[go: up one dir, main page]

JPH01144061A - Electrostatic toner - Google Patents

Electrostatic toner

Info

Publication number
JPH01144061A
JPH01144061A JP62303776A JP30377687A JPH01144061A JP H01144061 A JPH01144061 A JP H01144061A JP 62303776 A JP62303776 A JP 62303776A JP 30377687 A JP30377687 A JP 30377687A JP H01144061 A JPH01144061 A JP H01144061A
Authority
JP
Japan
Prior art keywords
toner
resin
particles
toner particles
dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62303776A
Other languages
Japanese (ja)
Other versions
JPH0814719B2 (en
Inventor
Keisuke Satsuta
薩▲すい▼ 恵介
Yasuharu Iida
保春 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Artience Co Ltd
Original Assignee
Toyo Ink Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink Mfg Co Ltd filed Critical Toyo Ink Mfg Co Ltd
Priority to JP62303776A priority Critical patent/JPH0814719B2/en
Publication of JPH01144061A publication Critical patent/JPH01144061A/en
Publication of JPH0814719B2 publication Critical patent/JPH0814719B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/0802Preparation methods
    • G03G9/0804Preparation methods whereby the components are brought together in a liquid dispersing medium

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Developing Agents For Electrophotography (AREA)

Abstract

PURPOSE:To improve nonuniform electrifiability and hydrophilicity and poor triboelectrifiability due to low resistivity on the surface of a toner by mixing toner particles produced in water with an aqueous resin dispersion, attaching the resin on the surface of the toner particles, drying them at a temperature of the glass transition point of the resin or higher to coat the surfaces with the resin. CONSTITUTION:The surfaces of the toner particles are coated with the resin by mixing the toner particles produced in water with the aqueous resin dispersion having an average particle diameter of 0.01-1mum and a glass transition point of 40-100 deg.C to attach the resin to the surfaces of the toner particles, and drying them at a temperature of the glass transition point or higher, thus permitting the obtained toner particles to be improved in nonuniformity of triboelectrifiability and poor triboelectrifiability due to low resistivity.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、電子写真、イオンフロー記録法等の静電潜像
を可視画像とする方法にて用いられる静電トナーに関す
る。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to an electrostatic toner used in a method of converting an electrostatic latent image into a visible image in electrophotography, ion flow recording, etc. .

(従来の技術) 静電潜像を可視画像とするための粉体トナーとしては、
染料、顔料、磁性粉等をトナー用樹脂に溶融混練によっ
て分散し、冷却後これを機械的に粉砕、その後分級して
得る方法が一般的である。
(Prior art) As a powder toner for converting an electrostatic latent image into a visible image,
A common method is to disperse dyes, pigments, magnetic powders, etc. in toner resin by melt-kneading, mechanically crush the resultant after cooling, and then classify.

しかしながら、この方法で得られるトナーは、不定形で
あり、均一な電荷が得られにくいこと、流動性が悪い等
の欠点が指摘されている。
However, it has been pointed out that the toner obtained by this method has disadvantages such as being amorphous, making it difficult to obtain a uniform charge, and having poor fluidity.

また、製造において、溶融混練、粉砕に要する電気エネ
ルギーの消費は厖大であり、いわゆる粉砕性以外の方法
にて、粉体トナーを得ることが検討されている。
Furthermore, in production, the consumption of electrical energy required for melting, kneading, and pulverization is enormous, and methods other than so-called pulverization are being considered to obtain powder toner.

上記した溶融混練、その後の粉砕にて製造するいわゆる
粉砕性以外の粉体トナーの製造方法としては、噴霧乾燥
法、懸濁重合法、界面重合法等が知られている。
Spray drying methods, suspension polymerization methods, interfacial polymerization methods, and the like are known as methods for producing powder toners other than the so-called pulverizable method, which are produced by the above-mentioned melt-kneading and subsequent pulverization.

このうち、噴霧乾燥法にて製造する方法は2球状のトナ
ーが生成するため、均一な電荷が得られ、流動性が良好
であるが、噴霧乾燥機の防爆の対応および溶剤の回収等
を必要とすること、乾燥時に要する熱エネルギーの消費
が厖大であること、乾燥後にもトナー中に溶剤が残存し
、除去が困難であること等の欠点があり。
Among these methods, the spray drying method produces toner in the form of two spheres, which provides a uniform charge and good fluidity, but requires explosion-proofing of the spray dryer and recovery of the solvent. The disadvantages include that the thermal energy required for drying is enormous, and that the solvent remains in the toner even after drying and is difficult to remove.

また、十分なトナーの物性を付与させるときには、材料
に対する制約があって、この方法のみにより十分な特性
のトナーがなかなか得られない。
Furthermore, when imparting sufficient physical properties to toner, there are restrictions on the materials, and it is difficult to obtain toner with sufficient properties using this method alone.

また、上記以外に特開昭36−10231.47−51
830.51−14895.55−50962゜59−
28164.59−152450等の各公報に示される
界面重合法によりトナーを生成する方法が提案されてい
る。これらは従来の粉砕法に比べ粒子の生成(粉砕)に
要するエネルギー消費量が少なく、また。
In addition, in addition to the above, JP-A-36-10231.47-51
830.51-14895.55-50962゜59-
28164.59-152450 and the like have been proposed to produce toner using an interfacial polymerization method. These methods require less energy to generate (pulverize) particles than conventional pulverization methods.

均一な球形の粒子が得られるという利点がある。しかし
ながら、水中でのトナー粒子の製造時に使用する分散剤
、安定剤等がトナー粒子表部に残存し除去が困難であり
、洗浄、乾燥して粉体トナーとした後も空気中の水分を
吸収してトナーの電気抵抗を低下させ普通紙複写を困難
にし、またトナー表面の電荷を不均一にするという欠点
等が指摘されている。
It has the advantage that uniform spherical particles can be obtained. However, dispersants, stabilizers, etc. used during the production of toner particles in water remain on the surface of the toner particles and are difficult to remove, and even after washing and drying to form a powder toner, they absorb moisture in the air. It has been pointed out that this method lowers the electrical resistance of the toner, making it difficult to copy on plain paper, and also makes the charge on the toner surface non-uniform.

このようなトナーの表面を処理する方法として特開昭5
4−76233号には、残留ポリビニルアルコールを不
溶化するためメラミン縮金物で処理する方法。
As a method for treating the surface of such toner, Japanese Patent Application Laid-open No. 5
No. 4-76233 discloses a method of treating residual polyvinyl alcohol with a melamine condensate to insolubilize it.

また、コアセルベーション法によりケトン−アルデヒド
樹脂をトナー表面に析出させる方法等が開示されている
Further, a method of precipitating a ketone-aldehyde resin on the surface of a toner by a coacervation method is disclosed.

しかしながら、残留ポリビニルアルコールの不溶化を行
なってもトナーの充分な電気抵抗が得られない等の問題
があり、また、コアセルベーション法は、有機溶剤の使
用が不可欠であり、他の容易な処理法が必要とされた。
However, even if residual polyvinyl alcohol is insolubilized, there are problems such as not being able to obtain sufficient electrical resistance of the toner, and the coacervation method requires the use of an organic solvent, and other easy processing methods cannot be used. was needed.

(発明が解決しようとする問題点) 本発明は、水中で生成したトナー表面の帯電の不均一さ
、トナー表面の親水性、抵抗低下による摩擦帯電性不良
等を改良することを目的とする。
(Problems to be Solved by the Invention) An object of the present invention is to improve the non-uniform charging of the toner surface generated in water, the hydrophilicity of the toner surface, and the poor triboelectric charging properties due to a decrease in resistance.

〔発明の構成〕[Structure of the invention]

(問題を解決するだめの手段) 本発明は、水中で生成したトナー粒子を、樹脂粒子の平
均粒径が0.01〜1μであり該樹脂のガラス転移温度
が40℃以上で100℃以下である水性樹脂分散液と混
合することにより、上記トナー粒子外表面に上記樹脂粒
子を付着させ1次いで、付着した樹脂のガラス転移温度
以上の温度で乾燥することによりトナー表面を上記樹脂
で被覆処理してなることを特徴とする静電トナーに関す
る。
(Another Means to Solve the Problem) The present invention provides toner particles produced in water in which the average particle size of the resin particles is 0.01 to 1μ and the glass transition temperature of the resin is 40°C or higher and 100°C or lower. The resin particles are attached to the outer surface of the toner particles by mixing with a certain aqueous resin dispersion, and then the toner surface is coated with the resin by drying at a temperature higher than the glass transition temperature of the attached resin. This invention relates to an electrostatic toner characterized by:

本発明で水中でトナー粒子を生成する方法としては例え
ば以下の方法があるが、必ずしもこの方法だけに限定さ
れるものではない。
Examples of the method for producing toner particles in water in the present invention include the following method, but the method is not necessarily limited to this method.

懸濁重合法によるトナー粒子は、磁性粉1着色剤。The toner particles produced by the suspension polymerization method include magnetic powder 1 colorant.

ワックス、熱可塑性樹脂等を重合性単量体にて溶解ない
し分散した液を1分散安定剤の入った水溶液中にて微小
滴に分散させながら重合を行うことによって得られる。
It is obtained by polymerizing a liquid obtained by dissolving or dispersing wax, thermoplastic resin, etc. in a polymerizable monomer while dispersing it into fine droplets in an aqueous solution containing a dispersion stabilizer.

この時、磁性粉2着色剤等は特に機械的剪断力を加える
ことなく、粉体として直接モノマー中に分散しても効果
が得られるが、モノマーに可溶もしくは膨潤する結着剤
中に予め機械的剪断力を加えて分散し。
At this time, the effect can be obtained even if the magnetic powder 2 coloring agent is directly dispersed in the monomer as a powder without applying any mechanical shearing force, but it is possible to obtain the effect by dispersing the coloring agent directly in the monomer as a powder without applying any mechanical shearing force. Disperse by applying mechanical shear force.

この分散物をモノマー中に混合した後重合を開始するこ
とによりさらに良好な効果が得られる。
Even better effects can be obtained by starting the polymerization after mixing this dispersion into the monomer.

また、界面重合法によるマイクロカプセルトナーの場合
は2例えば以下の製造法がある。結着剤1着色剤の他に
必要に応じて加えた磁性粉、溶剤およびワックス等を機
械的剪断力をかけて分散し、油性軟質インキ状物とする
。このインキ状物を乳化機等により分散安定剤の入った
水溶液中に微粒子として分散し、この粒子に自体公知の
界面重合法による硬質の殻を形成してマイクロカプセル
とする。溶剤としては上記結着剤を溶解ないし膨潤させ
るものが好ましいが結着剤を溶解しないものであっても
溶剤の一部として用いることができる。この他にも1例
えば特開昭60−57350に示される方法もある。
In the case of microcapsule toner produced by interfacial polymerization, there are two manufacturing methods, for example, as follows. Binder 1 Magnetic powder, solvent, wax, etc. added as necessary in addition to the colorant are dispersed by applying mechanical shearing force to form an oil-based soft ink-like material. This ink-like material is dispersed as fine particles in an aqueous solution containing a dispersion stabilizer using an emulsifier or the like, and a hard shell is formed on the particles by a known interfacial polymerization method to form microcapsules. The solvent is preferably one that dissolves or swells the binder, but a solvent that does not dissolve the binder can also be used as part of the solvent. In addition to this, there is also a method disclosed, for example, in Japanese Patent Application Laid-Open No. 60-57350.

上記の方法で得られるトナー粒子の粒径は5〜20μの
範囲である。
The particle size of the toner particles obtained by the above method is in the range of 5 to 20 microns.

これら水中でトナー粒子を生成する方法は、いずれもト
ナー粒子を水中で安定して分散させるため分散安定剤剤
を用いる。
All of these methods of producing toner particles in water use a dispersion stabilizer to stably disperse the toner particles in water.

分散安定剤としては、ポリビニルアルコール、ポリビニ
ルピロリドン、ヒドロキシエチルセルロース、カルボキ
シメチルセルロース、セルロースガム、シリカ粉末、ラ
ウリル硫酸ナトリウム、オレイン酸ナトリウム等の水溶
性高分子化合物、金属酸化物、界面活性剤等である。こ
れらの分散安定剤は、トナー粒子の微小化および粒径の
均一化の作用を与えるが、洗浄後もトナー表面に残存し
、完全に除去することは困難である。
Examples of the dispersion stabilizer include water-soluble polymer compounds such as polyvinyl alcohol, polyvinylpyrrolidone, hydroxyethyl cellulose, carboxymethyl cellulose, cellulose gum, silica powder, sodium lauryl sulfate, and sodium oleate, metal oxides, and surfactants. These dispersion stabilizers have the effect of making toner particles finer and having a more uniform particle size, but they remain on the toner surface even after washing and are difficult to completely remove.

この残存物は、トナー表面の帯電の不均一さ、トナー表
面の抵抗低下による帯電性不良等の原因となる。
This residue causes non-uniform charging of the toner surface and poor charging performance due to a decrease in resistance on the toner surface.

本発明では上記手法で得られるトナー粒子をトナー粒子
に比較して小さい粒径を有する樹脂の水性分散液と混合
してトナー粒子の表面に樹脂粒子を付着させる。
In the present invention, the toner particles obtained by the above method are mixed with an aqueous dispersion of a resin having a particle size smaller than that of the toner particles, and the resin particles are attached to the surface of the toner particles.

このような水性樹脂分散液としては、活性剤等を含まな
い、いわゆるソープフリーの乳化重合により製造された
分散液がそのままあるいは濃縮されて用いることができ
る。
As such an aqueous resin dispersion, a dispersion produced by so-called soap-free emulsion polymerization that does not contain an activator or the like can be used as it is or after being concentrated.

このようなソープフリー乳化重合により得られた分散液
としては、特開昭58−127702.59−1503
.59−199703公報等に開示されている技術によ
り得られるものであるが9分散している粒子が0.01
〜1μ程度の球状であり9粒径のそろっているものが均
一な皮膜を得るため好ましい。
Dispersions obtained by such soap-free emulsion polymerization are disclosed in JP-A-58-127702.59-1503.
.. Although it is obtained by the technique disclosed in Publication No. 59-199703, etc., the number of dispersed particles is 0.01.
It is preferable that the particles be spherical and have a uniform particle size of about 1 μm to obtain a uniform film.

また、トナーの外表面を被覆し、トナーの耐湿性の向上
、あるいは、トナーの定着性の向上への寄与という役目
から、樹脂分散液中の樹脂は、スチレン−メチルメタア
クリレート共重合体、イソブチルメタクリート−メチル
メタクリレート共重合体等のアクリル系樹脂が好ましい
In addition, the resin in the resin dispersion liquid is made of styrene-methyl methacrylate copolymer, isobutyl Acrylic resins such as methacrylate-methyl methacrylate copolymer are preferred.

また、性質の異なる樹脂微粒子にて、トナーの外表面の
性質を多面的に変化させる目的のため、2種以上の水性
の樹脂分散液を用いることも有効である。
Furthermore, it is also effective to use two or more types of aqueous resin dispersions for the purpose of multifacetedly changing the properties of the outer surface of the toner using fine resin particles having different properties.

またさらに、トナー表面の被覆密度を向上させるため2
粒径の異なる樹脂微粒子を2種以上用いることも有効で
ある。
Furthermore, in order to improve the coating density on the toner surface,
It is also effective to use two or more types of resin fine particles having different particle sizes.

なお、以下のようなビニル系単量体を使用し重合させた
ものが使用できる。
In addition, those obtained by polymerizing the following vinyl monomers can be used.

すなわちビニル系単量体としては、スチレン、ビニルト
ルエン、2−メチルスチレン、t−ブチルスチレンなど
のスチレン系単量体、メチルアクリレート、エチルアク
リレート、イソプロピルアクリレート、n−ブチルアク
リレート、2−エチルへキシルアクリレート、メチルメ
タクリレート、エチルメタクリレートプロピルメタクリ
レート、n−ブチルメタクリレート。
That is, examples of vinyl monomers include styrene monomers such as styrene, vinyltoluene, 2-methylstyrene, and t-butylstyrene, methyl acrylate, ethyl acrylate, isopropyl acrylate, n-butyl acrylate, and 2-ethylhexyl. Acrylate, methyl methacrylate, ethyl methacrylate propyl methacrylate, n-butyl methacrylate.

イソブチルメタクリレート、2−エチルヘキシルメタク
リレートなどのアクリル酸もしくはメタクリル酸アルキ
ルエステル類、アクリル酸、メタクリル酸、クロトン酸
などの一塩基酸、フマール酸、イタコン酸、マレイン酸
などの二塩基酸またはそれらの無水物などのエチレン性
不飽和カルボン酸単量体、N−メチロールアクリルアミ
ド、N−メチロールメタクリルアミド。
Acrylic acid or methacrylic acid alkyl esters such as isobutyl methacrylate and 2-ethylhexyl methacrylate, monobasic acids such as acrylic acid, methacrylic acid, and crotonic acid, dibasic acids such as fumaric acid, itaconic acid, and maleic acid, or their anhydrides. Ethylenically unsaturated carboxylic acid monomers such as N-methylol acrylamide, N-methylol methacrylamide.

N−ブトキシメチルアクリルアミド、N−ブトキシメチ
ルメタクリルアミドなどのN置換(メタ)アクリル系単
量体、ヒドロキシエチルアクリレート、ヒドロキシプロ
ピルアクリレート、ヒドロキシエチルメタクリレート、
ヒドロキシプロピルメタクリレートなどの水酸基含有単
量体、グリシジルアクリレート、グリシジルメタクリレ
ートなどのエポキシ基含有単量体等が挙げられる。
N-substituted (meth)acrylic monomers such as N-butoxymethylacrylamide and N-butoxymethylmethacrylamide, hydroxyethyl acrylate, hydroxypropyl acrylate, hydroxyethyl methacrylate,
Examples include hydroxyl group-containing monomers such as hydroxypropyl methacrylate, and epoxy group-containing monomers such as glycidyl acrylate and glycidyl methacrylate.

上記樹脂微粒子は、ガラス転移温度が40℃以上。The resin fine particles have a glass transition temperature of 40°C or higher.

100℃以下であることが必要であり、特に45℃以上
、70℃以下であることが望ましい。なぜなら、ソープ
フリー重合で生成した粒子も、実際には表面に親水性基
が存在しており、これは残存分散安定剤と同様の問題を
起こす。この親水性基の影響を抑えるために。
It is necessary that the temperature is 100°C or lower, and particularly preferably 45°C or higher and 70°C or lower. This is because particles produced by soap-free polymerization actually have hydrophilic groups on their surfaces, which causes the same problem as the residual dispersion stabilizer. In order to suppress the influence of this hydrophilic group.

トナーを乾燥する際、付着した樹脂微粒子のガラス転移
温度以上に加熱する必要がある。この際、樹脂微粒子の
表面は疎水化される。また、樹脂微粒子のガラス転移温
度以上に加熱することにより、樹脂微粒子が軟化し、被
覆性、気密性が増し、より良好な表面処理が行われる。
When drying the toner, it is necessary to heat the toner to a temperature higher than the glass transition temperature of the attached resin particles. At this time, the surface of the resin fine particles is made hydrophobic. Further, by heating the resin particles to a temperature higher than the glass transition temperature, the resin particles are softened, coating properties and airtightness are increased, and better surface treatment is performed.

この際、樹脂微粒子のガラス転移温度が100℃以上で
は、トナー乾燥時の加熱でも表面が十分に改質されず、
また、40℃以下では表面改質は良好であるが、トナー
の貯蔵安定性に問題が生ずる。
At this time, if the glass transition temperature of the resin particles is 100°C or higher, the surface will not be sufficiently modified even by heating during toner drying.
Further, at temperatures below 40° C., although surface modification is good, a problem arises in the storage stability of the toner.

上記樹脂分散影響は、トナー粒子100重量部に対して
固形分比で0.3〜10重量部も用いる。0.3重量部
以下では、トナー表面を十分被覆できず、また10重量
部以上においては加えただけの効果が得られない。
For the influence of the resin dispersion, a solid content ratio of 0.3 to 10 parts by weight is used with respect to 100 parts by weight of toner particles. If it is less than 0.3 parts by weight, the toner surface cannot be sufficiently coated, and if it is more than 10 parts by weight, the effect of adding it cannot be obtained.

また、トナー同士の凝集が生じる恐れがある。Furthermore, there is a possibility that toner particles may aggregate with each other.

トナーの表面に樹脂分散液の樹脂を付着させ、トナーの
表面を被覆する方法としては9例えばトナーの水分散液
に、水性の樹脂分散液を混合して攪拌し、噴霧乾燥機に
て乾燥することにより得られる。
A method for coating the surface of the toner by attaching the resin of the resin dispersion to the surface of the toner is 9, for example, mixing an aqueous resin dispersion with an aqueous toner dispersion, stirring, and drying with a spray dryer. It can be obtained by

なお、噴霧乾燥の際、樹脂分散液中の樹脂微粒子がトナ
ーの外表面に付着せずに部分的にトナー中に混入があっ
ても、樹脂微粒子は、帯電助剤としての効果が発生する
ため好ましい効果を得ることができる。
Furthermore, during spray drying, even if the resin particles in the resin dispersion do not adhere to the outer surface of the toner and are partially mixed into the toner, the resin particles will still function as a charging aid. A desirable effect can be obtained.

なお、噴霧乾燥機によらずに、水分を濾過等により除去
し、真空乾燥、熱風乾燥等によって乾燥し、しかる後、
乾燥物を解砕することによっても本発明の粉体トナーが
得られる。
In addition, without using a spray dryer, remove moisture by filtration etc., dry by vacuum drying, hot air drying etc., and then,
The powder toner of the present invention can also be obtained by crushing the dried material.

また、トナーの分散液と水性の樹脂分散液とを混合した
後、溶剤の添加、PH調整、加熱、あるいは冷却凝集の
添加1粒子の荷電等の手段によって、トナーのまわりに
水性の樹脂分散液中の樹脂を付着させる操作を用いても
よい。
After mixing the toner dispersion and the aqueous resin dispersion, the aqueous resin dispersion can be mixed around the toner by means such as adding a solvent, adjusting the pH, heating, or adding cooling agglomeration and charging one particle. An operation for adhering the resin inside may also be used.

本発明にて、荷電制御その他の目的で、他の粒子を樹脂
微粒子分散液に加え、トナー外表面に樹脂微粒子と共に
付着させることも有効である。
In the present invention, it is also effective to add other particles to the resin fine particle dispersion and deposit them on the outer surface of the toner together with the resin fine particles for charge control and other purposes.

このような電荷制御剤としては、油溶性染料、含金属染
料、酸性染料、ナフテン酸金属塩、脂肪酸金属石ケン等
が用いられる。
As such charge control agents, oil-soluble dyes, metal-containing dyes, acid dyes, naphthenic acid metal salts, fatty acid metal soaps, etc. are used.

また、流動性改質の目的で疎水性のシリカ、研磨剤とし
てカーボランダム、アルミナ、酸化セリウム等が。
In addition, hydrophobic silica is used for the purpose of improving fluidity, and carborundum, alumina, cerium oxide, etc. are used as abrasives.

また、滑剤として金属石ケン粉末、ポリフッ化ビニリデ
ン、ポリテトラフルオロエチレン等の微粒子等も用いる
ことができる。
Further, as a lubricant, metal soap powder, fine particles of polyvinylidene fluoride, polytetrafluoroethylene, etc. can also be used.

以下2本発明の実施例について述べる。例中2部は重量
部を示す。
Two embodiments of the present invention will be described below. In the examples, 2 parts indicate parts by weight.

実施例1 攪拌機、温度計、コンデンサー、滴下ロート、ガス導入
管を備えたセパラブルフラスコに予め80℃に加熱した
2、0%ポリビニルアルコール(日本合成化学■商品名
GH−20)水溶液1500gおよび下記処方に従い予
め混合した液状物を入れ、容積31のウルトラホモミキ
サー(日本精機側型)を用い、11000rpにて10
分間攪拌した。
Example 1 In a separable flask equipped with a stirrer, thermometer, condenser, dropping funnel, and gas introduction tube, 1500 g of a 2.0% polyvinyl alcohol (Nippon Gosei Kagaku brand name GH-20) aqueous solution previously heated to 80°C and the following were added. Add the pre-mixed liquid according to the recipe, and mix at 11,000 rpm for 10 minutes using a 31-volume Ultra Homo mixer (Nippon Seiki side model).
Stir for a minute.

スチレン             240gメチルメ
タクリレート        60g四三酸化鉄粉  
         300g過酸化ベンゾイル60%キ
シレン溶液 12g攪拌停止後、上記乳化物を窒素置換
を施しながら。
Styrene 240g Methyl methacrylate 60g Triiron tetroxide powder
300g benzoyl peroxide 60% xylene solution 12g After stopping stirring, the emulsion was replaced with nitrogen.

90℃で7時間低速攪拌し1重合反応を続け、平均粒径
12μの球形のトナー粒子を得た。これを50℃の温水
にて攪拌、洗浄、デカンテーションという操作を4回繰
り返した。
One polymerization reaction was continued by stirring at a low speed at 90° C. for 7 hours to obtain spherical toner particles with an average particle size of 12 μm. The operations of stirring, washing, and decantation with 50° C. warm water were repeated four times.

次に、上記トナー粒子を固形分30%になるように上澄
液を除去した後、水性樹脂分散液(綜研化学■製ME−
4651?ブチルアクリレート樹脂(ガラス転移温度6
0℃)樹脂粒径約0.2μの20%分散液)を。
Next, after removing the supernatant liquid so that the solid content of the toner particles is 30%, an aqueous resin dispersion (ME-
4651? Butyl acrylate resin (glass transition temperature 6
0°C) 20% dispersion with a resin particle size of approximately 0.2μ).

上記球形樹脂微粒子に対し、3%になるようにして混合
した。
It was mixed in an amount of 3% with respect to the spherical resin fine particles.

上記混合物を噴霧乾燥機(パルビスGA−31ヤマト化
学■製)にて、入口温度120℃にて噴霧乾燥した。そ
して噴霧乾燥により得られた粉体に、コロイダルシリカ
(R−972日本エアロジル■製)を0゜5%添加し、
その後、70℃に加熱した板上で6時間真空乾燥し、ト
ナー粒子とした。
The above mixture was spray-dried at an inlet temperature of 120° C. using a spray dryer (Palvis GA-31 manufactured by Yamato Kagaku ■). Then, 0.5% of colloidal silica (R-972 manufactured by Nippon Aerosil ■) was added to the powder obtained by spray drying.
Thereafter, it was vacuum dried on a plate heated to 70° C. for 6 hours to obtain toner particles.

上記トナー粒子を市販の複写機(小西六写真工業■製、
  UB i x 1200)にて印字試験を行ったと
ころ。
The above toner particles were applied to a commercially available copying machine (manufactured by Konishiroku Photo Industry ■,
A printing test was conducted using UB i x 1200).

高温高湿下(30℃、70%RH)でも良好な画像を得
ることができた。
Good images could be obtained even under high temperature and high humidity conditions (30° C., 70% RH).

比較例1 実施例1にて、水性樹脂分散液を加えないで噴霧乾燥し
た。得られた粉体に、コロイダルシリカ(R−972日
本エアロジル■製)を0.3%添加し、実施例1と同様
のテストを行なったが1画像がほとんど得られなかった
Comparative Example 1 Spray drying was carried out in Example 1 without adding the aqueous resin dispersion. 0.3% of colloidal silica (R-972 manufactured by Nippon Aerosil ■) was added to the obtained powder, and the same test as in Example 1 was conducted, but almost no image was obtained.

比較例2 実施例1にて、水性の樹脂分散液として、ザイクセンA
(製鉄化学側自己乳化性ポリオレフィン粒径数ミクロン
)を用いたが、樹脂粒子が粗大であるためトナー粒子の
被覆が不十分であった。
Comparative Example 2 In Example 1, Zaixen A was used as the aqueous resin dispersion.
(Steel Manufacturing Chemical's self-emulsifying polyolefin particle size of several microns) was used, but the resin particles were coarse and the toner particles were insufficiently coated.

実施例2 合成ワックス (サンワックス131−P  三洋化成工業製)5部エ
チレン−酢酸ビニル共重合体(酢酸ビニル30%含有)
                  5部石油系権脂
(コーホレックス#2100  東邦石油樹脂)   
               5部ジオクチルフタレ
ート           10部高沸点溶剤(ハイゾ
ール100 日本石油化学製)20部 磁性粉(EPT−500戸田工業製)  40部上記処
方の混合物を3本ロールミルにて分散し、歌いインキ状
物を得た。
Example 2 Synthetic wax (Sunwax 131-P manufactured by Sanyo Chemical Industries) 5 parts ethylene-vinyl acetate copolymer (containing 30% vinyl acetate)
Part 5 petroleum resin (Coholex #2100 Toho Oil Resin)
5 parts dioctyl phthalate 10 parts High boiling point solvent (Hisol 100 manufactured by Nippon Petrochemicals) 20 parts Magnetic powder (EPT-500 manufactured by Toda Kogyo) 40 parts The mixture of the above formulation was dispersed in a three-roll mill to obtain a singing ink-like material. Ta.

このインキ状物300部にイソシアネート(ミリオネー
トMR−200日本ポリウレタン■製)70部を加えて
混合した後、0.75%のポリビニルアルコール水溶液
1200部に加え、コロイドミル(日本精機■製 卓上
コロイドミル)にて110000rp、5分の乳化を行
なった。
After adding and mixing 70 parts of isocyanate (Millionate MR-200 manufactured by Nippon Polyurethane ■) to 300 parts of this ink-like material, the mixture was added to 1200 parts of a 0.75% polyvinyl alcohol aqueous solution, and the mixture was mixed with a colloid mill (Tabletop colloid mill manufactured by Nippon Seiki ■). ) for 5 minutes at 110,000 rpm.

乳化後、別の容器に乳化液を移し、低速の攪拌を続けな
がら、10%のジエチレントリアミン水溶液180部を
加え、3時間攪拌を続けて界面重合反応によりマイクロ
カプセルを生成した。
After emulsification, the emulsion was transferred to another container, and while stirring at a low speed, 180 parts of a 10% diethylenetriamine aqueous solution was added, and stirring was continued for 3 hours to produce microcapsules by interfacial polymerization reaction.

一晩放置後、上澄液を除去し、50℃の温水にて攪拌洗
浄、デカンテーションという操作を4回繰り返し。
After standing overnight, the supernatant liquid was removed, and the operations of stirring and washing with 50°C warm water and decantation were repeated four times.

乳化液のpHを6程度とした。The pH of the emulsion was set to about 6.

上記トナー粒子の水分散液をトナー粒子固型分が30%
になるように上澄液を除去した後、水性樹脂分散液(綜
研化学■製ME−4A51 ;ブチルメタクリレート樹
脂(ガラス転移温度45℃)樹脂粒径約0.2μの20
%分散液)を、トナー粒子固型分に対して3%になるよ
うに混合した。
The aqueous dispersion of the above toner particles has a toner particle solid content of 30%.
After removing the supernatant liquid, aqueous resin dispersion (ME-4A51 manufactured by Soken Kagaku ■; butyl methacrylate resin (glass transition temperature 45°C) resin particle size of approximately 0.2μ 20
% dispersion liquid) was mixed in an amount of 3% based on the solid content of the toner particles.

上記混合物を噴霧乾燥機(パルビスGA−31ヤマト科
学■製)にて、入口温度120℃にて噴霧乾燥した。
The above mixture was spray-dried at an inlet temperature of 120° C. using a spray dryer (Palvis GA-31 manufactured by Yamato Kagaku ■).

噴霧乾燥により得られた粉体に、実施例1と同様の後処
理を施し、市販の複写機(小西六写真工業■製。
The powder obtained by spray drying was subjected to the same post-treatment as in Example 1, and a commercially available copying machine (manufactured by Konishiroku Photo Industry ■) was used.

UBix1200)にて印字試験を行ったところ、良好
な画像を得ることができた。
When a printing test was conducted using UBix1200), a good image could be obtained.

比較例3 実施例2にて、水性の樹脂分散液を加えないで噴霧乾燥
した。得られた粉体に、コロイダルシリカ(R−972
日本エアロジル■製)を0.3%添加し、実施例2と同
様のテストを行なったが2画像がほとんど得られなかっ
た。
Comparative Example 3 In Example 2, spray drying was carried out without adding the aqueous resin dispersion. Colloidal silica (R-972
A test similar to that of Example 2 was carried out by adding 0.3% of Nippon Aerosil ■, but almost no images were obtained.

比較例4 実施例2にて、水性の樹脂分散液のかわりに N。Comparative example 4 In Example 2, N was used instead of the aqueous resin dispersion.

N−ジメチロール尿素を加えて残留ポリビニルアルコー
ルの不溶化を行なったが、比較例1の粉体よりもトナー
の抵抗低下が観察され2画像がほとんど得られなかった
Although N-dimethylol urea was added to insolubilize the residual polyvinyl alcohol, the resistance of the toner was observed to be lower than that of the powder of Comparative Example 1, and almost no second image was obtained.

比較例6 実施例2にて、界面重合にて得たマイクロカプセルを洗
浄後、水を除去し1次にメタノールにて洗浄した。
Comparative Example 6 After washing the microcapsules obtained by interfacial polymerization in Example 2, water was removed and the microcapsules were first washed with methanol.

これをメタノール中、固型分25%の分散液としたのち
、ケトン−アルデヒド樹脂のメタノール溶液を。
This was made into a dispersion with a solid content of 25% in methanol, and then a methanol solution of ketone-aldehyde resin was prepared.

マイクロカプセル固型分に対して、3重量%の固型分比
になるようにして添加した。
The solid content was added at a solid content ratio of 3% by weight based on the solid content of the microcapsules.

次に、このメタノール分散液に水を加えて、ケトン−ア
ルデヒド樹脂をトナー粒子上に析出させた。この分散液
を噴霧乾燥した。しかしながら、マイクロカフ。
Next, water was added to the methanol dispersion to precipitate the ketone-aldehyde resin onto the toner particles. This dispersion was spray dried. However, the micro cuff.

セルをメタノールにて洗浄する際に、カプセル内の芯成
分がメタノール中に殻を通して溶解するため、粘着性を
有した粉体しか、噴霧乾燥によっても得られなかった。
When the cell was washed with methanol, the core component inside the capsule was dissolved through the shell in the methanol, so that only a sticky powder could be obtained even by spray drying.

また、比較例3よりも抵抗の低下することが確認された
Furthermore, it was confirmed that the resistance was lower than that of Comparative Example 3.

比較例7 実施例2にて水性の樹脂分散液としてME−4A51の
かわりに、VE−2029(スチレン−メチルメタアク
リレート共重合体1粒径約0.2μ、ガラス転移温度1
20℃1球形樹脂微粒子20%分散液、綜研化学側製)
を用いて、実施例2と同様のテストを行ったところ1画
像濃度が若干低下した。また、これらのトナーを160
℃のオーブン中に5分間入れたところ。
Comparative Example 7 In place of ME-4A51 as the aqueous resin dispersion in Example 2, VE-2029 (styrene-methyl methacrylate copolymer 1 particle size approximately 0.2μ, glass transition temperature 1
20% dispersion of 1 spherical resin particles at 20℃, manufactured by Soken Chemical Co., Ltd.)
When a test similar to that of Example 2 was conducted using the following, the density of one image was slightly lowered. Also, use these toners at 160
I put it in the oven at ℃ for 5 minutes.

VE−2029を用いたものは、被覆層の気密性が完全
でないため、カプセル内部のインキが気化して発火した
が、ME−4A51を用いたものは発火しなかった。
In the case using VE-2029, the ink inside the capsule vaporized and ignited because the coating layer was not completely airtight, but the case using ME-4A51 did not ignite.

実施例3 石油系樹脂(DRA−100P  東邦石油樹脂■製)
2部 パラフィンワックス(SP−0145日本端ろう■)製
               7部カルナバワックス
(パウダー1 日本端ろう■))55部 トルエン               30部磁性粉
(MA7305  戸田工業側)   40部ジイソプ
ロピルナフタレン        10部上記処方の混
合物をホモデイスパーにて溶融分散させた。
Example 3 Petroleum resin (DRA-100P manufactured by Toho Oil Resin ■)
2 parts Paraffin wax (SP-0145 Nippon Watanou ■) 7 parts Carnauba wax (Powder 1 Nippon Watanou ■) 55 parts Toluene 30 parts Magnetic powder (MA7305 Toda Kogyo side) 40 parts Diisopropylnaphthalene 10 parts Mixture of the above formulation was melted and dispersed using a homodisper.

上記溶融分散液200部に、加温したイソシアネート(
実施例2と同じ)45部を加えて混合溶解させた後、8
0℃に加温した2%のポリビニルアルコール水溶液15
00部に加え、ホモミキサー(U)I−10日日本端■
製)にて1010000rp分の乳化を行なった。
To 200 parts of the above melted dispersion, heated isocyanate (
After adding 45 parts (same as Example 2) and mixing and dissolving, 8 parts
2% polyvinyl alcohol aqueous solution heated to 0°C 15
In addition to 00 copies, Homomixer (U) I-10th Japan side■
Emulsification was carried out for 1,010,000 rpm using

乳化後、10%のジエチレントリアミン水溶液150部
を加え、3時間攪拌を続けて界面重合反応によりマイク
ロカプセルを生成した。
After emulsification, 150 parts of a 10% diethylenetriamine aqueous solution was added, and stirring was continued for 3 hours to produce microcapsules by interfacial polymerization reaction.

以下、実施例2と同様の操作によって、水性樹脂分散液
を被覆させた。実施例2と同様の印字試験を行なったと
ころカプリのない良好な画像を得ることができた。
Thereafter, the same operation as in Example 2 was performed to coat the aqueous resin dispersion. When the same printing test as in Example 2 was carried out, a good image without capri could be obtained.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、水中で液体の状態でトナー粒子を乳化
(粉砕)するため、従来法に比べ粉砕に要するエネルギ
ーを大幅に軽減できる。また、水中で生成したトナー粒
子を水性分散体の状態のまま処理でき、乾燥工程を経な
いで被覆処理できる。
According to the present invention, since toner particles are emulsified (pulverized) in a liquid state in water, the energy required for pulverization can be significantly reduced compared to conventional methods. Further, toner particles generated in water can be treated in the state of an aqueous dispersion, and can be coated without going through a drying process.

また、水性の樹脂分散液は、乳化重合により得られた状
態のまま使用できるので、微粒子粉末化のための乾燥、
補集という工程を経ないので安価となる。
In addition, since the aqueous resin dispersion can be used as it is in the state obtained by emulsion polymerization, it is possible to dry it to form fine particles.
It is inexpensive because it does not go through the process of replenishment.

また、水性の樹脂分散液中から樹脂微粒子を得るための
粉末化に際して生じる微粒子の凝集、また、その解砕と
いう工程も省略でき、したがってトナーの表面に均一に
付着させることが容易である。
In addition, it is possible to omit the steps of agglomeration and crushing of the fine particles that occur during powdering to obtain fine resin particles from an aqueous resin dispersion, and therefore it is easy to uniformly adhere to the surface of the toner.

さらに、上記水性の樹脂分散液は、乾燥後、耐湿性の良
好な高抵抗の被覆をトナーの表面に形成するため芯物質
乳化の際使用した分散安定剤等の残留がトナー表面に存
在していても、耐湿性の良好なトナーとなり得る。
Furthermore, in order to form a high-resistance coating with good moisture resistance on the surface of the toner after drying, the aqueous resin dispersion does not contain residual dispersion stabilizers used in the emulsification of the core substance on the surface of the toner. However, it can be a toner with good moisture resistance.

Claims (1)

【特許請求の範囲】 1、水中で生成したトナー粒子を、樹脂粒子の平均粒径
が0.01〜1μであり該樹脂のガラス転移温度が40
℃以上で100℃以下である水性樹脂分散液と混合する
ことにより、上記トナー粒子外表面に上記樹脂粒子を付
着させ、次いで、付着した樹脂のガラス転移温度以上の
温度で乾燥することによりトナー表面を上記樹脂で被覆
処理してなることを特徴とする静電トナー。 2、上記トナー粒子が、懸濁重合により生成した、球形
トナーである特許請求の範囲第1項記載の静電トナー。 3、上記トナー粒子が、圧力定着性を有する芯物質を界
面重合により形成された殻にてカプセル化したものであ
る特許請求の範囲第1項記載の静電トナー。 4、水性の樹脂分散液を2種以上用いる特許請求の範囲
第1項記載の静電トナー。
[Claims] 1. The toner particles produced in water are prepared by using resin particles having an average particle diameter of 0.01 to 1 μm and a glass transition temperature of the resin of 40 μm.
The resin particles are attached to the outer surface of the toner particles by mixing with an aqueous resin dispersion having a temperature of at least 100 degrees Celsius, and then dried at a temperature equal to or higher than the glass transition temperature of the attached resin to form a toner surface. An electrostatic toner characterized by being coated with the above resin. 2. The electrostatic toner according to claim 1, wherein the toner particles are spherical toner produced by suspension polymerization. 3. The electrostatic toner according to claim 1, wherein the toner particles have a core material having pressure fixability encapsulated in a shell formed by interfacial polymerization. 4. The electrostatic toner according to claim 1, which uses two or more kinds of aqueous resin dispersions.
JP62303776A 1987-12-01 1987-12-01 Electrostatic toner Expired - Lifetime JPH0814719B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62303776A JPH0814719B2 (en) 1987-12-01 1987-12-01 Electrostatic toner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62303776A JPH0814719B2 (en) 1987-12-01 1987-12-01 Electrostatic toner

Publications (2)

Publication Number Publication Date
JPH01144061A true JPH01144061A (en) 1989-06-06
JPH0814719B2 JPH0814719B2 (en) 1996-02-14

Family

ID=17925149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62303776A Expired - Lifetime JPH0814719B2 (en) 1987-12-01 1987-12-01 Electrostatic toner

Country Status (1)

Country Link
JP (1) JPH0814719B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0622686A1 (en) * 1993-04-28 1994-11-02 Nippon Paint Co., Ltd. Production of toner
JP2000284534A (en) * 1999-04-01 2000-10-13 Tomoegawa Paper Co Ltd Electrostatic toner and method for producing the same
JP2009501629A (en) * 2005-07-18 2009-01-22 ダニスコ エイ/エス Dry coating process
WO2016038732A1 (en) 2014-09-12 2016-03-17 株式会社ニチボウ Automatic fire-extinguishing device and fire-detecting tube for use in said automatic fire-extinguishing device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0622686A1 (en) * 1993-04-28 1994-11-02 Nippon Paint Co., Ltd. Production of toner
JP2000284534A (en) * 1999-04-01 2000-10-13 Tomoegawa Paper Co Ltd Electrostatic toner and method for producing the same
JP2009501629A (en) * 2005-07-18 2009-01-22 ダニスコ エイ/エス Dry coating process
WO2016038732A1 (en) 2014-09-12 2016-03-17 株式会社ニチボウ Automatic fire-extinguishing device and fire-detecting tube for use in said automatic fire-extinguishing device
US9962568B2 (en) 2014-09-12 2018-05-08 Nichibou Co., Ltd. Fire detection tube used for automatic fire extinguishing device and the automatic fire extinguishing device

Also Published As

Publication number Publication date
JPH0814719B2 (en) 1996-02-14

Similar Documents

Publication Publication Date Title
EP0447045B1 (en) Method of preparing micro capsules
JP2973234B2 (en) Manufacturing method of microcapsules
JPH026051B2 (en)
JP4182968B2 (en) Toner manufacturing method and positively chargeable non-magnetic one-component toner
US3844811A (en) Agglomeration of pigment particles and compositions utilizing same
JPH0349103B2 (en)
US5120632A (en) Pigment passivation via polymer encapsulation
GB2112538A (en) Encapsulated electrophotographic toner
JP4051583B2 (en) Production method of toner for electrostatic printing
US8192909B2 (en) Chemically prepared porous toner
JPS6325664A (en) Preparation of toner
JPH01144061A (en) Electrostatic toner
US5358821A (en) Process for producing electrophotographic toners containing passivated pigments
JPH0339309B2 (en)
JPS5838781B2 (en) Manufacturing method of pressure fixable microcapsule toner
JPH04118664A (en) Production of magnetic toner
JP4052344B2 (en) Production method of toner for electrostatic printing
JPH01184034A (en) Production of microencapsulated fine particle
JPS63198070A (en) Electrostatic toner
JPH09179336A (en) Production of toner and capsuled toner
JPH0812452B2 (en) Powder toner
JP2817059B2 (en) Toner and method for producing toner
JPS6057859A (en) Magnetic microcapsule toner
JPS63249153A (en) Powder toner
JP2636234B2 (en) Powder toner for developing an electrostatic image and method for producing the same

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080214

Year of fee payment: 12