JPH01146708A - Compression molding method for waste plastic and device thereof - Google Patents
Compression molding method for waste plastic and device thereofInfo
- Publication number
- JPH01146708A JPH01146708A JP62306640A JP30664087A JPH01146708A JP H01146708 A JPH01146708 A JP H01146708A JP 62306640 A JP62306640 A JP 62306640A JP 30664087 A JP30664087 A JP 30664087A JP H01146708 A JPH01146708 A JP H01146708A
- Authority
- JP
- Japan
- Prior art keywords
- waste plastic
- compression molding
- hot air
- plastic
- block
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B17/00—Recovery of plastics or other constituents of waste material containing plastics
- B29B17/0026—Recovery of plastics or other constituents of waste material containing plastics by agglomeration or compacting
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/62—Plastics recycling; Rubber recycling
Landscapes
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Mechanical Engineering (AREA)
- Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
- Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
Abstract
Description
【発明の詳細な説明】
(イ)産業上の利用分野
本発明は、プラスチック系廃棄物を予熱乾燥、減量化し
てからブロック化、減容化する廃プラスチックの圧縮成
型方法及びその装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION (a) Industrial Application Field The present invention relates to a method and apparatus for compression molding waste plastic, which preheats and dries plastic waste to reduce its weight and then form blocks and reduce its volume. be.
(ロ)従来の技術
従来の技術は廃プラスチックの軟化温度が種類により異
なる為に、不適当な温度を与えると種類によっては溶融
し、機械操作が困難になるために、減容化の初期工程で
は、廃プラスチックに熱を与えない常温下で熱可塑性プ
ラスチックを主体とした廃棄物を圧縮プレスするのであ
るが、この様な条件下で圧縮プレスされたブロックはプ
レス成型後プラスチックの膨張復元の為にブロックがは
じけて崩れたり飛散することがあるため、ブロックの膨
張復元を抑えるためにることもあり効果的な減容化が困
難であった。(b) Conventional technology In the conventional technology, the softening temperature of waste plastic varies depending on the type, so if an inappropriate temperature is applied, some types will melt, making mechanical operation difficult. In this process, waste mainly composed of thermoplastic plastics is compressed and pressed at room temperature without applying heat to the waste plastics, but blocks compressed under such conditions are compressed to allow the plastic to expand and recover after being press-molded. Because the blocks may burst, collapse, or scatter, it has been difficult to reduce the volume effectively, as it is necessary to prevent the blocks from expanding and restoring.
(ハ)発明が解決しようとする問題点
本発明は上述の如く、−時的に圧縮プレスしても時間と
共に膨張、復元して定型ブロック化の困難な廃プラスチ
ックを膨張、復元しない圧縮成型ができると共に該圧縮
成型は該廃プラスチックのブロックの容積を可及的に小
さくできるようにして、埋立て廃棄の荷役、運囮作業等
の効率化を図ることができる廃プラスチックの圧縮成型
方法及びその装置を得ようとするものである。(c) Problems to be Solved by the Invention As mentioned above, the present invention has the following advantages: - Compression molding that does not expand or restore waste plastic that expands and restores itself over time and is difficult to form into regular blocks even when compressed A compression molding method for waste plastic, which can reduce the volume of the waste plastic block as much as possible, and improve the efficiency of loading and unloading at landfills, decoy work, etc. It is intended to obtain equipment.
(=)問題点を解決するための手段
本発明はこのような従来の問題点に着目してなされたも
ので、(1)廃プラスチックを破砕する破砕工程と、該
破砕工程により破砕された廃プラスチックを攪拌しなが
ら約50℃〜1500℃で予熱する攪拌予熱工程、該予
熱された廃プラスチックの所定量に約1000℃〜20
00℃の熱風を吹付けて軟化乃至一部溶融されてブ白−
Lり状に圧縮する加熱圧縮工程と、該加熱圧縮された廃
プラスチックの表層を約2000℃〜4000℃″″C
溶融固化させながら外部へ搬出する溶融搬出工程とから
成る廃プラスチックの圧縮成型方法、及び(2)破砕さ
れた投入廃プラスチックを攪拌する手段と所要の温度の
熱風の吹込み手段とを有する搬送室、該搬送室により攪
拌予熱された廃プラスチックを受容し、所要の温度の熱
風吹込み手段と三方向からの圧縮手段とを有する圧縮成
型室、該圧縮成型室で圧縮されたブロックの表層を所要
の温度で溶融搬出する手段を有する押出し部とから成る
廃プラスチックの圧縮成型装置を提供しようとするもの
である。(=) Means for Solving the Problems The present invention was made by focusing on such conventional problems, and consists of (1) a crushing process for crushing waste plastics, and a process for crushing waste plastics crushed by the crushing process; Stirring preheating step of preheating the plastic at about 50°C to 1500°C while stirring, and adding a predetermined amount of preheated waste plastic to about 1000°C to 20°C
It is softened or partially melted by blowing hot air at 00℃ and becomes white.
A heating compression step of compressing the waste plastic into an L-shape, and heating the surface layer of the heated and compressed waste plastic to approximately 2000°C to 4000°C''''C.
A compression molding method for waste plastic, which comprises a melting and carrying out step of carrying out the waste plastic while melting and solidifying it, and (2) a transfer chamber having a means for stirring the crushed input waste plastic and a means for blowing hot air at a required temperature. , a compression molding chamber that receives the waste plastic that has been stirred and preheated by the transfer chamber, and has hot air blowing means at a required temperature and compression means from three directions; a surface layer of the block compressed in the compression molding chamber; An object of the present invention is to provide a compression molding apparatus for waste plastics, which comprises an extrusion section having a means for melting and conveying at a temperature of .
(ネ)実施例及び作用
以下、本発明一実施例の構成を示す図面を参照しながら
作用と共に説明する。(f) Embodiment and operation The operation and operation will be explained below with reference to the drawings showing the configuration of an embodiment of the present invention.
第1図に示すように、ごみピット1より廃プラスチック
がクラッシャー2に搬送されて破砕され、選別機3によ
り廃プラスチックの磁片だけが搬送室4の供給口5か、
S蜂人され、スク、、ニーフィーダー6により攪拌、搬
送される。そ。As shown in FIG. 1, waste plastic is transported from a garbage pit 1 to a crusher 2 and crushed, and a sorter 3 separates only the magnetic pieces of the waste plastic from the supply port 5 of the transport chamber 4.
It is stirred and conveyed by the knee feeder 6. So.
過程で、熱風発生装置7から送られる0111゜吹込み
管8の温度を検出する温度調節装置TC。During the process, a temperature controller TC detects the temperature of the 0111° blowing pipe 8 sent from the hot air generator 7.
により温度調節弁TCV、を調節して大気を適当に混入
して温度調節された50〜150°Cの熱風により廃プ
ラスチックの破片は搬送室4内で平均に予熱されて付着
水分や有機物が乾燥除去される。The waste plastic fragments are preheated evenly in the transfer chamber 4 by hot air at a temperature of 50 to 150°C, which is adjusted by adjusting the temperature control valve TCV and appropriately mixing atmospheric air, thereby drying out adhering moisture and organic matter. removed.
この攪拌、搬送工程では、熱風発生装置7から送られる
熱風を100°C以下に低く選定すれば、廃プラスチッ
クは予熱され、多少軟化する。In this stirring and conveying process, if the hot air sent from the hot air generator 7 is selected to be as low as 100°C or less, the waste plastic will be preheated and softened to some extent.
さらに100〜150°Cの温度に選定すると熱可塑性
の廃プラスチツタは上記工程を通過する時間にもよるが
軟化し、溶融開始する。Furthermore, if a temperature of 100 to 150° C. is selected, the thermoplastic waste plastic ivy softens and begins to melt, depending on the time it takes to pass through the above steps.
この搬送室4での予熱がないと、圧縮成型室9に投入さ
れ山積になった廃プラスチックの内部までの加熱が困難
になる。Without this preheating in the transfer chamber 4, it would be difficult to heat the inside of the piled up waste plastics thrown into the compression molding chamber 9.
次に圧縮成型室9に投入された上記状態の廃プラスチッ
クは該圧縮成型室9に一工程分の一定量が山積み状態と
なり、−雀圧縮成型室9に熱風発生装置7から送られる
熱風の圧縮成型室9の温度を検出する温度調節装置TC
2により温度調節弁TCV2を調節して大気を適当に混
入して温度調節された150〜200°Cの熱風が該圧
縮成型室9の側壁面の熱風吹込みノズル10から吹込ま
れて加熱された熱可塑性プラスチックは軟化溶融する。Next, the waste plastics in the above state put into the compression molding chamber 9 are piled up in a certain amount for one process in the compression molding chamber 9, and the hot air sent from the hot air generator 7 to the compression molding chamber 9 is compressed. Temperature controller TC that detects the temperature of the molding chamber 9
Hot air of 150 to 200°C, whose temperature was adjusted by adjusting the temperature control valve TCV2 according to 2 and appropriately mixing air, was blown from the hot air blowing nozzle 10 on the side wall of the compression molding chamber 9 and heated. Thermoplastics soften and melt.
溶融した廃プラスチックは軟化しない廃プラスチ・ンク
などを包囲して固化し膨張復元を抑えると共に圧縮密度
を高める。The molten waste plastic surrounds the unsoftened waste plastic, solidifies it, suppresses expansion and restoration, and increases the compressed density.
次に廃プラスチ・ンクの供給を停止して圧縮成型の工程
に入ると、第2図に示すようにシリンダーAが先に作動
して、搬送室4の出口11をゲート12が閉鎖すると共
に電磁弁S■を排気側に切替えると廃プラスチックの山
積をブレス13が圧縮して消し、次にシリンダーB、C
を同時に作動させてプレス14.15により第3図に示
すように圧縮成型室9の中央で左右から圧縮する。Next, when the supply of waste plastic ink is stopped and the compression molding process begins, cylinder A is activated first, as shown in FIG. 2, and gate 12 closes outlet 11 of transfer chamber 4, and When the valve S is switched to the exhaust side, the breather 13 compresses and eliminates the pile of waste plastic, and then the cylinders B and C
are operated at the same time, and the presses 14 and 15 compress from the left and right sides in the center of the compression molding chamber 9, as shown in FIG.
圧縮成型されている廃プラスチックのブロック表面に存
在する廃プラスチックの破片の材質によっては、例えは
都市ごみ系の廃プラスチックのように主成分がポリエチ
レン、ポリプロピレン、ポリ塩化ビニール、及びポリス
チレン等であった場合には圧縮成型工程の時間にもよる
が180°Cまでには溶融状態になるので、この場合に
は、熱風の適温を150〜160°Cに選定することに
なる。Depending on the material of the waste plastic fragments present on the surface of the compression-molded waste plastic block, the main components may be polyethylene, polypropylene, polyvinyl chloride, polystyrene, etc., such as waste plastic from municipal waste. In this case, it will be in a molten state by 180°C, although it depends on the time of the compression molding process, so in this case, the appropriate temperature of the hot air will be selected to be 150 to 160°C.
圧縮成型室9両側壁、底面、プレス14.15の圧縮面
およびブレス13の圧縮面には硬質メツキを施した薄板
16が貼られているので圧縮成型されたブロックの剥離
は良い。廃プラスチックを圧縮成型室9の中で圧縮する
と、溶融状態になった熱可塑性プラスチックが他の軟化
不良固体を包囲しブロック化する。Hard plated thin plates 16 are attached to both sides of the compression molding chamber 9, the bottom surface, the compression surfaces of the presses 14 and 15, and the compression surfaces of the brace 13, so that the compression molded blocks can be easily peeled off. When the waste plastic is compressed in the compression molding chamber 9, the molten thermoplastic plastic surrounds other poorly softened solids and forms a block.
次に圧縮成型されたブロックの表面処理であるが、シリ
ンダーBは更に伸長し、シリンダー〇は後退して第3図
に示した位置から第4図に示した位置までブロック17
を押して、シリンダーDを操作してプレス1日によりブ
ロック17を200〜400°Cに加熱したホットロー
”5−19ニかけて表層を溶融固化し、外部へ押出すよ
うにしている。Next, regarding the surface treatment of the compression-molded block, cylinder B is further extended and cylinder ○ is retracted to move the block 17 from the position shown in Figure 3 to the position shown in Figure 4.
is pressed, the cylinder D is operated, and the block 17 is heated to 200 to 400° C. in a hot row of 5-19 days to melt and solidify the surface layer and extrude it to the outside.
この場合、ホットローラー19の機構的な取付は構造は
第6図、第7図に示すようにギア20を介してすべての
ホットローラー19の回転方向が第9図に示す方向にな
るようにしてあり、該ホットローラー19、ギア20は
それぞれ軸受21.22により支持されている。In this case, the mechanical installation of the hot rollers 19 is such that the rotating direction of all the hot rollers 19 is in the direction shown in FIG. 9 through gears 20 as shown in FIGS. 6 and 7. The hot roller 19 and gear 20 are supported by bearings 21 and 22, respectively.
また、ブロック表層溶融時に廃プラスチックのホットロ
ーラー19への融着がある場合はこれをかき落とし、ブ
ロックに付着させ′るようにかき取り装置23が装備さ
れている。尚、前記ブロック17の押出し部の前後の壁
にはホットプレート24が取付けである。また第6図、
第7図に示す場合はモーター25によりホットローラー
19のすべてを回転駆動させてブロック17の押出しを
助けているが、それに限らず自由回転のホ・ントローラ
−19として、ブロック17の重量と該ブロック17の
周囲4側面の溶融速度に合わせて自然落下するようにし
ても良い。Further, a scraping device 23 is provided to scrape off any waste plastic that is fused to the hot roller 19 when the surface layer of the block is melted and make it adhere to the block. Incidentally, a hot plate 24 is attached to the front and rear walls of the extruded portion of the block 17. Also, Figure 6,
In the case shown in FIG. 7, all of the hot rollers 19 are rotationally driven by the motor 25 to help extrude the block 17. It may be arranged to fall naturally in accordance with the melting speed of the surrounding four sides of 17.
一方第11図に示したように搬送室4とスクリューフィ
ーダー6による攪拌、予熱工程を複数段に構成して、予
熱を行なう場合は予熱が完全に行なわれて圧縮成型室9
における成型加工も容易になる。On the other hand, as shown in FIG. 11, when preheating is performed by configuring the stirring and preheating steps in the transfer chamber 4 and the screw feeder 6 in multiple stages, the preheating is completely performed and the compression molding chamber 9
The molding process is also facilitated.
成型加工されたブロックは蓄熱状態にあり、押出し時の
表層のホットローラー19による加工で熱がブロック内
部に奪われることがないので溶融同化が速やかで良好で
ある。The molded block is in a heat storage state, and heat is not transferred to the inside of the block during extrusion by hot rollers 19 on the surface layer, so that melting and assimilation is rapid and good.
常温により圧縮成型されたブロックにおいて表層を溶融
固化する場合、外部からの加熱はブロックの吸熱が先行
して非常に時間を要する。When melting and solidifying the surface layer of a block compression-molded at room temperature, external heating takes a very long time because the block absorbs heat first.
スクリューフィーダー6による50〜100°Cの第1
次攪拌、予熱と圧縮成型室9における150〜160°
Cの第2次加熱は非常に重要であり、搬送室4の熱風5
0〜150°Cに対して廃プラスチックは50〜100
°Cに予熱され、圧縮成型室9への熱風150〜200
°Cに対して廃プラスチックは150〜160°Cに加
熱されてポリエチレン、ポリプロピレン、ポリ塩化ビニ
ール、dびポリスチレン等が溶融すると考えられる。“
′
また、スクリューフィーダー6による攪拌、予熱が圧縮
成型室9での加熱効果に影響する。50-100°C first by screw feeder 6
Next stirring, preheating and compression molding chamber 9 at 150-160°
The secondary heating of C is very important, and the hot air 5 in the transfer chamber 4
Waste plastic temperature is 50-100°C compared to 0-150°C.
Hot air preheated to 150-200 °C and into the compression molding chamber 9
It is thought that waste plastics are heated to 150 to 160°C to melt polyethylene, polypropylene, polyvinyl chloride, polystyrene, etc. “
' Also, the stirring and preheating by the screw feeder 6 affect the heating effect in the compression molding chamber 9.
尚、上述したホットローラー19の代わりにホットプレ
ート24を第10図に示すように押出し部の全壁面に装
着した場合も実施可能であり、ブロック17の重量とブ
ロック17の全壁面の溶融速度で自然に落下するので良
好なブロック表面が得られる。In addition, it is also possible to install a hot plate 24 on the entire wall surface of the extrusion section as shown in FIG. 10 instead of the hot roller 19 described above. Since it falls naturally, a good block surface can be obtained.
次に上述したような方法で廃プラスチックを圧縮成型し
た場合、ブロック17は蓄熱しており、冷えるまでにか
なりの時間を要するために押出し装置から出たブロック
17を水槽に落とし第1図に示すようにコンベア26に
より水きり搬送冷却処理する。Next, when the waste plastic is compression molded by the method described above, the block 17 accumulates heat and takes a considerable amount of time to cool down. The conveyor 26 drains, transports, and cools the material.
ブロック17の押出し部は第6図で示したように開閉底
27は重錘28で閉止されており、ブロック17の重量
で開き、押出し後は重錘28により閉止状態に戻る。As shown in FIG. 6, the extrusion portion of the block 17 has an opening/closing bottom 27 that is closed by a weight 28, and is opened by the weight of the block 17, and is returned to the closed state by the weight 28 after extrusion.
前記クラツシ忙装置24鷹送−イの供給口5・圧縮成型
装置等に連通ずる連通口に排気ガスノズル29を配設し
、それらから排気ガス管30を経由して集塵脱臭設備3
1に送気して塵埃や臭気を除去できるようにしである。An exhaust gas nozzle 29 is disposed at a communication port that communicates with the supply port 5 of the cleaning device 24, the compression molding device, etc., and the dust collection and deodorization equipment 3 is passed from these through an exhaust gas pipe 30.
1 to remove dust and odors.
(へ)発明の効果
本発明は以上の説明により明らかなように、クラッシャ
ーで酸砕された廃プラスチックをガス発生前の熱変形温
度雰囲気で予熱することにより軟化させてから、史上こ
圧縮成型室内で加熱した後、プレスにより圧縮成型し、
それにより圧縮成型された廃プラスチックは膨張復元も
なく効果的な減容化ができる。(f) Effects of the Invention As is clear from the above explanation, the present invention is based on the method of softening waste plastics by preheating them in an atmosphere with a heat deformation temperature before gas generation, and then processing the waste plastics in a compression molding chamber. After heating, compression molding is performed using a press.
As a result, compression-molded waste plastics can be effectively reduced in volume without expanding and restoring.
また、多種類の廃プラスチックの各々に共通した熱変形
温度を選定することにより、有害な熱分解生成物を極力
発生させずに熱可塑性プラスチック類を溶融させて他の
溶融しない固体、例えは、熱硬化性樹脂、小石、ガラス
の磁片等に溶着し、またブロック内部の空洞に侵入させ
て可能な限りブロック内部の空洞をなくし、また表層を
十分に溶融固化さ鹸、−ブ白鴇りの強度を強化させる極
めて効果的なi溶化が可能であり、取扱いが簡易手軽に
なフて埋立て廃棄の荷役、運1殻作業の効率化等が図ら
れる極めて合理的且つ経済的である。In addition, by selecting a common heat distortion temperature for each of the many types of waste plastics, it is possible to melt thermoplastics while minimizing the generation of harmful thermal decomposition products, and to melt other unmelted solids, such as Welded to thermosetting resin, pebbles, glass magnetic pieces, etc., and penetrated into the cavity inside the block to eliminate the cavity inside the block as much as possible, and the surface layer was sufficiently melted and solidified. It is possible to perform very effective i-solubilization that strengthens the strength of the material, and it is extremely rational and economical because it is simple and easy to handle, making it possible to improve the efficiency of loading and unloading for landfill disposal and transportation work.
第1図は本発明の一実施例の処理工程を示す簡略フロー
シート、第2図、第3図及び第4図は圧縮成型開始時の
縦断面図による廃プラスチックの圧縮成型工程の説明図
で、第2図は軟化した廃プラスチツクブロックの圧縮成
型室での圧縮成型開始時の状態図、第3図は軟化した廃
プラスチックを両側からプレスにより圧縮した状態図、
第4図は圧縮した廃プラスチックのブロックを右側に移
動した後、上方からプレスで押出しgtEの中に移動さ
せた状態図である。第5図は本発明の方法を実施する為
の装置本体の概略立体図、第6図はホットローラーの配
設状態とその回転駆動機構及び開閉底の開閉機構を示す
断面図、第7図は同右側面図、第8図はプレスに装備さ
れたゲートが搬送室の出口を遮断した状態の説明図、第
9図はホットローラーの表面に付着した廃プラスチック
をかき落として、ブロックに連続的に再付着させるかき
取り装置の配設状態を示す断面図、第10図はホットプ
レートだけを押出し部の内壁に取付けた場合の断面図、
第11図は廃プラスチックを複数台のスクリューフィー
ダーにより攪拌、予熱、搬送する場合の他の実施例の簡
略説明図である。
1・・・ごみビット、2・・・クラッシャー、3・・・
選別機、4・・・搬送室、5・・・供給口、6・・・ス
クリューフィーダー、7・・・熱風発生装置、8・・・
熱風の吹込み管、9・・・圧縮成型室、10・・・熱風
吹込みノズル、11・・・搬送室出口、12・・・ゲー
ト、13・・・プレス、14・・・プレス、15・・・
プレス、16・・・メツキ薄板、17・・・ブロック、
1日・・・プレス、19・・・ホットローラー、20・
・・ギア、21.22・・・軸受、23・・・かき取り
装置、24・・・ホットプレート、25・・・モーター
、26・・・コンベア、27・・・開閉底、2日・・・
重錘、29・・・排気ガスノズル、30・・・排気ガス
管、31・・・集塵脱臭設備、
A・・・シリンダー、B・・・シリンダー、C・・・シ
リンダー、D・・・シリンダー、TC,・・・温度調節
装置、TC,・・・温度調節装置、S■・・・電磁弁、
TCV、・・・温度調節弁、TCV2・・・温度調節弁
。
第2図
第3図
第6図 嘉7図
I
第8図
第9図 第10図Fig. 1 is a simplified flow sheet showing the processing steps of one embodiment of the present invention, and Figs. 2, 3, and 4 are explanatory diagrams of the compression molding process of waste plastics, showing longitudinal cross-sectional views at the start of compression molding. , Figure 2 is a state diagram of a softened waste plastic block at the start of compression molding in the compression molding chamber, and Figure 3 is a state diagram of a softened waste plastic block compressed from both sides by a press.
FIG. 4 is a state diagram in which a block of compressed waste plastic is moved to the right side and then extruded from above using a press and moved into the gtE. Fig. 5 is a schematic three-dimensional view of the main body of the apparatus for implementing the method of the present invention, Fig. 6 is a sectional view showing the arrangement of the hot roller, its rotational drive mechanism, and the opening/closing mechanism of the opening/closing bottom. The right side view of the same, Figure 8 is an explanatory diagram of the state in which the gate equipped on the press blocks the exit of the transfer chamber, and Figure 9 is an explanatory diagram of the state in which the exit of the transfer chamber is blocked by the gate equipped on the press. A cross-sectional view showing the arrangement of a scraping device for redeposition; FIG. 10 is a cross-sectional view when only the hot plate is attached to the inner wall of the extrusion part;
FIG. 11 is a simplified explanatory diagram of another embodiment in which waste plastic is stirred, preheated, and transported by a plurality of screw feeders. 1...garbage bit, 2...crusher, 3...
Sorter, 4... Transfer chamber, 5... Supply port, 6... Screw feeder, 7... Hot air generator, 8...
Hot air blowing pipe, 9... Compression molding chamber, 10... Hot air blowing nozzle, 11... Transfer chamber outlet, 12... Gate, 13... Press, 14... Press, 15 ...
Press, 16... Plated thin plate, 17... Block,
1st...press, 19...hot roller, 20.
...Gear, 21.22...Bearing, 23...Scraping device, 24...Hot plate, 25...Motor, 26...Conveyor, 27...Opening/closing bottom, 2nd...・
Weight, 29...Exhaust gas nozzle, 30...Exhaust gas pipe, 31...Dust collecting and deodorizing equipment, A...Cylinder, B...Cylinder, C...Cylinder, D...Cylinder , TC, ... Temperature control device, TC, ... Temperature control device, S■ ... Solenoid valve,
TCV...Temperature control valve, TCV2...Temperature control valve. Figure 2 Figure 3 Figure 6 Figure 7 Figure I Figure 8 Figure 9 Figure 10
Claims (2)
程により破砕された廃プラスチックを攪拌しながら約5
0℃〜1500℃で予熱する攪拌予熱工程、該予熱され
た廃プラスチックの所定量に約1000℃〜2000℃
の熱風を吹付けて軟化乃至一部溶融させてブロック状に
圧縮する加熱圧縮工程と、該加熱圧縮された廃プラスチ
ックの表層を約2000℃〜4000℃で溶融固化させ
ながら外部へ搬出する溶融搬出工程とから成ることを特
徴とする廃プラスチックの圧縮成型方法。(1) A crushing process in which waste plastic is crushed, and while stirring the waste plastic crushed in the crushing process,
A stirring preheating step of preheating at 0°C to 1500°C, and a predetermined amount of the preheated waste plastic to about 1000°C to 2000°C.
A heating compression process in which hot air is blown to soften or partially melt the plastic and compress it into a block shape, and a melting process in which the surface layer of the heated and compressed waste plastic is melted and solidified at approximately 2000°C to 4000°C and then transported outside. A compression molding method for waste plastic, characterized by comprising the steps of:
所要の温度の熱風の吹込み手段とを有する搬送室、該搬
送室により撹拌予熱された廃プラスチックを受容し、所
要の温度の熱風吹込み手段と三方向からの圧縮手段とを
有する圧縮成型室、該圧縮成型室で圧縮されたブロック
の表層を所要の温度で溶融搬出する手段を有する押出し
部とから成ることを特徴とする廃プラスチックの圧縮成
型装置。(2) A transfer chamber having a means for stirring the input waste plastic that has been crushed and a means for blowing hot air at a desired temperature, which receives the waste plastic that has been stirred and preheated by the transfer chamber, and blows hot air at the desired temperature. A compression molding chamber having a compression molding means and a compression means from three directions, and an extrusion section having a means for melting and transporting the surface layer of the block compressed in the compression molding chamber at a required temperature. Compression molding equipment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30664087A JP2541832B2 (en) | 1987-12-03 | 1987-12-03 | Method and apparatus for compression molding waste plastic |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30664087A JP2541832B2 (en) | 1987-12-03 | 1987-12-03 | Method and apparatus for compression molding waste plastic |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01146708A true JPH01146708A (en) | 1989-06-08 |
JP2541832B2 JP2541832B2 (en) | 1996-10-09 |
Family
ID=17959532
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP30664087A Expired - Lifetime JP2541832B2 (en) | 1987-12-03 | 1987-12-03 | Method and apparatus for compression molding waste plastic |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2541832B2 (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5151230A (en) * | 1990-10-01 | 1992-09-29 | Dinoflex Manufacturing Ltd. | Process for production of products formed of polymer bonded and granulated particles |
NL9300653A (en) * | 1993-04-16 | 1994-11-16 | Herman Jacob Van Der Mark | Method and apparatus for processing thermoplastic material |
EP0662379A1 (en) * | 1993-11-17 | 1995-07-12 | Hitachi Zosen Corporation | Process and apparatus for collecting waste plastics as separated |
FR2744378A1 (en) * | 1996-02-05 | 1997-08-08 | Prangere Roland | DEVICE FOR REDUCING NON-RECYCLABLE WASTE BY ACTION OF HEAT AND CYLINDERS |
EP0904909A1 (en) * | 1997-09-17 | 1999-03-31 | Eric Vieslet | Method and device for conversion of mainly thermoplastic materials, especially scrap films or foils |
WO2002094530A1 (en) * | 2001-04-16 | 2002-11-28 | Jyrobotics Co., Ltd. | Device for reducing volume of wasted-styrene foam |
FR2847507A1 (en) * | 2002-11-22 | 2004-05-28 | Naturembal Sa | Recycling machine for bulk plastic materials has storage silo linked to compression stage, fusion chamber and shaping and cooling system |
JP2009018248A (en) * | 2007-07-11 | 2009-01-29 | Masakazu Kobayashi | Wastes treatment apparatus |
ITMO20080212A1 (en) * | 2008-08-04 | 2010-02-05 | Enzo Astolfi | PROCEDURE AND PLANT FOR THE TREATMENT OF REFUSAL MATERIAL |
CN105157041A (en) * | 2015-09-01 | 2015-12-16 | 浙江富春江环保热电股份有限公司 | Feed air-drying sludge charging delivery device and charging delivery control method thereof |
CN105196335A (en) * | 2015-09-01 | 2015-12-30 | 浙江富春江环保热电股份有限公司 | Stirred and air-dried sludge charging conveying equipment and charging conveying control method thereof |
EP3835022A1 (en) * | 2019-12-12 | 2021-06-16 | Kompopat Oy | A device and a method for processing material |
-
1987
- 1987-12-03 JP JP30664087A patent/JP2541832B2/en not_active Expired - Lifetime
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5151230A (en) * | 1990-10-01 | 1992-09-29 | Dinoflex Manufacturing Ltd. | Process for production of products formed of polymer bonded and granulated particles |
US5667151A (en) * | 1993-02-25 | 1997-09-16 | Hitachi Zosen Corporation | Process and apparatus for collecting waste plastics as separated |
NL9300653A (en) * | 1993-04-16 | 1994-11-16 | Herman Jacob Van Der Mark | Method and apparatus for processing thermoplastic material |
EP0662379A1 (en) * | 1993-11-17 | 1995-07-12 | Hitachi Zosen Corporation | Process and apparatus for collecting waste plastics as separated |
FR2744378A1 (en) * | 1996-02-05 | 1997-08-08 | Prangere Roland | DEVICE FOR REDUCING NON-RECYCLABLE WASTE BY ACTION OF HEAT AND CYLINDERS |
WO1997028910A1 (en) * | 1996-02-05 | 1997-08-14 | Roland Prangere | Device for reducing the volume of non-recyclable waste by means of heat and hydraulic rams |
EP0904909A1 (en) * | 1997-09-17 | 1999-03-31 | Eric Vieslet | Method and device for conversion of mainly thermoplastic materials, especially scrap films or foils |
WO2002094530A1 (en) * | 2001-04-16 | 2002-11-28 | Jyrobotics Co., Ltd. | Device for reducing volume of wasted-styrene foam |
FR2847507A1 (en) * | 2002-11-22 | 2004-05-28 | Naturembal Sa | Recycling machine for bulk plastic materials has storage silo linked to compression stage, fusion chamber and shaping and cooling system |
JP2009018248A (en) * | 2007-07-11 | 2009-01-29 | Masakazu Kobayashi | Wastes treatment apparatus |
ITMO20080212A1 (en) * | 2008-08-04 | 2010-02-05 | Enzo Astolfi | PROCEDURE AND PLANT FOR THE TREATMENT OF REFUSAL MATERIAL |
CN105157041A (en) * | 2015-09-01 | 2015-12-16 | 浙江富春江环保热电股份有限公司 | Feed air-drying sludge charging delivery device and charging delivery control method thereof |
CN105196335A (en) * | 2015-09-01 | 2015-12-30 | 浙江富春江环保热电股份有限公司 | Stirred and air-dried sludge charging conveying equipment and charging conveying control method thereof |
CN105157041B (en) * | 2015-09-01 | 2017-08-11 | 浙江富春江环保热电股份有限公司 | Feeding wind device for conveying dried sludge into boiler conveying device and its enter stove conveyance control method |
EP3835022A1 (en) * | 2019-12-12 | 2021-06-16 | Kompopat Oy | A device and a method for processing material |
US11130258B2 (en) | 2019-12-12 | 2021-09-28 | Kompopat Oy | System and a method for processing material |
Also Published As
Publication number | Publication date |
---|---|
JP2541832B2 (en) | 1996-10-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5217655A (en) | Methods for preparation of composite materials | |
US4772430A (en) | Process for compacting and solidifying solid waste materials, apparatus for carrying out the process and overall system for disposal of such waste materials | |
EP0800445B1 (en) | Process and plant for processing mixed plastics | |
US5190226A (en) | Apparatus and method for separation, recovery, and recycling municipal solid waste and the like | |
JPH01146708A (en) | Compression molding method for waste plastic and device thereof | |
KR101981193B1 (en) | Waste carpet reproduction device | |
CN105436189B (en) | Consumer waste innocent production line | |
JP3892366B2 (en) | Waste plastic processing equipment | |
KR101013132B1 (en) | Solid fuel forming machine using flammable waste | |
JPH11254439A (en) | Industrial waste treatment system | |
JP2964399B2 (en) | Recycled paper pellets, recycled paper pellet granulation method, and recycled paper pellet pelletizer | |
JPH08252560A (en) | Heat melt mixing method and heat melt solidifying device for waste synthetic resins | |
DE4420211C1 (en) | Preparation of granules from contaminated mixed polymer waste | |
KR200233402Y1 (en) | Forming device of system for manufacturing solid fuel | |
JPH09300348A (en) | Volume reduction method and volume reduction device for used plastic sheets | |
JPH0628245Y2 (en) | Volume reduction equipment for waste foamed resin | |
KR100259132B1 (en) | Forming device using waste synthetic resin | |
JP2000169859A (en) | Recycled pellet production equipment | |
CN217494852U (en) | Leftover material recycling device of film blowing machine | |
KR100442051B1 (en) | Apparatus for manufacturing a refuse derived fuel and method thereof | |
GB2565261A (en) | A glass Briquette forming system | |
KR200283834Y1 (en) | Manufacturing device for recycling foaming rosin panel | |
JPH10264159A (en) | Method and device for regenerating waste synthetic resins, shredder dust, and the like | |
JPH0586724B2 (en) | ||
JP2001341128A (en) | Method of molding organic solid substance, molding apparatus thereof, and molded article thereof |