像を見
ることによりて視線が不安定になるからである。又位置
合せ行為が正しい方向へ行なわれているという認識が不
可部であるためアライメントに時間がかかるという欠点
も生じていた。さらに微妙なアライメントが必要な非接
触眼圧計の如くの装置においては上述の従来例のような
位置合せ方法ではアライメント確認の精度が低く、より
精度の高い方法が望まれていた。
[Problems to be Solved by the Invention] However, the above-mentioned conventional example has a drawback in that it is difficult to perform delicate positioning of the eye to be examined. This is because the subject performs alignment by looking at the image of his or her own pupil, that is, by focusing the image on the fundus, so the working distance may shift slightly depending on the diopter of the subject's eye, and the patient may also look at the image of the pupil. This is because the line of sight becomes unstable. Furthermore, since it is essential to recognize that the alignment is being performed in the correct direction, there is also the drawback that alignment takes time. In devices such as non-contact tonometers that require more delicate alignment, the accuracy of alignment confirmation is low with the above-mentioned conventional alignment method, and a more accurate method has been desired.

[問題を解決するための手段] 本発明は被検者がより正確なアライメントを迅速に行な
うことができる眼科装置を提供することを目的とし、被
検眼の所定情報を検出する被検眼情報検出手段と、・被
検眼前眼部からの光を受光して被検眼とのアライメント
状態を検出するアライメント検出手段と、該アライメン
ト検出手段の出力情報を被検者に伝達する伝達手段を備
えることを特徴とする。
[Means for Solving the Problems] The present invention aims to provide an ophthalmological apparatus that allows a subject to perform more accurate alignment quickly, and includes an eye information detection means for detecting predetermined information about the eye to be examined. and an alignment detection means for detecting the alignment state with the eye to be examined by receiving light from the anterior segment of the eye to be examined, and a transmission means for transmitting output information of the alignment detection means to the examinee. shall be.

[実施例] 第1図は本発明に係る非接触眼圧計の一実施で゛ 例ある。凹面鏡1′は可視反射且つ近赤外透過の凹面ダ
イクロイックミラーであり、第4図の凹面鏡1と同様の
作用をし、被検眼前眼部の像を被検眼眼底に結像する。
[Example] FIG. 1 is an example of an implementation of a non-contact tonometer according to the present invention. The concave mirror 1' is a concave dichroic mirror that reflects visible light and transmits near infrared rays, and functions similarly to the concave mirror 1 of FIG. 4, forming an image of the anterior segment of the eye to be examined on the fundus of the eye to be examined.

ノズル1aの後方には透過窓2.3により密閉された圧
縮室4が容易され、後述する気流発生器に接続されてい
る。被検眼のアライメント状態を検出するアライメント
検出系は圧縮室4の後方に設けられ、赤外光源5を発し
た光束は液晶シャッタ6を透過した後、レンズ7、可視
透過・近赤外反射のダイクロイックミラー8を介してノ
ズルlaの出口付近に集光される。その後光束は再び発
散して、被検眼Eの角膜により反射された後に凹面ダイ
クロイックミラー・1′、透過窓2.3(即ちノズルの
外側)を通りレンズ9.10により2次元ポジションデ
ィテクタ11上に集光する。2次元ポジションディテク
タ11の出力は演算回路12により光束の位置信号に変
換され、コントローラ13に取り込まれる0以上の構成
で2次元ポジションディテクタ11における赤外光源5
の角膜反射像の位置を基準位置と比較することて被検眼
Eの光軸01と垂直平面内の位置ずれの検出がなされる
。一方光軸と水平方向(即ち作動距離方向)の位置検出
は液晶シャッタ6により光束を選択することによってな
される。すなわちコントローラ13から適当なりロック
を受は液晶ドライバ14は液晶シャッタ6を第2図(a
)、(b)に示す如く2領域6a、6bを交互に゛開放
する。これによりアライメントが正しい場合で被検眼E
の光軸方向の位置が正規の位置にあると液晶シャッタ6
の駆動とは無関係に2次元ポジションディテクタ11に
集光される光束は静止する。被検眼Eの光軸方向の位置
が正規の位置から前後にずれて集光ポイントが2次元ポ
ジションディテクタ11から前後にずれた場合には各々
逆の光束の移動となる。従って2次元ポジションディテ
クタ11の出力の取り込みを液晶シャッタ6の駆動と同
期して取り込めば所望の情報を得ることかできる0以上
まとめると具体的には光軸01の垂直方向の位置ずれは
、液晶シャツタ6が第2図(a)の時の2次元ポジショ
ンディテクタ11の出力と第2図(b)の時の出力との
平均から中間位置を特定し基準位置からのずれを検出す
ることで求まり、又光軸01方向の位置ずれは、両者の
差を取ることによって求まる。
Behind the nozzle 1a is a compression chamber 4 sealed by a transparent window 2.3, which is connected to an airflow generator to be described later. An alignment detection system for detecting the alignment state of the eye to be examined is provided behind the compression chamber 4, and the light beam emitted from the infrared light source 5 passes through a liquid crystal shutter 6, and then passes through a lens 7, a dichroic device that transmits visible light and reflects near-infrared light. The light is focused through the mirror 8 near the exit of the nozzle la. Thereafter, the light beam diverges again, is reflected by the cornea of the eye E, passes through the concave dichroic mirror 1', the transmission window 2.3 (i.e. outside the nozzle), and is directed onto the two-dimensional position detector 11 by the lens 9.10. Focus light. The output of the two-dimensional position detector 11 is converted into a position signal of a luminous flux by the arithmetic circuit 12, and the infrared light source 5 in the two-dimensional position detector 11 has a configuration of 0 or more and is taken into the controller 13.
By comparing the position of the corneal reflection image with the reference position, a positional deviation of the eye E to be examined in a plane perpendicular to the optical axis 01 is detected. On the other hand, position detection in the optical axis and horizontal direction (that is, in the working distance direction) is performed by selecting a light beam using the liquid crystal shutter 6. That is, upon receiving an appropriate lock from the controller 13, the liquid crystal driver 14 moves the liquid crystal shutter 6 as shown in FIG.
) and (b), the two areas 6a and 6b are opened alternately. This allows the examinee's eye E if the alignment is correct.
When the optical axis direction of the LCD shutter 6 is in the correct position, the LCD shutter 6
The light beam converged on the two-dimensional position detector 11 remains stationary regardless of the drive of the two-dimensional position detector 11. When the position of the eye E in the optical axis direction shifts back and forth from the normal position and the condensing point shifts back and forth from the two-dimensional position detector 11, the light beams move in opposite directions. Therefore, if the output of the two-dimensional position detector 11 is captured in synchronization with the driving of the liquid crystal shutter 6, the desired information can be obtained. It is determined by identifying the intermediate position from the average of the output of the two-dimensional position detector 11 when the shirt shutter 6 is shown in Figure 2 (a) and the output when it is shown in Figure 2 (b), and detecting the deviation from the reference position. , and the positional deviation in the optical axis 01 direction can be found by taking the difference between the two.

以上の如くアライメント検出手段により得られた被検眼
の位置の情報はコントローラ13により変換されLED
表示素子15に表示される。この場合コントローラ13
はLED表示素子15を制御しアライメント検出手段の
出力によりLED表示素子15を適宜制御するようにて
きる。LED表示素子15は例えば第3図(a)に示し
た如くの5x7のドツトマトリックスの発光部を有し、
位置ずれの方向を示す矢印(b)〜(e)や前後と指示
するアルファベット(f)、(g)を表示する。この表
示はミラー16.17を介してレンズ9により略無限遠
に写像されダイクロイックミラー8、通過窓3、ノズル
1aを通って被検眼Eへ提示されるのである。この表示
は光軸O1と同軸になされているので被検眼の固視灯と
しても作用する。
As described above, the information on the position of the eye to be examined obtained by the alignment detection means is converted by the controller 13 and the LED
It is displayed on the display element 15. In this case controller 13
controls the LED display element 15, and appropriately controls the LED display element 15 based on the output of the alignment detection means. The LED display element 15 has a 5x7 dot matrix light emitting section as shown in FIG. 3(a), for example.
Arrows (b) to (e) indicating the direction of positional shift and alphabets (f) and (g) indicating front and back are displayed. This display is mapped to approximately infinity by the lens 9 via the mirrors 16 and 17, and presented to the eye E through the dichroic mirror 8, the passage window 3, and the nozzle 1a. Since this display is coaxial with the optical axis O1, it also functions as a fixation lamp for the eye to be examined.

このような構成の本装置において、被検者は凹面ダイク
ロイックミラーに写る被検者自身の瞳像を見ながら自己
の眼位置を調整する際に、LED表示素子を固視するこ
とで視線の固定かなされ且つ同時にその表示を見ること
で眼位置の調整方向か理解でき、その表示に従って限位
置の調整か行なえることになる。逆に言えば上述した凹
面ダイクロツクミラーのような反射光学系は本装置にお
いては眼位置の粗調整卑秀に用いられる補助的な手段と
なっているのである。熟練した被検者にとってはこの構
成は不要なものともいえる。さてこのようにしてLED
表示素子15に表示されるアライメント情報を被検眼E
が観察することにより被検者は自分自身で位置合せを完
了させることかできる。
In this device with such a configuration, the subject fixes their line of sight by fixating on the LED display element when adjusting their eye position while looking at the subject's own pupil image reflected on the concave dichroic mirror. By checking the display at the same time as the eye position is made, it is possible to understand the direction in which the eye position should be adjusted, and the limit position can be adjusted in accordance with the display. Conversely, the reflective optical system such as the above-mentioned concave dichroic mirror serves as an auxiliary means for coarse adjustment of the eye position in this device. This configuration may be unnecessary for experienced test subjects. Now, in this way, the LED
The alignment information displayed on the display element 15 is displayed on the eye E.
By observing the images, the subject can complete the alignment himself/herself.

そして2次元ポジションディテクタ11の出力かアライ
メント良好な出力となるときコントローラ13が被検眼
情報検出手段を自動的に作動させるようにすれば被検者
のみて被検眼情報を検出できる。更に被検眼情報の検出
結果(検出異常の場合も含む)をLED表示素子15に
表示すれば被検者は装置から限を離すことなく短時間の
うちに必要に応して複数回、被検眼情報を検出できる。
If the controller 13 automatically operates the eye information detecting means when the output of the two-dimensional position detector 11 indicates good alignment, the eye information can be detected by the patient alone. Furthermore, by displaying the detection results of the eye information (including detection abnormalities) on the LED display element 15, the patient can display the eye to be examined multiple times as necessary without taking his/her hands off the device. Information can be detected.

しかもこの場合アライメント情報伝達手段と被検眼情報
伝達手段を共用できる。
Moreover, in this case, the alignment information transmission means and the eye to be examined information transmission means can be shared.

以下、被検眼情報検出手段として眼圧測定手段について
説明する。
Hereinafter, the intraocular pressure measuring means will be explained as the eye information detecting means.

100は回転ソレノイドで、クランク 101を介しピストン102を駆動させることにより、
圧縮空気室4の空気を圧縮させていく。圧縮空気室4の
内部には圧力センサ103が設けられ内圧値が検出てき
る。ノズル1aを経た圧縮空気は被検[Hの角膜を変形
させていく。角膜が所定変形(例えば圧平)されるとき
を検出するために光源104.レンズ105.106、
光センサ107か設けられ、光センサ107に角膜か前
記所定変形されるとき最大光量が入射するようにされる
。例えば角膜水平を考えれば光源104、光センサ10
7は各々レンズtos、ioeの焦点位置に設けられる
100 is a rotary solenoid that drives a piston 102 via a crank 101.
The air in the compressed air chamber 4 is compressed. A pressure sensor 103 is provided inside the compressed air chamber 4 to detect the internal pressure value. The compressed air passing through the nozzle 1a deforms the cornea of the subject [H]. A light source 104 for detecting when the cornea undergoes a predetermined deformation (eg, applanation). Lens 105.106,
An optical sensor 107 is also provided, and the maximum amount of light is made incident on the optical sensor 107 when the cornea undergoes the predetermined deformation. For example, considering the horizontal cornea, the light source 104 and the optical sensor 10
7 are provided at the focal positions of lenses tos and ioe, respectively.

圧力センサ103、光センサ107の出力信号は演算回
路108に逐次とりこまれ光センサ107の出力か最大
となるときの圧力サンセ103の出力信号値より眼圧値
か演算される。
The output signals of the pressure sensor 103 and the optical sensor 107 are sequentially input into the calculation circuit 108, and the intraocular pressure value is calculated from the output signal value of the pressure sensor 103 when the output of the optical sensor 107 reaches the maximum.

演算回路108の出力はLED表示素子15に表示可能
てあり、この場合被検眼Eは装置から限を離さずに測定
結果を知ることかてき、測定異常等と判断されるとき次
の測定に引き続き移れる。
The output of the arithmetic circuit 108 can be displayed on the LED display element 15. In this case, the eye E to be examined can know the measurement result without leaving the device, and when it is determined that there is a measurement abnormality, etc., the next measurement can be continued. I can move.

なお、この場合−度測定結果か得られるとアライメント
が合っていても所定時間圧縮空気を発生させないように
しておくことか望ましい。
In this case, it is desirable to not generate compressed air for a predetermined period of time even if the alignment is correct once the degree measurement results are obtained.

[変形例] 先の実施例においては表示素子は単に眼位のずれの方向
のみを指示するように構成したか、方向の指示を行なわ
ずそのずれの絶対値を表示するのみでも充分な効果を有
する。この場合には表示器は単一のLEDとし、位置合
わせのずれの絶対値に対応して点滅の周期を変化させる
制御を行なえば良い。そしてこの場合アライメント検出
系も位置づれの検出を行なう必要が無くなり微小開口を
持つ単なる光量検出型のフォトダイオードに置き換える
等の装置の簡略化が図られる。また第3図のように眼位
のずれの方向を指示すると共に、ずれの絶対値に対応さ
せて表示の点滅を行なえばより一層の効果が得られるこ
とは言うまでもない。
[Modified Example] In the previous embodiment, the display element was configured to simply indicate the direction of the deviation of the eye position, or even if the display element did not indicate the direction and merely displayed the absolute value of the deviation, a sufficient effect could be obtained. have In this case, the indicator may be a single LED, and control may be performed to change the blinking cycle in accordance with the absolute value of the misalignment. In this case, there is no need for the alignment detection system to detect positional deviation, and the apparatus can be simplified by replacing it with a simple light quantity detection type photodiode having a minute aperture. It goes without saying that even more effects can be obtained if the direction of the eye position shift is indicated and the display is blinked in accordance with the absolute value of the shift as shown in FIG.

なお、表示素子として単一のLEDを用いる上記の方法
の場合には例えば本願出願人が先に出願した方法(特願
昭62−192202)を用いれば被検眼の屈折異常に
よらず該表示素子をクリアに提示できるが、先の実施例
の如く所定のパターン(例えば第3図の矢印、文字等)
を提示する際には、その提示距離を被検眼の屈折異常に
対応して調整可能とすることが必要である。その為の最
も簡便な方法は表示素子15を第1図中の矢印Aの方法
に移動可能にすることができる。
In the case of the above method using a single LED as a display element, for example, if the method previously filed by the applicant (Japanese Patent Application No. 1982-1922) is used, the display element can be used regardless of the refractive error of the subject's eye. can be clearly presented, but as in the previous example, it is possible to clearly present the
When presenting the image, it is necessary to be able to adjust the presentation distance in accordance with the refractive error of the eye to be examined. The simplest method for this purpose is to make the display element 15 movable in the direction of arrow A in FIG.

又先の実施例においてはアライメント検出系としてノズ
ルla内から光束を投影し、ノズル外から角膜反射光束
を取り出し、加えて2次元ポジションディテクタと光束
選択手段により構成されたものを用いているが、その具
体的構成によって本発明が限定されるものではない、又
被検眼へのアライメント情報の伝達手段としてノズルl
a内より光束を投影することにより固視機能を付加して
いるが、この方法についても本発明が限定されるもので
はない。例えば従来装置として例にとった本件出願人に
よる出願(特開昭6l−276533)に示された別の
実施例の角膜反射を目視する系を利用しても良いし、又
音声による指示を行なっても同様の効果を有する。なお
、本発明は眼圧系の他、眼屈折計、角膜計、眼軸良計、
眼底カメラ等、任意の眼科装置に適用できる。
Furthermore, in the previous embodiment, an alignment detection system is used in which a light beam is projected from inside the nozzle la, a corneal reflected light beam is taken out from outside the nozzle, and in addition, a two-dimensional position detector and a light beam selection means are used. The present invention is not limited by the specific configuration, and the nozzle l is used as a means of transmitting alignment information to the eye to be examined.
Although a fixation function is added by projecting a light beam from within a, the present invention is not limited to this method either. For example, as a conventional device, a system for visually observing the corneal reflection of another embodiment disclosed in an application filed by the present applicant (Japanese Unexamined Patent Publication No. 61-276533) may be used, or a system for visually observing the corneal reflection may be used. has the same effect. In addition to the intraocular pressure system, the present invention also applies to an ocular refractometer, a keratometer, an axial meter,
It can be applied to any ophthalmological device such as a fundus camera.

[発明の効果] 以上説明したように本発明によれば、従来の自己眼位置
合せ装置を有する眼科機器の位置合せ精度を向上し、且
つその位置合せが迅速に行なえるという効果がある。
[Effects of the Invention] As explained above, according to the present invention, there is an effect that the alignment accuracy of ophthalmological equipment having a conventional self-eye alignment device can be improved and the alignment can be performed quickly.

さらに上述したアライメント検出系を用いて、アライメ
ント完了後に引き続き自動的に測定、撮影の動作を行な
えば、被検者が測定、撮影を行なう動作中に装置を直接
操作しないで測定、撮影が完了するため、より簡単な操
作て自動測定、撮影が行なえ、且つアライメントか安定
した状態てより良い測定、撮影が可能となる。
Furthermore, if the alignment detection system described above is used to automatically continue measuring and photographing after alignment is completed, measurement and photographing can be completed without the subject directly operating the device during the measurement and photographing operations. Therefore, automatic measurement and photography can be performed with simpler operations, and better measurement and photography can be performed with stable alignment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例としての非接触眼圧計の図、
第2図(a)、(b)は液晶シャッタの動作説明図、第
3図(a)〜(g)は表示素子の表示例の図、第4図は
従来装置の光学系の図。 図中、Eは被検眼、1は凹面ダイクロイックミラー、5
は赤外光源、11は2次元ポジションディテクタ、13
はコントローラ、15はLED表示素子である。
FIG. 1 is a diagram of a non-contact tonometer as an embodiment of the present invention;
2(a) and 2(b) are explanatory diagrams of the operation of a liquid crystal shutter, FIGS. 3(a) to 3(g) are diagrams of display examples of a display element, and FIG. 4 is a diagram of an optical system of a conventional device. In the figure, E is the eye to be examined, 1 is a concave dichroic mirror, 5
is an infrared light source, 11 is a two-dimensional position detector, 13
1 is a controller, and 15 is an LED display element.

Claims (1)

【特許請求の範囲】 1、被検眼の所定情報を検出する被検眼情報検出手段と
、 被検眼前眼部からの光を受光して被検眼と のアライメント状態を検出するアライメント検出手段と
、該アライメント検出手段の出力情報を被検者に伝達す
る伝達手段を有することを特徴とする眼科装置。 2、前記アライメント検出手段の出力に基づいて前記被
検眼情報検出手段を作動させる特許請求の範囲第1項記
載の眼科装置。 3、前記被検眼情報検出手段の出力情報を被検者に伝達
する特許請求の範囲第1項若しくは第2項記載の眼科装
置。 4、前記被検眼情報検出手段の出力情報を前記伝達手段
により被検者に伝達する特許請求の範囲第3項記載の眼
科装置。 5、前記アライメント検出手段は被検眼前眼部に光束を
投影する投影光学系と、該光束の角膜反射光を受光する
受光手段を備えた光学的アライメント検出手段である特
許請求の範囲第1項記載の眼科装置。 6、前記伝達手段は音声発生手段である特許請求の範囲
第1項記載の眼科装置。 7、前記伝達手段は発光視標及び該発光視標を被検眼に
投影する投影光学系を備える特許請求の範囲第1項記載
の眼科装置。 8、被検眼の所定情報を検出する被検眼情報検出手段と
、被検眼に対向し被検眼前眼部からの光を反射させて被
検眼眼底に結像させるための少なくとも一部透光性の凹
面鏡と、該凹面鏡を介して被検眼前眼部からの光を受光
して被検眼とのアライメント状態を検出するアライメン
ト検出手段と、該アライメント検出手段の出力情報を被
検者に伝達する伝達手段を有することを特徴とする眼科
装置。 9、前記凹面鏡は可視光を反射し、近赤外光を透過する
特許請求の範囲第8項記載の眼科装置。 10、前記アライメント検出手段の出力に基づいて前記
被検眼情報検出手段を作動させる特許請求の範囲第8項
記載の眼科装置。 11、前記被検眼情報検出手段の出力情報を被検者に伝
達する特許請求の範囲第8項若しくは第10項記載の眼
科装置。 12、前記被検眼情報検出手段の出力情報を前記伝達手
段により被検者に伝達する特許請求の範囲第11項記載
の眼科装置。 13、前記アライメント検出手段は被検眼前眼部に光束
を投影する投影光学系と、該光束の角膜反射光を受光す
る受光手段を備えた光学的アライメント検出手段である
特許請求の範囲第8項記載の眼科装置。 14、前記伝達手段は音声発生手段である特許請求の範
囲第8項記載の眼科装置。 15、前記伝達手段は発光視標及び該発光視標を被検眼
に投影する投影光学系を備える特許請求の範囲第8項記
載の眼科装置。
[Scope of Claims] 1. Eye information detection means for detecting predetermined information about the eye to be examined; alignment detection means for detecting the state of alignment with the eye to be examined by receiving light from the anterior segment of the eye to be examined; An ophthalmologic apparatus comprising a transmission means for transmitting output information of the alignment detection means to a subject. 2. The ophthalmologic apparatus according to claim 1, wherein the eye information detection means is operated based on the output of the alignment detection means. 3. The ophthalmologic apparatus according to claim 1 or 2, which transmits the output information of the eye information detecting means to the subject. 4. The ophthalmologic apparatus according to claim 3, wherein the output information of the eye information detecting means is transmitted to the subject by the transmitting means. 5. The alignment detecting means is an optical alignment detecting means comprising a projection optical system that projects a light beam onto the anterior segment of the subject's eye, and a light receiving means that receives the corneal reflected light of the light beam. Ophthalmological device as described. 6. The ophthalmologic apparatus according to claim 1, wherein the transmission means is a sound generation means. 7. The ophthalmologic apparatus according to claim 1, wherein the transmitting means includes a luminescent target and a projection optical system that projects the luminescent target onto the subject's eye. 8. An eye information detection means for detecting predetermined information about the eye to be examined, and an at least partially translucent device facing the eye to be examined and for reflecting light from the anterior segment of the eye to be imaged on the fundus of the eye to be examined. A concave mirror, an alignment detection means for detecting an alignment state with the eye to be examined by receiving light from the anterior segment of the eye to be examined through the concave mirror, and a transmission means for transmitting output information of the alignment detection means to the examinee. An ophthalmological device characterized by having the following. 9. The ophthalmologic apparatus according to claim 8, wherein the concave mirror reflects visible light and transmits near-infrared light. 10. The ophthalmologic apparatus according to claim 8, wherein the eye information detection means is operated based on the output of the alignment detection means. 11. The ophthalmologic apparatus according to claim 8 or 10, which transmits the output information of the eye information detecting means to the subject. 12. The ophthalmologic apparatus according to claim 11, wherein the output information of the eye information detecting means is transmitted to the subject by the transmitting means. 13. Claim 8, wherein the alignment detecting means is an optical alignment detecting means comprising a projection optical system that projects a light beam onto the anterior segment of the subject's eye, and a light receiving means that receives corneal reflected light of the light beam. Ophthalmological device as described. 14. The ophthalmologic apparatus according to claim 8, wherein the transmission means is a sound generation means. 15. The ophthalmologic apparatus according to claim 8, wherein the transmitting means includes a luminescent target and a projection optical system that projects the luminescent target onto the subject's eye.
JP62334800A 1987-12-29 1987-12-29 Ophthalmic equipment Expired - Lifetime JPH0753155B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62334800A JPH0753155B2 (en) 1987-12-29 1987-12-29 Ophthalmic equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62334800A JPH0753155B2 (en) 1987-12-29 1987-12-29 Ophthalmic equipment

Publications (2)

Publication Number Publication Date
JPH01175829A true JPH01175829A (en) 1989-07-12
JPH0753155B2 JPH0753155B2 (en) 1995-06-07

Family

ID=18281370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62334800A Expired - Lifetime JPH0753155B2 (en) 1987-12-29 1987-12-29 Ophthalmic equipment

Country Status (1)

Country Link
JP (1) JPH0753155B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014147802A (en) * 2007-07-30 2014-08-21 Lein Applied Diagnostics Ltd Optical alignment apparatus and optical alignment method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014147802A (en) * 2007-07-30 2014-08-21 Lein Applied Diagnostics Ltd Optical alignment apparatus and optical alignment method

Also Published As

Publication number Publication date
JPH0753155B2 (en) 1995-06-07

Similar Documents

Publication Publication Date Title
JP3289953B2 (en) Gaze direction detection device
US7416301B2 (en) Eye refractive power measurement apparatus
US5691800A (en) Ophthalmologic apparatus
JP2006174889A (en) Ophthalmic apparatus
JP3970141B2 (en) Non-contact tonometer
JPH04200436A (en) Ophthamologic apparatus
JPH08103413A (en) Ophthalmological measuring instrument
JP3108261B2 (en) Ophthalmic instruments
JP3317806B2 (en) Ophthalmic instruments
JP2002172090A (en) Non-contact tonometer
JPH01175829A (en) Ophthalmologic apparatus
JPH06245907A (en) Ophthalmologic examining device
JPH0767833A (en) Visual field meter
JPH0654807A (en) Ophthalmic device
JP3332489B2 (en) Optometry device
JPH07231875A (en) Optometrical device
JP4700780B2 (en) Ophthalmic examination equipment
JPH0332637A (en) Handy eye refractometer
JP2568586B2 (en) Air puff tonometer
JP4481420B2 (en) Ophthalmic examination equipment
JP2000023916A (en) Eye examination instrument
JPH06304140A (en) Eye examination device
WO2023145638A1 (en) Ophthalmic device and ophthalmic program
JPH0439332B2 (en)
JPH06335453A (en) Ocular refractometer

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090518

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20100518

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100518

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees