[go: up one dir, main page]

JPH01173621A - Method for etching process of polyimide resin - Google Patents

Method for etching process of polyimide resin

Info

Publication number
JPH01173621A
JPH01173621A JP32955787A JP32955787A JPH01173621A JP H01173621 A JPH01173621 A JP H01173621A JP 32955787 A JP32955787 A JP 32955787A JP 32955787 A JP32955787 A JP 32955787A JP H01173621 A JPH01173621 A JP H01173621A
Authority
JP
Japan
Prior art keywords
polyimide resin
resist
negative resist
etching
integer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32955787A
Other languages
Japanese (ja)
Inventor
Michio Kobayashi
道雄 小林
Takashi Hirano
孝 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP32955787A priority Critical patent/JPH01173621A/en
Publication of JPH01173621A publication Critical patent/JPH01173621A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Weting (AREA)

Abstract

PURPOSE:To use a high-molecular siloxane-modified polyimide resin as a coating for a semiconductor device, by exfoliating a negative resist using ultrasonic waves in an organic solvent which does not contain an interface activator. CONSTITUTION:In etching processes, a polyimide resin is used as a negative resist. The polyimide resin is made by reaction of an organic tetracarbonic acid dianhydride and a diamine component which contains 0.05-50mol% of a silicon diamine expressed by the formula I. After the etching process with such a polyimide used as a negative resist, the negative resist is exfoliated using ultrasonic waves in an organic solvent which does not contain an interface activator. In the formula I, R1 and R2 are methylene, pherylene or metathesis pherylene, n is an integer 1-4 and m is an integer 10-500. By this method, a high-molecular siloxane-modified polyimide resin can be used as a protective film for a semiconductor device by etching, without deteriorating any of the characteristics including a thermal resistance, electric and mechanical characteristics.

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野〕 本発明は半導体素子の保護を目的とするポリイミド樹脂
のエツチング加工方法に関するものである。
(Industrial Application Field) The present invention relates to a method of etching polyimide resin for the purpose of protecting semiconductor elements.

【従  来  技  術】[Traditional techniques]

従来、半導体素子等の表面保護膜として耐熱性、電気特
性、機械特性、加工性の優れたポリイミド樹脂が用いら
れている。最近半導体素子のパフケージング材料として
広(用いられているエポキシ樹脂封止材料のヒートサイ
クルやヒートショックによる熱応力を吸収させる目的で
従来より弾性率。 の低いポリイミド樹脂が必要となっている0弾性率を低
くする方法としてはポリイミド樹脂構造中に高分子シロ
キサンを導入するのが、耐熱性、電気特性等の他の特性
を低下させないので最も有力である。しかし、この高分
子シロキサン変性ポリイミド樹脂はエツチング加工工程
を通常のポリイミド樹脂と同じ方法で行なうと特性を損
なうという欠点がある。 通常のポリイミド樹脂のエツチング加工方法はまず半導
体ウェハにポリイミド樹脂をスピンナー等で回転塗布し
、100℃、250℃で各30分加熱乾燥する0次いで
ネガ形のレジストとして環化ゴム系タイプのものを塗布
し、80℃で30分乾燥し、ホトマスクを密着させて露
光及び現像を行なう0次にポリイミド樹脂をヒドラジン
あるいはヒドラジンとエチレンジアミンとの混合物でエ
ツチングする。そし′7不ガレジストのみを界面活性剤
を含むフェノール系剥離液で 100℃、10分力U熱
して溶解除去するといった手順で行なわれる。 この方法で高分子シロキサン変性ポリイミド樹脂をエツ
チング加工するとし・シスト剥離工程で、し、′ノスト
!ii離液にポリイミド樹脂が溶解してしまう問題があ
る0通常の翠ガレシスト剥離液の組成はアルキルベンゼ
ンスルホン酸等の界面活性剤とフェノール、塩素系溶剤
又はセロソルブ系の溶剤を含むものである。 ネガレジノ、トの′fi1離のa横としては、まず溶剤
及びフェノールてし・シストが膨じ◆んし、更に界[聞
活性剤がポリイミドとレジストの界面に侵入してレジス
トを剥離せしめ、最終的には界面活性剤であるアルキル
ベンゼンスルホン酸が環化ゴム中の二重結合の分解の触
媒として働らき、レジストを溶解すると考えられる。 このアルキルベンゼンスルホン酸は強力な’G%E能力
があり、高分子シロキサン変性ポリイミド樹脂に適用し
た場合高分子シロキサン成分も侵され溶解してしまう。 ネガレジスト剥離工程でレジスト剥離液の温度を100
℃以下例えば50℃以下にすれば高分子シロキサン変性
ポリイミド樹脂の溶解はかなり防げるが、ネガレジスト
の溶解能力が著しく低下し、レジスト残金が多く生して
しまう。 一方、エツチング加工工程でポジ形レジストを使用すれ
ばレジスト剥離はアセトン等のケトン類、メタノール等
のアルコール類で行なうため、ポリイミド樹脂の溶解は
なくなる。しかし、ポジ形レジストと高分子シロキサン
変性ポリイミド樹脂との密着性は掻めて悪いので、エツ
チング時にエツチング液がレジスト膜の下までまわり込
んでサイドエッチが大きくなり、所定のスルホールの寸
法が得られないため実用に適さない。 〔発明の目的〕 本発明は高分子シロキサン変性ポリイミド樹脂のエツチ
ング加工工程でポリイミド樹脂を溶解させずにネガレジ
ストを剥離する方法を鋭意検討した結果、界面活性剤を
含まない有a溶剤中で超音波を使用して剥離する方法を
見出して完成するに至ったものである。 その目的とするところは耐熱性、電気特性、機械特性な
どの緒特性を劣化させることなく、高分子シロキサン変
性ポリイミド樹脂をエツチング加工して半導体素子の保
護膜として適用するにある。 〔発明の構成〕 本発明は有機テトラカルボン酸二無水物と一般式(1) %式% (式中、R,はメナレン基、フェニレン基又は置換フェ
ニレンWs、Rzはメチル基、フェニル基又は置換フェ
ニル基、nは1〜4、mは10〜500の整数)で表わ
されるシリコン系ジアミンを0.05〜50モル%含む
ジアミン成分とを反応させてなるポリイミド樹脂をネガ
レジストを使用してエツチング加工した後ネガレジスト
を界面活性剤を含まない有機溶剤中で超音波を使用して
剥離させることを特徴とするポリイミド樹脂のエツチン
グ加工方法である。 本発明に用いる有機テトラカルボン酸二無水物としては
ピロメリット酸二無水物、3.3’−4゜4′−ベンゾ
フェノンテトラカルボン酸二無水物、2.3,6.7−
ナフタレンテトラカルボン酸二無水物などであり、又こ
れらの内二種類以上を併用してもよい。 本発明に用いるシリコン系ジアミンはシロキサン結合←
0−Si→の数mがlO〜500のものであり、全ジア
ミン成分に対して0.05〜50モル%含む、 O,O
Sモル%以下では弾性率の低下効果が得られず、50モ
ル%以上では耐熱性が著しく低下してしまう。 本発明に使用するジアミン成分としては上記の長鎖シリ
コン系ジアミンの他に例えば、p−フェニレンジアミン
、4,4゛−ジアミノジフェニルメタン、4.4′−ジ
アミノジフェニルスルホン、4.4′−ジアミノジフェ
ニルエーテルの様な芳香族ジアミンも併用することがで
きる。 本発明における反応方法は、有機テトラカルボン酸二無
水物1モルに対しジアミン成分を0.5〜1.5モルの
比率で配合して有機溶剤中で温度10〜50℃で1〜I
O時間攪拌して行なう。 有機溶剤としては、N、N′−ジメチルアセトアミド、
N−メチル−2−ピロリドンの様な極性溶剤が好ましい
。 本発明における高分子シロキサン変性ポリイミド樹脂の
エツチング加工方法は、まず、半導体素子のウェハ上に
ポリイミド樹脂をスピンナーで塗布し、50〜350 
℃の温度で必要により2段階もしくはそれ以上のステッ
プで10分〜10時間乾燥し、膜J¥0.5〜50μm
の皮膜を形成させる。次にネガレジストを塗布し80〜
100℃で10〜60分乾燥後ホトマスクを使用して露
光、現像を行ない、必要に応じて100〜200℃で1
0〜60分レジストを再乾燥する。 次いでポリイミド樹脂をヒドラジン、エチレンジアミン
又はテトラメチルアンモニウムハイドロオキサイド等の
強アルカリをエツチング液としてエツチングする。 更に界面活性剤を含まない有機溶剤中で超音波を使用し
てレジストを剥離させる。レジスト剥離に用いる有機溶
剤としてはトルエン、キシレンの様な芳香族炭化水素類
、塩化メチレン、トリクロロエチレン、ジクロロベンゼ
ンの様な塩素系溶剤メチルセロソルブ、エチルセロソル
ブ、ブチルセロソルブの様なセロソルブ類又はこれらの
アセテート類、N、N’−ジメチルアセトアミド、N−
メチル−2−ピロリドンの様な極性溶剤の内一種又は二
種以上併用してもかまわない。 レジスト?、lI#i工程で超音波をかけることも必須
である。これは有機溶剤中に浸潤してネガレジストを膨
しゅんさせ、更に超音波をかけてレジストとポリイミド
界面中に溶剤を侵入せしめて、レジストを物理的に剥離
させるためである。 超音波は通常の超音波洗浄器を用い、容量に応じて発振
周波数20〜50 K )lz、出力20〜500Wで
1分〜5時間かける。温度は10℃から使用する有機溶
剤の沸点までである。 超音波によって剥離したレジストが有機溶剤中に浮遊す
るので、−回しシスト剥離工程を行った後、更にもう一
回有機溶剤で超音波洗浄を行ない、ポリイミド表面にレ
ジストが付着しないようにする。 最後に必要に応じてポリイミドをフルキュアさせるため
150〜350℃の温度で30分〜2時間加熱処理する
。 〔発明の効果〕 本発明方法に従うと高分子シロキサン変性ポリイミド樹
脂のエツチング加工工程でレジスト剥離が効率よ(行な
え、従来の剥離方法の欠点であった一ポリイミド樹脂の
溶解、変質がなくなる。 このため高分子シロキサン変性ポリイミド樹脂の半導体
素子のコーティングへの適用が可能になり、半導体素子
の耐ヒートサイクル性、耐ヒートシヨツク性の向上がは
かれる。 〔実  施  例〕 〔実  施  例  1 〕 4.4′−ジアミノジフェニルエーテル0.95モルと
次の式のシロキサンジアミン Cl1l   CH3 0,05モルをN−メチル−2−ピロリドンに7容′A
了し、次いで、ピロメリット酸二無水140モルを加え
て、20℃で5時間撹拌して更にN−メチル−2−ピロ
リドンで希釈して粘度20ポイズ、固形分11%の高分
子ンロキサン変性ポリイミド樹脂溶液illを得た。 このワニス(1)をプラズマ窒化珪素(PSiN)をパ
ッシベーション膜とする半導体素子ウェハ上にスピンナ
ーで1000rp+m 、30秒で塗布し、100℃、
250℃で各30分間加熱し、厚さ5μmの皮膜を形成
した0次にネガレジストをスピンナーで塗布し、80℃
で30分乾燥し、ホトマスクを使用して露光後現像液で
レジストを現像する。 次にヒドラジンとエチレンジアミンのl:1の混合物で
ポンディングパット部及びスクライプライン部のポリイ
ミドをエツチング開口する0次いで趨音波洗浄器(発振
周波数45KHz、出力200W>を用いトリクロロエ
チレン中で超音波を10分かけ更にトリクロロエチレン
を新しく変えて5分超音波洗浄し、250℃、350℃
で各30分間加熱した。レジスト残金は認められず、ポ
リイミド皮膜の表面状態も溶解、変色なども認められず
良好であった。 このウェハをチップにスクライブして、リードフレーム
にマウントしエポキシ樹脂材料でトランスファーモール
ドした。 ヒートサイクル試験として一65℃、150℃各30分
を1サイクルとして500サイクル行ない、モールド材
を開封したところ、チップ表面のパッシベーション膜に
クラックは観察されなかった。 〔比  較  例〕 実施例1のレジスト剥離を市販の界面活性剤を含むフェ
ノール系剥離液で100℃、10分で行なう以外は実施
例1と全く同じように行った。 ポリイミド皮膜は一部溶解し、最終硬化後黄色がら茶褐
色に変色がみられた。ヒートサイクル試験では100〜
でパッシベーションクランクが発生していた。 以    上
Conventionally, polyimide resins with excellent heat resistance, electrical properties, mechanical properties, and processability have been used as surface protective films for semiconductor devices and the like. Recently, polyimide resins with a lower modulus of elasticity than before are required to absorb thermal stress caused by heat cycles and heat shocks of epoxy resin sealing materials, which are widely used as puff casing materials for semiconductor devices. The most effective way to lower the ratio is to introduce polymeric siloxane into the polyimide resin structure because it does not reduce other properties such as heat resistance and electrical properties.However, this polymeric siloxane-modified polyimide resin If the etching process is carried out in the same way as for ordinary polyimide resin, it has the disadvantage that the properties will be lost.The ordinary etching process for polyimide resin is to first apply the polyimide resin to a semiconductor wafer by spin coating using a spinner, etc. Next, apply a cyclized rubber-based resist as a negative resist, dry for 30 minutes at 80°C, and expose and develop with a photomask in close contact with the polyimide resin. Alternatively, etching is performed with a mixture of hydrazine and ethylenediamine.Then, only the '7 non-gare resist is dissolved and removed by heating at 100°C for 10 minutes with a phenolic stripper containing a surfactant. When etching molecular siloxane-modified polyimide resin, there is a problem that the polyimide resin dissolves in the cyst removal process. It contains surfactants and phenol, chlorinated solvents, or cellosolve-based solvents. The activator enters the interface between the polyimide and the resist and causes the resist to peel off.Finally, the surfactant alkylbenzenesulfonic acid acts as a catalyst for the decomposition of the double bonds in the cyclized rubber and dissolves the resist. This alkylbenzene sulfonic acid has a strong 'G%E ability, and when applied to a polymer siloxane-modified polyimide resin, the polymer siloxane component is also attacked and dissolved. 100
If the temperature is lower than .degree. C., for example 50.degree. C. or lower, dissolution of the polymeric siloxane-modified polyimide resin can be considerably prevented, but the ability to dissolve the negative resist will be markedly reduced and a large amount of resist will remain. On the other hand, if a positive resist is used in the etching process, the polyimide resin will not dissolve because the resist is removed using ketones such as acetone or alcohols such as methanol. However, the adhesion between the positive resist and the polymeric siloxane-modified polyimide resin is very poor, so during etching, the etching solution gets under the resist film, increasing the side etch and making it difficult to obtain the desired through-hole dimensions. It is not suitable for practical use because it is not available. [Object of the Invention] The present invention was developed as a result of extensive research into a method for removing negative resist without dissolving the polyimide resin in the etching process of polymeric siloxane-modified polyimide resin. They discovered and perfected a method of peeling using sound waves. The purpose of this method is to use the etched polymer siloxane-modified polyimide resin as a protective film for semiconductor devices without deteriorating its properties such as heat resistance, electrical properties, and mechanical properties. [Structure of the Invention] The present invention relates to an organic tetracarboxylic dianhydride and a general formula (1) % formula % (wherein R is a menalene group, a phenylene group or a substituted phenylene Ws, and Rz is a methyl group, a phenyl group or a substituted phenylene group) A polyimide resin made by reacting a diamine component containing 0.05 to 50 mol% of a silicone diamine represented by a phenyl group, n is an integer of 1 to 4, and m is an integer of 10 to 500, is etched using a negative resist. This is a polyimide resin etching method characterized by peeling off the negative resist using ultrasonic waves in an organic solvent containing no surfactant after processing. Examples of the organic tetracarboxylic dianhydride used in the present invention include pyromellitic dianhydride, 3.3'-4゜4'-benzophenonetetracarboxylic dianhydride, 2.3,6.7-
These include naphthalenetetracarboxylic dianhydride, and two or more of these may be used in combination. The silicone diamine used in the present invention has a siloxane bond←
The number m of 0-Si→ is 1O to 500, and it contains 0.05 to 50 mol% of the total diamine component, O,O
If it is less than S mol %, the effect of lowering the elastic modulus cannot be obtained, and if it is more than 50 mol %, the heat resistance will be significantly reduced. In addition to the long-chain silicone diamines mentioned above, examples of diamine components used in the present invention include p-phenylenediamine, 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenyl sulfone, and 4,4'-diaminodiphenyl ether. Aromatic diamines such as can also be used in combination. In the reaction method of the present invention, a diamine component is blended in a ratio of 0.5 to 1.5 mol to 1 mol of organic tetracarboxylic dianhydride, and 1 to 1.
Stir for O hours. As the organic solvent, N,N'-dimethylacetamide,
Polar solvents such as N-methyl-2-pyrrolidone are preferred. In the etching method of the polymer siloxane-modified polyimide resin in the present invention, first, a polyimide resin is coated on a wafer of a semiconductor element with a spinner, and
Dry at a temperature of ℃ for 10 minutes to 10 hours in two or more steps as necessary to form a membrane J ¥0.5 to 50 μm.
Forms a film. Next, apply negative resist and 80~
After drying at 100°C for 10 to 60 minutes, expose and develop using a photomask.
Redry the resist for 0-60 minutes. Next, the polyimide resin is etched using a strong alkali such as hydrazine, ethylenediamine or tetramethylammonium hydroxide as an etching liquid. Furthermore, the resist is peeled off using ultrasonic waves in an organic solvent that does not contain a surfactant. Organic solvents used for resist stripping include aromatic hydrocarbons such as toluene and xylene, chlorinated solvents such as methylene chloride, trichloroethylene, and dichlorobenzene, cellosolves such as methyl cellosolve, ethyl cellosolve, and butyl cellosolve, or acetates thereof. , N, N'-dimethylacetamide, N-
One or more polar solvents such as methyl-2-pyrrolidone may be used in combination. Resist? , it is also essential to apply ultrasonic waves in the lI#i steps. This is because the negative resist is swollen by infiltration into an organic solvent, and then ultrasonic waves are applied to infiltrate the solvent into the interface between the resist and polyimide, thereby physically peeling off the resist. Ultrasonic waves are carried out using a normal ultrasonic cleaner for 1 minute to 5 hours at an oscillation frequency of 20 to 50 Klz and an output of 20 to 500 W, depending on the capacity. The temperature is from 10° C. to the boiling point of the organic solvent used. Since the resist peeled off by the ultrasonic waves floats in the organic solvent, after performing the cyst peeling process, ultrasonic cleaning is performed once again using an organic solvent to prevent the resist from adhering to the polyimide surface. Finally, if necessary, heat treatment is performed at a temperature of 150 to 350° C. for 30 minutes to 2 hours to fully cure the polyimide. [Effects of the Invention] According to the method of the present invention, the resist can be removed efficiently in the etching process of the polymeric siloxane-modified polyimide resin, and the dissolution and deterioration of the polyimide resin, which are the drawbacks of conventional removal methods, are eliminated. It becomes possible to apply the polymer siloxane-modified polyimide resin to the coating of semiconductor devices, and the heat cycle resistance and heat shock resistance of semiconductor devices can be improved. [Example] [Example 1] 4.4 0.95 mol of '-diaminodiphenyl ether and 0.05 mol of siloxane diamine Cl1l CH3 of the following formula were dissolved in 7 volumes of N-methyl-2-pyrrolidone 'A.
Then, 140 mol of pyromellitic dianhydride was added, stirred at 20°C for 5 hours, and further diluted with N-methyl-2-pyrrolidone to obtain a polymeric loxane-modified polyimide with a viscosity of 20 poise and a solid content of 11%. A resin solution ill was obtained. This varnish (1) was applied with a spinner at 1000 rpm for 30 seconds onto a semiconductor element wafer having a passivation film of plasma silicon nitride (PSiN), and then heated at 100°C.
A 0-order negative resist was heated at 250°C for 30 minutes each to form a film with a thickness of 5 μm, and then applied with a spinner, and then heated at 80°C.
After drying for 30 minutes using a photomask, the resist is developed with a developer after exposure. Next, the polyimide of the bonding pad and the scribe line was etched with a 1:1 mixture of hydrazine and ethylenediamine.Then, the polyimide was heated in trichlorethylene for 10 minutes using a sonic cleaner (oscillation frequency: 45 KHz, output: 200 W). Then, change the trichlorethylene to a new one, perform ultrasonic cleaning for 5 minutes, and then wash at 250℃ and 350℃.
and heated for 30 minutes each. No resist residue was observed, and the surface condition of the polyimide film was good, with no dissolution or discoloration observed. This wafer was scribed into chips, mounted on a lead frame, and transfer molded with epoxy resin material. A heat cycle test was performed for 500 cycles, each cycle consisting of 30 minutes each at -65° C. and 150° C. When the molding material was opened, no cracks were observed in the passivation film on the chip surface. [Comparative Example] The resist was removed in the same manner as in Example 1, except that the resist was removed using a commercially available phenolic stripper containing a surfactant at 100° C. for 10 minutes. The polyimide film was partially dissolved, and the color changed from yellow to brown after final curing. 100~ in heat cycle test
A passivation crank was occurring. that's all

Claims (1)

【特許請求の範囲】  有機テトラカルボン酸二無水物と一般式(1)▲数式
、化学式、表等があります▼(1) (式中、R_1はメチレン基、フェニレン基又は置換フ
ェニレン基、R_2はメチル基、フェニル基又は置換フ
ェニル基、nは1〜4、mは10〜500の整数)で表
わされるシリコン系ジアミンを0.05〜50モル%含
むジアミン成分とを反応させてなるポリイミド樹脂をネ
ガレジストを使用してエッチング加工した後ネガレジス
トを界面活性剤を含まない有機溶剤中で超音波を使用し
て剥離させることを特徴とするポリイミド樹脂のエッチ
ング加工方法。
[Claims] Organic tetracarboxylic dianhydride and general formula (1) ▲ Numerical formulas, chemical formulas, tables, etc. ▼ (1) (In the formula, R_1 is a methylene group, a phenylene group, or a substituted phenylene group, and R_2 is a A polyimide resin obtained by reacting a diamine component containing 0.05 to 50 mol% of a silicone diamine represented by a methyl group, a phenyl group, or a substituted phenyl group, where n is an integer of 1 to 4 and m is an integer of 10 to 500. A method for etching polyimide resin, which comprises etching using a negative resist and then peeling off the negative resist using ultrasonic waves in an organic solvent that does not contain a surfactant.
JP32955787A 1987-12-28 1987-12-28 Method for etching process of polyimide resin Pending JPH01173621A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32955787A JPH01173621A (en) 1987-12-28 1987-12-28 Method for etching process of polyimide resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32955787A JPH01173621A (en) 1987-12-28 1987-12-28 Method for etching process of polyimide resin

Publications (1)

Publication Number Publication Date
JPH01173621A true JPH01173621A (en) 1989-07-10

Family

ID=18222688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32955787A Pending JPH01173621A (en) 1987-12-28 1987-12-28 Method for etching process of polyimide resin

Country Status (1)

Country Link
JP (1) JPH01173621A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03236217A (en) * 1990-02-13 1991-10-22 Dainippon Screen Mfg Co Ltd Method and apparatus for peeling photoresist film
WO2000026277A1 (en) * 1998-10-29 2000-05-11 Sumitomo Bakelite Company Limited Imide containing polymers made by bulk polymerization

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03236217A (en) * 1990-02-13 1991-10-22 Dainippon Screen Mfg Co Ltd Method and apparatus for peeling photoresist film
WO2000026277A1 (en) * 1998-10-29 2000-05-11 Sumitomo Bakelite Company Limited Imide containing polymers made by bulk polymerization

Similar Documents

Publication Publication Date Title
JP3425311B2 (en) Negative photosensitive polymer resin composition, pattern forming method using the same, and electronic component
KR100427832B1 (en) Polyamic acid ester
KR101884256B1 (en) Temporary bonding film, laminate, composition for temporary bonding, and method and kit for manufacturing device
KR100217451B1 (en) Polyimide copolymers containing 4-4'-bis(aminophenoxy)biphenyl and siloxane diamine moieties
CN114524807B (en) Triazole-based cross-linking agent and preparation method and application thereof
JPH01173621A (en) Method for etching process of polyimide resin
JP2001110898A (en) Semiconductor device and its material
JP2020050734A (en) Resin composition for sacrificial layer and method for manufacturing semiconductor electronic component using the same
JP2914852B2 (en) Circuit protection film
TW201841992A (en) Photosensitive resin composition, method for manufacturing pattern cured film, cured product, interlayer insulation film, cover coating layer, surface protective film, and electronic component
JPH0572736A (en) Production of fluorine-contained polyimide resin film pattern
JPH10186659A (en) Positive photosensitive polymer resin composition and pattern forming method by using same and electronic parts
JPH088242A (en) Semiconductor device
JP3261138B2 (en) Polyimide resin film for multi-layer wiring of semiconductor, interlayer insulating film or surface protection film, and semiconductor device using the same
JPH07311469A (en) Removing solution for residue of resist after removal on polyimide resin film and production of pattern of polyimide resin film
JPH0673338A (en) Polyimide resin solution composition and coating agent
WO1991010699A1 (en) Resin for protecting semiconductors
JPH03212429A (en) Resin for protecting semiconductor
Huneke et al. Low stress dielectric layers for wafer level packages to reduce wafer warpage and improve board-level temperature-cycle reliability
JPH088243A (en) Semiconductor device
JP2000230049A (en) Photosensitive resin composition and its preparation
JP2023145039A (en) Resin composition, polyimide film, method for manufacturing electronic device, and electronic device
JPH032289A (en) Composition for surface-protection film of semiconductor element, semiconductor device and apparatus of semiconductor device
WO2023182041A1 (en) Photosensitive resin composition, photosensitive resin composition film, cured product, and electronic component using same
JPS63164247A (en) Semiconductor device