JPH01152201A - Method for removing additive in metal powder green compact - Google Patents
Method for removing additive in metal powder green compactInfo
- Publication number
- JPH01152201A JPH01152201A JP31106887A JP31106887A JPH01152201A JP H01152201 A JPH01152201 A JP H01152201A JP 31106887 A JP31106887 A JP 31106887A JP 31106887 A JP31106887 A JP 31106887A JP H01152201 A JPH01152201 A JP H01152201A
- Authority
- JP
- Japan
- Prior art keywords
- metal powder
- green compact
- additive
- pressure
- degreasing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Powder Metallurgy (AREA)
Abstract
Description
【発明の詳細な説明】
〔技術分野〕
本発明は金属粉末成形体中の添加剤の除去方法に関する
。より詳しくは、焼結合金を得るために、射出成形法で
成形された金属粉末成形体より、成形助剤として用いら
れた添加剤を加熱・飛散させる方法、いわゆる金属粉末
成形体の脱脂方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a method for removing additives from a metal powder compact. More specifically, it relates to a method of heating and scattering an additive used as a molding aid from a metal powder compact formed by injection molding in order to obtain a sintered alloy, a so-called degreasing method for a metal powder compact. .
自動車産業、航空機産業等の技術革新に伴って、形状が
複雑で且つ高性能の合金部材の必要性が近年益々高まっ
てきている。BACKGROUND OF THE INVENTION With technological innovations in the automobile industry, aircraft industry, etc., the need for alloy members with complex shapes and high performance has been increasing in recent years.
金属粉末を成形し次にこれを加熱して焼結合金を得る方
法、いわゆる粉末冶金法は、完成形状に近いものが得ら
れ、また金属組織の制御が容易であるといった優れた長
所を持っている。The so-called powder metallurgy method, which is a method of forming metal powder and then heating it to obtain a sintered alloy, has the excellent advantages of being able to obtain a shape close to the finished shape and of being easy to control the metal structure. There is.
しかして、上記高性能の合金部材を得る方法として、工
業的に最も期待されている方法は粉末冶金法である。す
なわち、Fe、 Ni、、Cr、 Ti、 Co、 S
n、Cuなどの金属粉末を所′定の割合に混合し、この
金属粉末に添加剤を加えて射出成形法によって所望する
形状に成形し、脱脂した後、ついでこの金属粉末成形体
が焼結するに必要な温度に強熱することにより、高性能
の合金部材を得ることができる。Therefore, the powder metallurgy method is the most expected industrially as a method for obtaining the above-mentioned high-performance alloy members. That is, Fe, Ni, Cr, Ti, Co, S
Metal powders such as n, Cu, etc. are mixed in a predetermined ratio, additives are added to the metal powders, the mixture is molded into a desired shape by injection molding, degreased, and then the metal powder compacts are sintered. A high-performance alloy member can be obtained by igniting the material to the temperature required for the purpose.
ここでいう射出成形法とは、上記したFe、 Niなど
の金属粉末と混練されたとき、全体として可塑性を示し
成形し易くなるような、例えばポリスチレン、ポリエチ
レン、ジエチレンフタレート、パラフィン、脂肪酸エス
テル、ポリビニルアルコールなどの添加剤を、金属粉末
100重量部に対して10〜25重量部加えて混練し、
この混練物を所望する形状の金型に圧入して成形する方
法である。得られた粉末成形体は金型から取り出され、
添加剤を加熱により飛散除去させた後、例えば800〜
1200°Cに強熱すれば所望する形状の焼結合金が得
られる。The injection molding method used herein refers to materials such as polystyrene, polyethylene, diethylene phthalate, paraffin, fatty acid ester, polyvinyl, etc. that exhibit plasticity as a whole and become easy to mold when kneaded with the metal powders such as Fe and Ni mentioned above. 10 to 25 parts by weight of an additive such as alcohol is added to 100 parts by weight of the metal powder and kneaded,
This is a method of press-fitting this kneaded material into a mold of a desired shape. The obtained powder compact is taken out from the mold,
After the additive is scattered and removed by heating, for example, 800~
By igniting to 1200°C, a sintered alloy in the desired shape can be obtained.
以下、本発明においては、上記射出成形時に金属粉末に
添加する熱可塑剤、可塑剤、分散剤、溶剤等を総称して
添加剤と称することにする。なお、上記射出成形法によ
り得られた成形体中に残存するかかる添加剤を、加熱に
より飛散させる操作を該技術分野における当業者の慣例
用語に従い、以下「脱脂」と表記する。Hereinafter, in the present invention, the thermoplastic agent, plasticizer, dispersant, solvent, etc. added to the metal powder during injection molding will be collectively referred to as additives. The operation of scattering the additives remaining in the molded body obtained by the injection molding method by heating is hereinafter referred to as "degreasing" according to the common terminology of those skilled in the art.
しかしながら、射出成形法によって得られた金属粉末成
形体を、脱脂後強熱する方法によって得られた焼結合金
は、亀裂や表面剥離など欠陥のある不良品(製品とはな
し得ないもの)が少なからず発生すると云う問題がある
。However, sintered alloys obtained by degreasing and igniting metal powder compacts obtained by injection molding have fewer defects (those that cannot be considered as products) with defects such as cracks and surface peeling. There is a problem that this happens without any problems.
更に、これらの欠陥が焼結合金内部に発生したものは、
製品化の段階で欠陥を発見することが困難なため一部は
そのまま製品化されてしまい、使用中に破損し事故の原
因となるという大きな問題もある。Furthermore, if these defects occur inside the sintered alloy,
Since it is difficult to detect defects at the stage of commercialization, some products end up being produced as is, and there is a major problem in that they can break during use and cause accidents.
そしてここで特に指摘すべきは、上記亀裂や表面剥離な
どの欠陥はその殆んどが脱脂工程において発生するとい
うことである。すなわち、金属粉末成形体に添加剤が残
存していると、この粉末成形体を強熱して焼結合金とす
る際に、該残存添加剤が急激に気化し、この気化による
膨張力のた°め、焼結合金中に割れや亀裂が発生する。What should be particularly pointed out here is that most of the defects such as cracks and surface peeling occur during the degreasing process. That is, if additives remain in the metal powder compact, when the powder compact is ignited to form a sintered alloy, the remaining additives will rapidly vaporize, and the expansion force caused by this vaporization will cause the additives to evaporate rapidly. As a result, cracks and cracks occur in the sintered alloy.
これを防止する目的で金属粉末成形体は強熱に先立って
脱脂工程を設け、添加剤を除去しておくのである。In order to prevent this, the metal powder compact is subjected to a degreasing process to remove the additives prior to ignition.
従って自明のことながら、脱脂工程においては添加剤は
極力完全に除去することが望ましい。Therefore, it is obvious that it is desirable to remove the additive as completely as possible in the degreasing step.
しかしながら、金属粉末成形体は上述したように、金属
粉末100重量部に対し10重量部以上もの添加剤を含
んでいるので、この様に多量の添加剤を含んだ金属粉末
成形体から、割れや亀裂を発生させることなく加熱によ
り添加剤を飛散除去させることは、加熱飛散に伴う該添
加剤の大きな膨張力が機械的強度の極めて低い金属粉末
成形体に強く作用するために、本質的に極めて難しい問
題なのである。However, as mentioned above, metal powder compacts contain 10 parts by weight or more of additives per 100 parts by weight of metal powder, so metal powder compacts containing such a large amount of additives can cause cracks and It is essentially extremely difficult to remove the additive by scattering it by heating without causing cracks, because the large expansion force of the additive that accompanies heating scattering acts strongly on the metal powder compact, which has extremely low mechanical strength. This is a difficult problem.
したがって、従来この工程は、大気圧あるいは5Kg/
cd程度以下の加圧下で金属粉末成形体を最高で600
°C程度に加熱して、添加剤を気化、分解などで飛散除
去させることによって行われているが、このように添加
剤の膨張力を低く抑える必要上、金属粉末成形体の昇温
速度は1〜3°C/hといった極めて遅い条件で行われ
ている。脱脂工程はこのように緩慢な昇温速度を採用せ
ざるを得ないため、通常5〜7日間もの長時間を要し、
著しく生産性が阻害されるといった問題があった。Therefore, conventionally this process was carried out at atmospheric pressure or 5 kg/
Metal powder compacts can be produced up to 600% under pressure of about CD or less.
This is done by heating the metal powder compact to around °C and scattering and removing the additive through vaporization, decomposition, etc. However, due to the need to keep the expansion force of the additive low, the heating rate of the metal powder compact is slow. It is carried out under extremely slow conditions of 1 to 3°C/h. Since the degreasing process has to adopt such a slow temperature increase rate, it usually takes a long time of 5 to 7 days.
There was a problem in that productivity was significantly hindered.
また、添加剤の量を多くすると、脱脂工程で添加剤が除
去されたときにできる空隙が増すため、添加剤はその量
ができるだけ少なくて、しかも成形し易い性能が要求さ
れ、同時に加熱・飛散させ易い性質も併せ要求される。In addition, when the amount of additives is increased, the voids that are formed when the additives are removed during the degreasing process increase, so the amount of additives must be as small as possible, and the performance that is easy to mold is required. The property of being easy to use is also required.
しかしながら、このような性能をいずれも満足させるこ
とは、前記したポリスチレン、ポリエチレンなどの高価
なものを用いても、本質的に極めて難しいといった問題
があった。However, there is a problem in that it is essentially extremely difficult to satisfy all of these properties, even if expensive materials such as the aforementioned polystyrene and polyethylene are used.
更に、脱脂した金属粉末成形体は機械的強度が殆ど零で
あるので、該成形体を次の焼結工程へ移行もしくは輸送
する過程で、僅かな振動、揺れ等によって容易に割れや
亀裂が発生し易く、これを防ぐためにはこの際の振動、
揺れなどを可能な限り防止する必要があった。Furthermore, since the mechanical strength of a degreased metal powder compact is almost zero, cracks or cracks can easily occur due to slight vibrations or shakes during the process of transferring or transporting the compact to the next sintering process. To prevent this, vibration at this time,
It was necessary to prevent shaking as much as possible.
このように、著しく生産性が低(、極めて慎重な操作を
行って生産されているにもかかわらず、得られた焼結合
金には少なからず不良品が発生し、その原因は主として
この脱脂工程で発生する金属粉末成形体の欠陥に起因し
ているのが実情であった。As described above, productivity is extremely low (despite being produced using extremely careful operations, there are quite a few defective products in the obtained sintered alloys, and this is mainly due to the degreasing process. The actual situation was that this was caused by defects in the metal powder compacts that occurred in the process.
本発明は、このような従来技術の欠点を全く新しい方法
で解決することを目的としたもので、本発明の方法に従
えば脱脂工程を極めて短時間に行うことができ、併せて
上記した如き金属粉末成形体の欠陥の発生を著しく抑え
ることが可能な新規な脱脂方法が提供される。The purpose of the present invention is to solve these drawbacks of the prior art with a completely new method. According to the method of the present invention, the degreasing process can be carried out in an extremely short time, and at the same time, the degreasing process can be performed in an extremely short time. A novel degreasing method is provided that can significantly suppress the occurrence of defects in metal powder compacts.
本発明者らは従来技術の欠点を根本的になくすことを目
的として鋭意検討を重ねた結果、従来の方法に比して橿
めて低温でかつ短時間に添加剤を除去しても、金属粉末
成形体における割れや亀裂などの欠陥の発生を従来より
も著しく抑えることができる方法を見出し、本発明を完
成するに至ったものである。The inventors of the present invention have conducted intensive studies with the aim of fundamentally eliminating the drawbacks of the conventional technology, and have found that even if the additive is removed at a lower temperature and in a shorter time than in the conventional method, the metal The present invention has been completed by discovering a method that can significantly suppress the occurrence of defects such as cracks and cracks in powder compacts compared to conventional methods.
即ち、本発明の上記目的は、金属粉末に添加剤を加えて
成形した金属粉末成形体より該添加剤を加熱・飛散させ
て除去する方法であって、予め該金属粉末成形体の表面
の少な(とも一部を露出面として残すほかは、残余を気
密性がある樹脂薄膜で被覆し、該被覆した面を静水圧加
圧した状態で該粉末成形体を加熱し、該添加剤を該露出
面を通して飛散せしめることによって達成される。That is, the above-mentioned object of the present invention is to provide a method for removing additives from a metal powder molded body formed by adding an additive to metal powder by heating and scattering the additive. (Other than leaving a part of the exposed surface, cover the rest with an airtight resin thin film, heat the powder compact while applying hydrostatic pressure to the coated surface, and remove the additive from the exposed surface.) This is achieved by scattering it through a surface.
(発明の詳細な開示〕 以下、本発明の詳細な説明する。(Detailed disclosure of the invention) The present invention will be explained in detail below.
本発明では射出成形法によって得られた未だ添加剤を含
んだ状態の金属粉末成形体を脱脂するに当たり、予め該
金属粉末成形体の表面を一部露出面として残し、残余は
気密性のある樹脂薄膜で被覆する。In the present invention, when degreasing a metal powder compact that still contains additives obtained by injection molding, a part of the surface of the metal powder compact is left exposed in advance, and the rest is made of airtight resin. Cover with a thin film.
かかる樹脂薄膜による被覆は、例えば溶媒が揮発するこ
とや化学反応によって固化する液状の樹脂を金属粉末成
形体の表面に直接塗布、吹き付け、もしくは浸漬−引き
上げ等により薄く塗布し、必要により乾燥や加熱等の処
理を加えることによって表面に樹脂塗膜を形成せしめる
ことにより実施することができる。この方法に使用可能
な液状の樹脂を列記すると、例えば、酢酸ビニル系エマ
ルジョン、スチレンブタジェン系ラテックス、アクリル
系エマルジゴン、天然ゴムラテフクスなどの工業的に製
造されている樹脂を挙げることが出来る。また、ポリウ
レタン樹脂、ケイ素樹脂、エポキシ樹脂、アクリル樹脂
、ポリエステル樹脂、クロルブレン樹脂、フェノール樹
脂等も使用可能である。さらにまた、アクリル樹脂、エ
ポキシ樹脂、ポリエステル樹脂などの中には、粉体の状
態で塗布しこれを加熱すれば該粉体が融合し塗膜となる
ように加工された樹脂があり、この様な樹脂も使用可能
である。Coating with such a thin resin film is achieved by applying a liquid resin that solidifies by evaporation of the solvent or by a chemical reaction directly onto the surface of the metal powder molding, by spraying it, or by dipping and pulling it up, and then drying or heating if necessary. This can be carried out by forming a resin coating on the surface by applying treatments such as the following. Examples of liquid resins that can be used in this method include industrially produced resins such as vinyl acetate emulsion, styrene-butadiene latex, acrylic emuldigon, and natural rubber latex. Further, polyurethane resins, silicone resins, epoxy resins, acrylic resins, polyester resins, chlorbrene resins, phenol resins, etc. can also be used. Furthermore, among acrylic resins, epoxy resins, polyester resins, etc., there are resins that are processed so that when they are applied in a powder state and heated, the powders fuse to form a coating film. Other resins can also be used.
被覆する樹脂薄膜の厚みは、金属粉末成形体の形状、金
属粉末の粒径、静水圧加圧の圧力、樹脂薄膜の種類など
によって適宜選定すればよく、気密性を保つに必要な最
小限の厚み以上であればよい。The thickness of the resin thin film to be coated can be selected appropriately depending on the shape of the metal powder compact, the particle size of the metal powder, the pressure of hydrostatic pressing, the type of resin thin film, etc. It is sufficient if the thickness is greater than the thickness.
本発明者らの実験的知見では、樹脂薄膜の厚みは通常1
0μm以上であることが望ましい。また、樹脂薄膜の厚
みの上限は特に規定されるものではないが、取扱の便宜
上5mI++程度までが好ましい。According to the experimental findings of the present inventors, the thickness of the resin thin film is usually 1
It is desirable that the thickness is 0 μm or more. Further, although the upper limit of the thickness of the resin thin film is not particularly defined, it is preferably up to about 5 mI++ for convenience of handling.
勿論樹脂薄膜の種類によっては、これ以下、もしくはこ
れ以上の厚みのものでも実施できる。Of course, depending on the type of resin thin film, it is possible to use a thin film with a thickness smaller than or greater than this.
また、射脂薄膜は、ある程度弾力性のあるものがより好
ましい。このような樹脂薄膜で金属粉体形成体の表面を
被覆し、後記するように該被覆薄膜を静水圧加圧した状
態で加熱脱脂することにより、該樹脂薄膜は該静水圧で
金属粉末成形体の表面に常に密着し、また該静水圧は該
樹脂薄膜を通して効果的に金属粉末成形体に伝えられ、
添加剤が飛散して生じる金属粉末成形体中の空隙を静水
圧加圧による該成形体の等方的な収縮により、極めて効
果的に消すことが出来るのである。なお、このためには
、上記したごとく、薄膜を形成する樹脂は、ある程度弾
性があることが好ましい。これは、脱脂操作時の温度に
おいて、樹脂のガラス転移点が該提作温度以下のもので
あること等を一応の目安とすることもできる。Further, it is more preferable that the oil spray thin film has some degree of elasticity. By coating the surface of the metal powder formed body with such a resin thin film and heating and degreasing the coated thin film under hydrostatic pressure as described later, the resin thin film forms a metal powder formed body under the hydrostatic pressure. The hydrostatic pressure is effectively transmitted to the metal powder compact through the resin thin film,
The voids in the metal powder compact caused by scattering of the additive can be eliminated very effectively by isotropic shrinkage of the compact due to isostatic pressure. Note that for this purpose, as described above, it is preferable that the resin forming the thin film has some degree of elasticity. This can be based on the fact that the glass transition point of the resin is below the proposed temperature at the temperature during the degreasing operation.
本発明においては、金属粉末成形体の表面は少なくとも
その一部を被覆せずにその部分を露出させておくことが
必要である。脱脂時には、該露出面より添加剤が飛散す
る。n出面の位置は、粉末成形体の形状や、これを焼結
合金としたときの部分的な機械的負荷を考慮して選定さ
れるべきである0例えば金属粉末成形体の形状が軸対称
であれば、軸方向の端部とするのが加圧操作が容易であ
るので好ましい、また、露出面は金属粉末成形体の形状
が例えば、第1図の如く円柱状であれば一方の端部断面
、第2図の如(プロペラ状であれば回転軸の一方の端部
断面が好ましい。その理由は露出面の近傍は金属粉末が
均等に加圧されにくいため、この部分は焼結合金とした
ときに機械的負荷が大きくないからである。第1図及び
第2図に示したような露出面1は上記した条件に合致す
るのである。In the present invention, it is necessary to leave at least a portion of the surface of the metal powder compact uncovered and exposed. During degreasing, additives are scattered from the exposed surface. n The position of the exit surface should be selected taking into account the shape of the powder compact and the local mechanical load when it is made into a sintered alloy.0 For example, if the shape of the metal powder compact is axially symmetrical, If there is, it is preferable to set it at the end in the axial direction because the pressurizing operation is easy.Also, if the shape of the metal powder compact is, for example, cylindrical as shown in Fig. 1, the exposed surface is set at one end. The cross section, as shown in Figure 2 (if it is propeller-shaped, the cross section of one end of the rotating shaft is preferable. The reason is that it is difficult for the metal powder to be evenly pressed near the exposed surface, so this part is made of sintered alloy. This is because the mechanical load is not large when this happens.The exposed surface 1 as shown in FIGS. 1 and 2 satisfies the above-mentioned conditions.
露出面の面積は、この面より添加剤が飛散すると云う要
請があるため、その面積が小さすぎると脱脂に要する時
間が長くなり、逆に露出面積が大きくなりすぎると金属
粉末成形体に均等に圧縮されにくい部分が増してくる。The area of the exposed surface is required to prevent additives from scattering from this surface, so if the area is too small, the time required for degreasing will be longer, and conversely, if the exposed area is too large, the additive will be spread evenly on the metal powder compact. The number of areas that are difficult to compress increases.
これらの傾向と金属粉末成形体の大きさ及び形状を併せ
て考慮して、妥当な露出面積が選定される。本発明者ら
の実験的知見によると、露出面積は目安として全表面積
の0.5〜20%、好ましくは1〜lO%程度の範囲で
実施される。An appropriate exposed area is selected by considering these trends together with the size and shape of the metal powder compact. According to the experimental findings of the present inventors, the exposed area is approximately 0.5 to 20% of the total surface area, preferably approximately 1 to 10%.
このようにして少なくとも一部を残し残部を樹脂薄膜で
被覆された金属粉末成形体は、次に該被覆面を静水圧加
圧した状態で加熱する。The metal powder molded body, in which at least a portion of the metal powder molded body is coated with the resin thin film, is then heated while the coated surface is pressurized with hydrostatic pressure.
静水圧加圧の方法は、被覆面を液体に浸漬した状態で、
この液体をポンプなどで加圧する方法でよ(、加圧用液
体としては濃度30重量%程度のホウ酸水や油力作動油
などが好適である。ここで液体に加えられる圧力は、添
加剤が加熱されて生ずる膨張力が金属粉末成形体に亀裂
などの欠陥を発生させることのない圧力とすべきであり
、添加剤の種類、加熱温度、金属粉末成形体の形状など
によって適宜選定されるが、この目的の達成のため圧力
は5kg/cJ以上であることが好ましい。In the hydrostatic pressurization method, the coated surface is immersed in liquid,
This liquid is pressurized using a pump, etc. (The preferred pressurizing liquid is boric acid water or hydraulic oil with a concentration of about 30% by weight.The pressure applied to the liquid here is The pressure should be such that the expansion force generated by heating does not cause defects such as cracks in the metal powder compact, and should be selected depending on the type of additive, heating temperature, shape of the metal powder compact, etc. In order to achieve this objective, the pressure is preferably 5 kg/cJ or more.
更に、静水圧加圧の圧力は、添加剤が飛散して生じる空
隙を静水圧加圧による金属粉末成形体の等方的な収縮に
よって消すことが出来るような圧力とするのが望ましく
、このためには500kg/c+a以上50T/cd以
下の圧力とすることが好ましい。Furthermore, it is desirable that the pressure of the hydrostatic pressurization is such that the voids caused by the scattering of the additive can be eliminated by the isotropic contraction of the metal powder compact due to the hydrostatic pressurization. The pressure is preferably 500 kg/c+a or more and 50 T/cd or less.
被覆面のみを加圧する方法としては、例えば、第3図に
示したような方法がある。即ち第3図の金属粉末成形体
3と中空の耐圧管5とを接続しておいて、該金属粉末成
形体の表面と耐圧管の外面とを一体の薄膜で被覆する。As a method of pressurizing only the coated surface, there is a method as shown in FIG. 3, for example. That is, the metal powder compact 3 shown in FIG. 3 and the hollow pressure tube 5 are connected, and the surface of the metal powder compact and the outer surface of the pressure tube are coated with an integral thin film.
このようにすれば中空の耐圧管の内部に接する粉末成形
体の表面は樹脂薄膜で被覆していない露出面となり、こ
の状態で被覆面を加圧すればよい。In this way, the surface of the powder molded body in contact with the inside of the hollow pressure-resistant tube becomes an exposed surface not covered with a resin thin film, and the coated surface can be pressurized in this state.
なお、本発明においては、露出面の近傍の部分に歪みを
生じさせないためには、露出面は何らかの方法で圧接す
るのが好ましく、例えば第4図に示した如(、通気性の
ある多孔質体8を露出面に接触させて中空の耐圧管内に
位置させる方法が有効である。多孔質体の孔径は少なく
とも5IIllI以下、好ましくは1mm以下であるこ
とが好ましく、より好ましくは0.1mm以下0.01
μ−以上である。In the present invention, in order to prevent distortion from occurring in the vicinity of the exposed surface, it is preferable to press the exposed surface by some method. For example, as shown in FIG. An effective method is to place the body 8 in contact with the exposed surface in a hollow pressure-resistant tube.The pore diameter of the porous body is preferably at least 5IIllI or less, preferably 1mm or less, and more preferably 0.1mm or less. .01
μ− or more.
このようにして、金属粉未形成体の被覆した面を静水圧
加圧した状態で、外部から該成形体を加熱して添加剤を
1発、分解もしくは昇華等により気化させ、かくして気
化した添加剤は、金属粉末成形体の樹脂薄膜で被覆され
ていない露出面を通して、該成形体外へ飛敗し除去され
る。添加剤を飛散させるための金属粉末成形体の加熱は
、加圧されたホウ酸水や油力作動油等の液を加熱すれば
よく、昇温速度、到達温度、保持時間は添加剤の種類に
よって適宜選択される。In this way, while the coated surface of the non-metal powder-formed body is subjected to isostatic pressure, the molded body is heated from the outside to vaporize the additive once by decomposition or sublimation, and thus the vaporized additive is heated. The agent passes through the exposed surface of the metal powder molded body that is not covered with the resin thin film, flies out of the molded body, and is removed. Heating a metal powder compact to disperse additives can be done by heating a liquid such as pressurized boric acid water or hydraulic oil, and the heating rate, temperature reached, and holding time depend on the type of additive. be selected as appropriate.
なお、本発明においては、添加剤の種類を選択するにつ
いても次のような工業的利点を発現できる。即ち本発明
は金属粉末成形体を静水圧加圧しながら添加剤を飛散さ
せる方法であるので、この飛散によって金属粉末成形体
の内部に空隙が生じたとしても、該空隙は静水圧加圧に
よる該成形体の等方的な収縮によって容易に消されうる
のである。従って本発明で射出成形法を採用する場合、
添加剤は従来用いられてきたポリスチレン、ポリエチレ
ン等の高価なものを必ずしも使用する必要はなく、例え
ば、水にポリビニルアルコール、カルボキシメチルセル
ロース、ポリエチレングリコールなどの水溶性高分子を
0.1〜5%程度溶解させた粘稠な液や、アルコールに
ラウリン酸、パルミチン酸、ステアリン酸、グリセリン
などの油脂類を1〜20%程度溶解させた液など安価な
液でも充分使用可能である。In addition, in the present invention, the following industrial advantages can be realized by selecting the type of additive. That is, since the present invention is a method of scattering additives while applying hydrostatic pressure to a metal powder compact, even if voids are created inside the metal powder compact due to this scattering, these voids can be removed by hydrostatic pressure. It can be easily eliminated by isotropic shrinkage of the compact. Therefore, when adopting the injection molding method in the present invention,
It is not necessarily necessary to use expensive additives such as conventionally used polystyrene and polyethylene; for example, adding water-soluble polymers such as polyvinyl alcohol, carboxymethyl cellulose, and polyethylene glycol to water in an amount of about 0.1 to 5%. Inexpensive liquids such as viscous liquids dissolved in alcohol and liquids in which about 1 to 20% of fats and oils such as lauric acid, palmitic acid, stearic acid, and glycerin are dissolved can be used.
本発明においては添加剤として上記の如き従来のポリス
チレンやポリエチレンより沸点の低い物質も使用可能で
あるので、脱脂時の加熱温度をはるかに低い温度で実施
することも可能である。In the present invention, since it is possible to use as an additive a substance having a boiling point lower than that of the conventional polystyrene or polyethylene as described above, it is also possible to carry out the heating temperature during degreasing at a much lower temperature.
本発明においては脱脂時における金属粉末成形体の加熱
様式は、もちろん任意であるが、本発明者等の実験的知
見により次の様式が好ましいものの一つとして挙げられ
る。即ち、常温から添加剤中の揮発成分の沸点より15
°C程度低い温度迄は任意の速度で昇温しで良いが、こ
の温度に到達したらこの温度〜連発成分の沸点より2°
C程度低い温度の範囲に3〜10時間保持し、この間に
揮発成分の40〜60%程度を飛散・除去させる0次に
揮発成分の沸点以上に加熱して残余の揮発成分を飛散・
除去させ脱脂を完了させるのである。In the present invention, the method of heating the metal powder compact during degreasing is of course arbitrary, but the following method is listed as one of the preferable methods based on the experimental findings of the present inventors. That is, from normal temperature to the boiling point of the volatile components in the additive,
The temperature may be raised at any rate until it reaches a temperature as low as °C, but once this temperature is reached, it must be 2° below the boiling point of the continuous component.
The temperature is kept at a temperature as low as C for 3 to 10 hours, during which time about 40 to 60% of the volatile components are scattered and removed.
This completes the degreasing process.
なお、上記のごとくして、加熱する際、該露出面を通し
てファン、ブロワ−等の排風装置で吸引することも、揮
発成分を速やかに成形体外へ飛散させる上で好ましい実
施の態様である。In addition, when heating as described above, it is also a preferred embodiment to suction through the exposed surface with an exhaust device such as a fan or blower in order to quickly scatter volatile components out of the molded article.
本発明はこの様な脱脂方法であるので、例えば金属粉末
成形体の容積が11程度であれば、延べ加熱時間は24
時間以内という、5〜7日間を要していた従来の方法に
比してはるかに短時間で脱脂を完了することが出来る。Since the present invention is such a degreasing method, for example, if the volume of the metal powder compact is about 11, the total heating time is 24.
Degreasing can be completed within hours, which is much shorter than the conventional method, which takes 5 to 7 days.
本発明は、金属粉末成形体の表面を一部露出し、残余は
気密性がある樹脂薄膜で被覆した後、たとえば500k
g/cd以上の圧力で静水圧力「圧しながら添加剤を該
露出面を通じて飛散させる方法であるので、本発明に従
えば、添加剤が加熱気化されて生じる膨張力を該静水圧
により効果的に抑制することができるのである。このた
め極めて短時間に脱脂を行うことができ、しかも同時に
脱脂に併う割れや亀裂などの欠陥の発生を、従来よりも
著しく抑えることができるのである。In the present invention, a part of the surface of a metal powder molded body is exposed, and the rest is covered with an airtight resin thin film, and then
Since this is a method of scattering the additive through the exposed surface while applying hydrostatic pressure at a pressure of g/cd or more, according to the present invention, the expansion force generated when the additive is heated and vaporized is effectively absorbed by the hydrostatic pressure. Therefore, degreasing can be carried out in an extremely short period of time, and at the same time, the occurrence of defects such as cracks and cracks accompanying degreasing can be significantly suppressed compared to conventional methods.
また、添加剤を除去した部分に生じる金属粉末成形体の
内部の空隙は、該成形体の等方的圧縮によって容易に消
されうるため、添加量が少量でも金属粉末と混練したと
きに可塑性を示しやすく、かつ加熱・飛散させ易い添加
剤として開発されてきた高価なポリスチレンなどを使う
必要は必ずしもなくなるという利点もある。In addition, the voids inside the metal powder molded body that occur in the area where the additive has been removed can be easily eliminated by isotropic compression of the molded body, so even if the amount added is small, the plasticity will be reduced when kneaded with the metal powder. Another advantage is that it is not necessarily necessary to use expensive polystyrene, which has been developed as an additive that is easy to display and easily dispersed by heating.
更にまた、金属粉末成形体に被覆された樹脂薄膜は、該
金属粉末成形体を補強する役割も有するため、特に脱脂
後の金属粉末成形体が焼結工程へ移行する過程で生じる
割れや亀裂などを防ぐ効果もある。Furthermore, since the resin thin film coated on the metal powder molded body also has the role of reinforcing the metal powder molded body, cracks and cracks that occur in the metal powder molded body after degreasing in the process of transitioning to the sintering process are particularly important. It also has the effect of preventing.
また、本発明では添加剤としてポリスチレンやポリエチ
レンなどより沸点の低い物質を使用しうるので、ポリス
チレンやポリエチレンを使用した場合の様に必ずしも6
00°C程度の高温で脱脂する必要はなく、添加剤の種
類によってはこれよりはるかに低い、例えば後記実施例
に示すごと<250°C以下の温度で実施することさえ
も出来るので、消費する熱エネルギーの面でもきわめて
有利である。なお、実施温度は好ましくは300〜50
°C程度の範囲である。In addition, in the present invention, since it is possible to use a substance with a lower boiling point than polystyrene or polyethylene as an additive, it is not necessary to use a substance with a boiling point lower than that of polystyrene or polyethylene.
It is not necessary to degrease at a high temperature of about 00°C, and depending on the type of additive, it can be performed at a much lower temperature than this, for example, as shown in the example below, it can even be carried out at a temperature of <250°C or less. It is also extremely advantageous in terms of thermal energy. In addition, the implementation temperature is preferably 300 to 50
It is in the range of about °C.
本発明はこのような有利な効果を有するので、射出成形
法などの方法を必要とする比較的複雑な形状の焼結合金
であって、更に機械的強度に信頬性を必要とするものを
製造する場合に、特に効果的に適用することが出来るの
である。Since the present invention has such advantageous effects, it can be used for sintered alloys with relatively complex shapes that require methods such as injection molding, and that also require reliability in mechanical strength. It can be applied particularly effectively in manufacturing.
以下実施例及び比較例により本発明を具体的に説明する
。なお、以下に於いて%及び部はそれぞれ重量基準を示
す。The present invention will be specifically explained below using Examples and Comparative Examples. In addition, in the following, % and parts each indicate a weight basis.
実施例1
金属粉末として、純度が99.5%以上で平均粒子径が
12μmの金属Ti粉末100部と、純度が99,8%
以上で平均粒子径が1.4μmの金属CO粉末10部を
用い、これに添加剤として濃度5%のポリビニルアルコ
ール水溶液20部を加えてこれらを混練して得た混合物
を射出圧力500kg/c+II Gで射出成形し、直
径25mm、長さ100IIII%の円柱状の金属粉末
成形体5個を得た。得られた金属粉末成形体の見掛は容
積に対する原料粉末が占める容積(以後「粉末充填率」
という)は平均で68%であった。Example 1 As metal powder, 100 parts of metal Ti powder with a purity of 99.5% or more and an average particle size of 12 μm and a purity of 99.8%
Using 10 parts of the metal CO powder with an average particle size of 1.4 μm above, 20 parts of a polyvinyl alcohol aqueous solution with a concentration of 5% was added as an additive, and the mixture obtained by kneading was injected at a pressure of 500 kg/c + II G. Five cylindrical metal powder compacts each having a diameter of 25 mm and a length of 100% were obtained. The apparent volume of the obtained metal powder compact is the volume occupied by the raw material powder relative to its volume (hereinafter referred to as "powder filling ratio").
) was 68% on average.
これらの金属粉末成形体を次のようにして脱脂した。即
ち第4図に示したごとく、金属粉末成形体3の一方の端
部にアルミナ製多孔質体8(直径25mm、高さ10m
m、平均孔径10 tt m)を重ね合わせ、耐圧容器
に固着した中空の耐圧管5に接合した状態で、これらの
表面を厚さ350μmの樹脂薄膜2で被覆した。被覆の
方法としては液状のアクリルエマルジョンを金属粉末成
形体に塗布し、該エマルジョン中の水を乾燥させ樹脂薄
膜を表面に形成させる方法を採用した。These metal powder compacts were degreased as follows. That is, as shown in FIG. 4, an alumina porous body 8 (diameter 25 mm, height 10 m
m, average pore diameter 10 tt m) were superimposed and joined to a hollow pressure-resistant tube 5 fixed to a pressure-resistant container, and their surfaces were covered with a resin thin film 2 having a thickness of 350 μm. The coating method used was to apply a liquid acrylic emulsion to the metal powder compact, and then dry the water in the emulsion to form a thin resin film on the surface.
次に、耐圧容器を濃度30%のホウ酸水で満たし、この
ホウ酸水をポンプ圧縮によって1500Kg/cffl
に加圧した状態でヒーターで加熱することにより、金属
粉末成形体を昇温させ脱脂を行った。なお、ホウ酸水の
加熱様式は次のよう行った。Next, the pressure container was filled with boric acid water with a concentration of 30%, and this boric acid water was compressed by a pump to 1500 kg/cffl.
By heating the metal powder molded body under pressure with a heater, the temperature of the metal powder molded body was increased and degreasing was performed. The boric acid solution was heated in the following manner.
すなわち、室温より80°Cまで50°C/hの速度で
昇温、80°Cより95°Cまで30°C/hの速度で
昇温、95°Cでで2時間保持、95゛Cから110°
Cまで30°C/hの速度で昇温、110″Cで2時間
保持、以降自然放冷により室温まで冷却した。昇温開始
より室温に冷却するまでの通算時間は9時間であった。That is, the temperature was raised from room temperature to 80°C at a rate of 50°C/h, the temperature was raised from 80°C to 95°C at a rate of 30°C/h, the temperature was maintained at 95°C for 2 hours, and the temperature was raised to 95°C. 110° from
The temperature was raised to C at a rate of 30°C/h, held at 110″C for 2 hours, and then cooled to room temperature by natural cooling.The total time from the start of heating until cooling to room temperature was 9 hours.
この間ホウ酸水は150(1Kg/c111の加圧状態
に保持した。During this time, the boric acid water was maintained at a pressure of 150 (1 Kg/c111).
金属粉末成形体に含まれていた水は、樹脂薄膜で被覆さ
れていない露出面の部分よりアルミナ質多孔体8及び中
空の耐圧管5を通って耐圧容器の外部の空間7に飛散し
た。この外部の圧力はブロワ−による吸引によって絶対
圧力0.8〜0.9Kg/c+flに保持しておいた。The water contained in the metal powder molded body was scattered from the exposed surface portion not covered with the resin thin film through the alumina porous body 8 and the hollow pressure-resistant tube 5 into the space 7 outside the pressure-resistant container. This external pressure was maintained at an absolute pressure of 0.8 to 0.9 kg/c+fl by suction with a blower.
耐圧容器より取り出した金属粉末成形体3には、5個い
ずれも亀裂の発生や樹脂薄膜の破損といった外観上の変
化は全く認められず、水は99%以上が飛散していた。None of the five metal powder compacts 3 taken out from the pressure container showed any changes in appearance such as cracks or damage to the resin thin film, and more than 99% of the water had been scattered.
また粉末充填率は平均で73%と脱脂前よりも増加して
いた。Furthermore, the powder filling rate was 73% on average, which was higher than before degreasing.
次に、これらの粉末成形体を圧力10−’Torrの真
空中で1200°Cに1時間加熱して焼結合金を得た。Next, these powder compacts were heated to 1200°C for 1 hour in a vacuum at a pressure of 10-' Torr to obtain a sintered alloy.
得られた焼結合金の密度比(見掛は密度/理論密度)は
平均で99.3%であった。The density ratio (apparent density/theoretical density) of the obtained sintered alloy was 99.3% on average.
かくして得られた5個の焼結合金を切削によりJIS
Z 2201 (1968)に準じた10号試験片(標
点路1m 50 m m、直径12.5mm)に加工し
、それらをJIS Z2241 (1977)に従って
引張試験に供した。その結果、引張り強さは平均で62
Kgf/mm” 、標準偏差は3.2 Kgf/nm”
であった。The five sintered alloys obtained in this way were cut into JIS
No. 10 test pieces (marker length 1 m 50 mm, diameter 12.5 mm) according to JIS Z 2201 (1968) were processed and subjected to a tensile test according to JIS Z 2241 (1977). As a result, the average tensile strength was 62
Kgf/mm”, standard deviation is 3.2 Kgf/nm”
Met.
比較例1
実施例1と全く同様にして射出成形法で得た円柱状の金
属粉末成形体を、樹脂薄膜で被覆せずに絶対圧力0.8
〜0.9Kg/cjの空気中で実施例1と全く同じ加熱
様式で脱脂を行った。Comparative Example 1 A cylindrical metal powder compact obtained by injection molding in exactly the same manner as in Example 1 was subjected to an absolute pressure of 0.8 without being covered with a resin thin film.
Degreasing was carried out in exactly the same heating manner as in Example 1 in air at ~0.9 Kg/cj.
脱脂後の粉末成形体には3〜51111の間隙で多数の
亀裂が発生しており、また表面の約40%に厚さ0.5
〜1+*mの剥離が生じていた。After degreasing, the powder compact had many cracks in the gaps between 3 and 51111, and about 40% of the surface had a thickness of 0.5
Peeling of ~1+*m had occurred.
比較例2
実施例1で用いたと同じ金属Ti粉末100部と金属C
o粉末10部に、ポリエチレン12部、ポリプロピレン
8部、ステアリン酸1部を加え、これらを混練して得た
混合物を実施例1と全く同様にして射出成形し、円柱状
の金属粉末成形体を5個得た。Comparative Example 2 100 parts of the same metal Ti powder used in Example 1 and metal C
12 parts of polyethylene, 8 parts of polypropylene, and 1 part of stearic acid were added to 10 parts of o powder, and the mixture obtained by kneading these was injection molded in exactly the same manner as in Example 1 to form a cylindrical metal powder molded body. I got 5 pieces.
この金属粉末成形体5個の粉末充填率は平均で67%で
あった。The average powder filling rate of the five metal powder compacts was 67%.
次に、この金属粉末成形体を従来より行われている次の
ような高温、長時間の加熱様式で脱脂した。すなわち室
温より 100°Cまで30℃/hで昇温、100°C
より600″Cまで2°C/hで昇温、600°Cで2
時間保持、以降自然放冷により室温まで冷却。雰囲気は
窒素ガス雰囲気とし圧力は大気圧とした。Next, this metal powder compact was degreased by the following conventional heating method at high temperature and for a long time. In other words, raise the temperature from room temperature to 100°C at a rate of 30°C/h, 100°C
Increase temperature at 2°C/h to 600″C, then increase temperature at 2°C/h to
Hold for a while and then cool to room temperature by natural cooling. The atmosphere was a nitrogen gas atmosphere, and the pressure was atmospheric pressure.
昇温開始より室温に冷却するまでの通算時間は、260
時間と云う長時間を要した。The total time from the start of temperature rise until cooling to room temperature is 260
It took a long time.
容器より取り出した金属粉末成形体には、亀裂の発生、
表面剥離といった外観上の変化は観察されず、ポリエチ
レン等の添加剤は99.0%以上が飛散しており、粉末
充填率は脱脂前と同じく平均で67%であった。The metal powder compact taken out from the container has cracks,
No change in appearance such as surface peeling was observed, more than 99.0% of additives such as polyethylene were scattered, and the powder filling rate was 67% on average, the same as before degreasing.
次にこれらの粉末成形体を実施例1と全く同様にして1
O−5Torrの真空中、1200℃で1時間加熱して
焼結合金を得た。得られた焼結合金の密度比は平均で9
6.2%であった。Next, these powder compacts were processed in exactly the same manner as in Example 1.
A sintered alloy was obtained by heating at 1200° C. for 1 hour in a vacuum of O-5 Torr. The average density ratio of the obtained sintered alloy is 9
It was 6.2%.
これらの焼結合金より実施例1と全く同様にして試験片
を作成し引張り試験を行った結果、引張り強さは平均で
44Kgf/mmz、標準偏差は6.1kgf/mll
1!であった。Test pieces were prepared from these sintered alloys in exactly the same manner as in Example 1, and a tensile test was conducted. As a result, the average tensile strength was 44 kgf/mmz, and the standard deviation was 6.1 kgf/ml.
1! Met.
実施例1と比較例1との比較により、金属粉末成形体に
樹脂薄膜を被覆して被覆面を静水圧加圧した状態で脱脂
することが、亀裂や表面?JI離の防止に顕著な効果が
あることが分かる。A comparison between Example 1 and Comparative Example 1 shows that coating a metal powder molded body with a resin thin film and degreasing the coated surface while applying hydrostatic pressure is effective in preventing cracks and surfaces. It can be seen that this method has a remarkable effect on preventing JI separation.
また実施例1と従来技術の脱脂法である比較例2との比
較より、本発明で脱脂した金属粉末成形体ははるかに低
温、短時間で脱脂したにもかかわらず、その粉末充填率
は従来技術のそれよりも高いこと、及び本発明では焼結
合金の引張り強度が大きくなり、かつそのバラツキもは
るかに小さくなることが分かる。Furthermore, a comparison between Example 1 and Comparative Example 2, which is a conventional degreasing method, shows that although the metal powder molded body degreased by the present invention was degreased at a much lower temperature and in a shorter time, its powder filling rate was lower than that of the conventional degreasing method. It can be seen that the tensile strength of the sintered alloy of the present invention is higher than that of the conventional technology, and that the tensile strength of the sintered alloy of the present invention is large and its variation is much smaller.
実施例2〜5
原料金属粉末としては実施例1と同じ金属Ti粉末と金
属Co粉末を用い、これら100部と10部に添加剤と
しては表−1に示したものを表−1に示した量加えて混
練して得た混合物を、実施例1と全く同様にしてそれぞ
れ5個づつ射出成形し、表−1に示した粉末充填率の金
属粉末成形体を得た。Examples 2 to 5 The same metal Ti powder and metal Co powder as in Example 1 were used as raw metal powders, and the additives shown in Table 1 were added to 100 parts and 10 parts of these as shown in Table 1. The mixtures obtained by adding and kneading were injection-molded five pieces each in exactly the same manner as in Example 1 to obtain metal powder molded bodies having the powder filling ratio shown in Table 1.
次に、これらの金属粉末成形体を実施例1と同様にして
、第4図に示した如くアルミナ製多孔質体を介して中空
の耐圧管に接合した状態で、これらの表面を樹脂薄膜で
被覆した。被覆の方法としては実施例2及び3において
は実施例1と同しくアクリルエマルジョンを塗布し乾燥
させることによって行い、実施例4及び5においてはエ
ポキシ樹脂を塗布し、加熱硬化させることによって行っ
た。樹脂薄膜の厚さは実施例2及び3では350μl、
実施例4及び5では420μmであった。Next, in the same manner as in Example 1, these metal powder compacts were joined to a hollow pressure tube via an alumina porous body as shown in Figure 4, and their surfaces were coated with a resin thin film. coated. As for the coating method, in Examples 2 and 3, an acrylic emulsion was applied and dried in the same manner as in Example 1, and in Examples 4 and 5, an epoxy resin was applied and cured by heating. The thickness of the resin thin film was 350 μl in Examples 2 and 3;
In Examples 4 and 5, the thickness was 420 μm.
次にこれら金属粉末成形体の被覆面を実施例1と同様に
して濃度30重量%のホウ酸水で1500Kg/cIa
の圧力に静水圧加圧した状態のもとで、ホウ酸水をヒー
ターで加熱し昇温さ廿脱脂を行った。Next, the coated surface of these metal powder compacts was coated with boric acid solution having a concentration of 30% by weight at a rate of 1500 kg/cIa in the same manner as in Example 1.
Under isostatic pressure, the boric acid water was heated with a heater to raise its temperature and degreasing was performed.
ここで加熱様式は、実施例2及び3は実施例1と全く同
様にして行い、実施例4及び5は次のようにした。すな
わち、室温より50゛Cまで1時間で昇温、50°Cか
ら60°Cまで10’C/hの速度で昇温、60°Cで
3時間保持、60°Cより75°Cまで15°C/hの
速度で昇温、75°Cで2時間保持、以降自然放冷によ
り室温まで冷却。昇温開始より室温に冷却するまでの通
算時間は10時間であった。空間7の外部の圧力は、実
施例2.3においては実施例1と同様に絶対圧力0.8
〜0.9Kg/cdとし、実施例4.5においては大気
圧とした。Here, the heating method was performed in Examples 2 and 3 in exactly the same manner as in Example 1, and in Examples 4 and 5 as follows. That is, the temperature was raised from room temperature to 50 °C in 1 hour, the temperature was raised from 50 °C to 60 °C at a rate of 10 °C/h, the temperature was held at 60 °C for 3 hours, and the temperature was raised from 60 °C to 75 °C for 15 minutes. The temperature was raised at a rate of °C/h, held at 75 °C for 2 hours, and then cooled to room temperature by natural cooling. The total time from the start of temperature rise until cooling to room temperature was 10 hours. In Example 2.3, the pressure outside the space 7 is an absolute pressure of 0.8 as in Example 1.
~0.9 Kg/cd, and in Example 4.5, atmospheric pressure.
耐圧容器より取り出した金属粉末成形体には、亀裂の発
生、樹脂薄膜の破損といった外観上の変化はみられず、
添加剤はいずれも99%以上が飛散していた。また粉末
充填率は表−1に示したようにいずれも脱脂前よりも増
加していた。There were no visible changes in the metal powder compact taken out of the pressure container, such as cracks or damage to the resin thin film.
More than 99% of all additives were scattered. Furthermore, as shown in Table 1, the powder filling rate was higher than that before degreasing in all cases.
次にこれらの金属粉末成形体を実施例Iと全く同様にし
て焼結合金とし、さらに試験片に加工して引張り試験を
行ったところ表−1に示した結果であった。Next, these metal powder compacts were made into sintered alloys in exactly the same manner as in Example I, and further processed into test pieces and subjected to a tensile test, with the results shown in Table 1.
表−1
本 カルボキシメチルセルロース
零率 ポリエチレングリコール
実施例6〜8
静水圧加圧する圧力の効果をみる目的で次の実験を行っ
た。即ち金属粉末として、純度が99.5%以上で平均
粒子径が5μmの金属Fe粉末100部と、純度が99
.5%以上で平均粒子径が3μmの金属Cu粉末4部を
用い、添加剤としてメチルセルロースの0.5%水溶液
を20部加え、これらを混練して得た混合物を実施例1
と全く同様にして射出成形し粉末充填率が64%の金属
粉末成形体を得た。Table 1: Main Carboxymethyl Cellulose Zero Rate Polyethylene Glycol Examples 6 to 8 The following experiment was conducted for the purpose of examining the effect of hydrostatic pressurization. That is, as metal powder, 100 parts of metal Fe powder with a purity of 99.5% or more and an average particle size of 5 μm, and a purity of 99.
.. Example 1 Using 4 parts of metallic Cu powder having an average particle diameter of 3 μm at 5% or more, 20 parts of a 0.5% aqueous solution of methylcellulose was added as an additive, and the mixture obtained by kneading these was prepared in Example 1.
Injection molding was carried out in exactly the same manner as above to obtain a metal powder compact with a powder filling rate of 64%.
これらの金属粉末成形体をそれぞれ実施例1と全く同様
にして、アルミナ製多孔質体8を介して中空の耐圧管5
に接合した状態でこれらの表面にフェノール樹脂を塗布
し、加熱硬化させて厚さ240μmの樹脂薄膜を被覆し
た。Each of these metal powder compacts was made in exactly the same manner as in Example 1, and then inserted into a hollow pressure-resistant tube 5 via an alumina porous body 8.
A phenol resin was applied to these surfaces in a state where they were bonded to each other, and the resin was cured by heating to cover a resin thin film with a thickness of 240 μm.
次に、これらそれぞれ5個をそれぞれ表−2に示した圧
力で静水圧加圧の状態を保持しておいて、実施例1と全
く同様な加熱様式で加熱し、脱脂した。脱脂後の粉末充
填率はそれぞれ表−2に示した値であった。 次にこれ
らの金属粉末成形体を圧力10−’Torrの真空中で
1150’Cに1時間加熱して、焼結合金を得た。得ら
れた焼結合金の密度及び実施例1と同様にして行った引
張り試験の結果はそれぞれ表−2に示した値であった。Next, each of these five pieces was maintained under hydrostatic pressure at the pressure shown in Table 2, and heated in the same heating manner as in Example 1 to degrease. The powder filling rates after degreasing were the values shown in Table 2. Next, these metal powder compacts were heated to 1150'C for 1 hour in a vacuum at a pressure of 10-'Torr to obtain a sintered alloy. The density of the obtained sintered alloy and the results of the tensile test conducted in the same manner as in Example 1 were the values shown in Table 2, respectively.
表−2Table-2
第1図および第2図は、本発明において用いる粉末成形
体の形状の例を示す斜視図である。
第3図および第4図は、本発明において用いる粉末成形
体が加圧容器に設置された状態を示す断面図である。
図面において
1−−−−−・露出面、2−・−−−−一薄膜、 3
−−−−一粉末成形体。
4・−・・−耐圧容器壁、5−・・・−・中空の耐圧管
、 6−−−−−−−加圧液、 7−−−大気、8
−・・・・・アルミナ製等の多孔質体を示す。FIGS. 1 and 2 are perspective views showing examples of shapes of powder compacts used in the present invention. FIGS. 3 and 4 are cross-sectional views showing the powder compact used in the present invention placed in a pressurized container. In the drawings, 1------exposed surface, 2------1 thin film, 3
----One powder compact. 4-- Pressure vessel wall, 5-- Hollow pressure tube, 6-- Pressurized liquid, 7-- Atmosphere, 8
-... Indicates a porous body made of alumina or the like.
Claims (3)
体より該添加剤を加熱・飛散させて除去する方法であっ
て、予め該金属粉末成形体の表面の少なくとも一部を露
出面として残すほかは、残余を気密性のある樹脂薄膜で
被覆し、該被覆した面を静水圧加圧した状態で該金属粉
末成形体を加熱し、該添加剤を該露出面を通して飛散せ
しめることを特徴とする金属粉末成形体中の添加剤の除
去方法。(1) A method of removing additives from a metal powder molded body formed by adding an additive to metal powder by heating and scattering the additive, in which at least a part of the surface of the metal powder molded body is exposed in advance. The remaining material is covered with an airtight resin thin film, and the metal powder compact is heated while the coated surface is subjected to hydrostatic pressure to scatter the additive through the exposed surface. A method for removing additives from a metal powder compact.
のである特許請求の範囲第1項記載の方法。(2) The method according to claim 1, wherein the metal powder compact is molded by an injection molding method.
熱して焼結合金とする特許請求の範囲第1項もしくは第
2項に記載の方法。(3) The method according to claim 1 or 2, in which the metal powder compact from which additives have been removed is subsequently ignited to produce a sintered alloy.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31106887A JPH01152201A (en) | 1987-12-10 | 1987-12-10 | Method for removing additive in metal powder green compact |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31106887A JPH01152201A (en) | 1987-12-10 | 1987-12-10 | Method for removing additive in metal powder green compact |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01152201A true JPH01152201A (en) | 1989-06-14 |
Family
ID=18012729
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP31106887A Pending JPH01152201A (en) | 1987-12-10 | 1987-12-10 | Method for removing additive in metal powder green compact |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01152201A (en) |
-
1987
- 1987-12-10 JP JP31106887A patent/JPH01152201A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4197118A (en) | Manufacture of parts from particulate material | |
US5215946A (en) | Preparation of powder articles having improved green strength | |
US3562371A (en) | High temperature gas isostatic pressing of crystalline bodies having impermeable surfaces | |
JPH01212708A (en) | Product covered with metal and production thereof | |
JPS6227034B2 (en) | ||
JPH01152201A (en) | Method for removing additive in metal powder green compact | |
KR900003317B1 (en) | Process for removing additive from powder molding | |
JPH01152202A (en) | Method for removing additive in metal powder green compact | |
JPS63147869A (en) | Method of removing additive from powder formed body | |
JPS60180967A (en) | Method of compressing porous ceramic structural member | |
US4041195A (en) | Manufacturing process of porous tubular members | |
JPH0313503A (en) | Method for degreasing molding for powder metallurgy, binder and supercritical fluid | |
JPH013080A (en) | Method for removing additives in powder compacts | |
JPH03177364A (en) | Method for removing additive in powder compact | |
WO1994020242A1 (en) | Process for manufacturing powder injection molded parts | |
JPS6011276A (en) | Manufacture of ceramic sintered body | |
JPH03170603A (en) | Manufacture of sintered powder compact | |
JPH0517261A (en) | Laminated porous ceramic calcined body | |
JPH10317007A (en) | Method for compacting green compact | |
JPH07118067A (en) | Production of expanded graphite formed body | |
JP3224645B2 (en) | Ceramics molding method | |
JP2777674B2 (en) | Manufacturing method of ceramic sintered body | |
CA1062890A (en) | Manufacture of parts from particulate material | |
JP2013082169A (en) | Method for manufacturing ceramics joined body | |
WO2004013067A2 (en) | Powder suspensions for plastic forming at room temperature and forming processes for such suspensions |