JPH01143156A - fuel cell power generator - Google Patents
fuel cell power generatorInfo
- Publication number
- JPH01143156A JPH01143156A JP62299175A JP29917587A JPH01143156A JP H01143156 A JPH01143156 A JP H01143156A JP 62299175 A JP62299175 A JP 62299175A JP 29917587 A JP29917587 A JP 29917587A JP H01143156 A JPH01143156 A JP H01143156A
- Authority
- JP
- Japan
- Prior art keywords
- desulfurizer
- desulfurizers
- desulfurization
- fuel cell
- activated carbon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 36
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 34
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims abstract description 11
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 11
- 239000011593 sulfur Substances 0.000 claims abstract description 11
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 4
- 230000003009 desulfurizing effect Effects 0.000 claims abstract description 3
- 230000001172 regenerating effect Effects 0.000 claims abstract description 3
- 238000010248 power generation Methods 0.000 claims description 15
- 238000002407 reforming Methods 0.000 claims description 2
- 239000007789 gas Substances 0.000 abstract description 28
- 238000006477 desulfuration reaction Methods 0.000 abstract description 21
- 230000023556 desulfurization Effects 0.000 abstract description 21
- 229910052739 hydrogen Inorganic materials 0.000 abstract description 19
- 239000001257 hydrogen Substances 0.000 abstract description 19
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 abstract description 18
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 8
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 8
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 238000002485 combustion reaction Methods 0.000 description 4
- 239000003345 natural gas Substances 0.000 description 4
- 239000003054 catalyst Substances 0.000 description 3
- 238000010531 catalytic reduction reaction Methods 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 239000003245 coal Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 239000002737 fuel gas Substances 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- -1 city gas Chemical compound 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/06—Combination of fuel cells with means for production of reactants or for treatment of residues
- H01M8/0662—Treatment of gaseous reactants or gaseous residues, e.g. cleaning
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は燃料の有する化学エネルギーを直接電気エネル
ギーに変換させるエネルギ一部門で用いる燃料電池のう
ち、特に、脱硫を必要とする燃料電池の発電装置に関す
るものである。Detailed Description of the Invention [Field of Industrial Application] The present invention is particularly applicable to power generation using fuel cells that require desulfurization among fuel cells used in the energy sector that directly converts the chemical energy of fuel into electrical energy. It is related to the device.
[従来の技術]
現在までに提案されている燃料電池のうち、たとえば、
溶融炭酸塩型燃料電池は、電解質として溶融炭酸塩を多
孔質物質にしみ込ませてなる電解質板(タイル)を、カ
ソード(酸素極)とアノード(燃料極)で両面から挟み
、カソード側に酸化ガスを供給づると共にアノード側に
燃料ガスを供給することによりカソードと7ノードとの
間で発生する電位差により発電が行われるようにしたも
のを1セルとし、各セルをセパレータを介して多層に積
層した構成のものとしである。[Prior art] Among the fuel cells proposed to date, for example,
In a molten carbonate fuel cell, an electrolyte plate (tile) made by impregnating a porous material with molten carbonate as an electrolyte is sandwiched between a cathode (oxygen electrode) and an anode (fuel electrode), and an oxidizing gas is placed on the cathode side. One cell is one in which electricity is generated by the potential difference generated between the cathode and the seven nodes by supplying fuel gas to the anode side, and each cell is laminated in multiple layers with a separator in between. This is the configuration.
上記溶融炭酸塩型燃料電池による発電装置では、これま
でに、燃料ガスとして、天然ガスを用いる場合、都市ガ
スを用いる場合、石炭を用いる場合等が提案されており
、天然ガスを燃料とする場合は天然ガスを改質し、都市
ガスを燃料とする場合は都市ガスを改質し、又、石炭を
燃料とする場合は石炭をガス化して精製している。In the power generation device using the above molten carbonate fuel cell, it has been proposed to use natural gas, city gas, coal, etc. as the fuel gas. When using city gas as fuel, the city gas is reformed, and when coal is used as fuel, it is gasified and refined.
溶融炭酸塩型燃料電池の燃料として都市ガスの如き硫黄
分の入った常温のガス体を利用する溶融炭酸塩型燃料電
池発電システムとしては、第2図に示す構成のものが知
られている。すなわち、燃料電池1のアノード3に供給
するための都市ガス1Gをライン4により改質器5に導
入され、ここで改質されてアノード3にライン6により
供給されるようにし、上記改質器5の入口側のライン4
の途中には、ガス中の硫黄分を除去するための脱硫器と
してZnO等の脱硫触媒を用いた脱硫器7が組み込まれ
ていると共に、天然ガス予熱器8と9が上記脱硫器7の
上、下流側に配置され、上記アノード3から排出された
ガスは、上記天然ガス予熱器8.9の順に通過する間に
改質器5に入る都市ガスと熱交換を行った後に改質器5
の燃焼室内に導入されるようにしである。又、燃料電池
1のカソード2に酸化ガスを供給するため、空気へを圧
縮4310で圧縮した後、空気予熱器11、タービン1
2、空気予熱器13を経てライン14によりカソード2
に供給すると共に、一部を分岐ライン15により改質器
5の燃焼室内に供給するようにし、上記カソード2から
排出されたガスは、分岐されて一方は空気予熱器11を
通って排出され、他方は空気予熱器13、過熱器16、
蒸発器17を通して排出されるようにしてあり、水H2
0は蒸発器17で蒸気になり過熱器16で過熱されて前
記ライン4に供給し、該ライン4のガスとともに改質器
5に入るようにし、改質器5の燃焼室出口から排出され
た炭酸ガスを含むガスは、ライン14を流れるガスとと
もにカソード2に供給されるようにしである。18は圧
縮機である。As a molten carbonate fuel cell power generation system that utilizes a room temperature gas containing sulfur, such as city gas, as the fuel for the molten carbonate fuel cell, a configuration shown in FIG. 2 is known. That is, 1G of city gas to be supplied to the anode 3 of the fuel cell 1 is introduced into the reformer 5 through the line 4, reformed there, and supplied to the anode 3 through the line 6. Line 4 on the entrance side of 5
A desulfurizer 7 using a desulfurization catalyst such as ZnO is installed as a desulfurizer for removing sulfur content in the gas, and natural gas preheaters 8 and 9 are installed above the desulfurizer 7. , the gas discharged from the anode 3 passes through the natural gas preheater 8.9 in order and exchanges heat with the city gas that enters the reformer 5, and then passes through the reformer 5.
The fuel is introduced into the combustion chamber of the engine. In addition, in order to supply oxidizing gas to the cathode 2 of the fuel cell 1, after compressing the air in the compression 4310, the air preheater 11 and the turbine 1 are
2. Cathode 2 via line 14 via air preheater 13
The gas discharged from the cathode 2 is branched and one side is discharged through the air preheater 11. The other is an air preheater 13, a superheater 16,
The water H2 is discharged through the evaporator 17.
0 becomes steam in the evaporator 17, is superheated in the superheater 16, is supplied to the line 4, enters the reformer 5 together with the gas in the line 4, and is discharged from the combustion chamber outlet of the reformer 5. The gas containing carbon dioxide gas is supplied to the cathode 2 together with the gas flowing through the line 14. 18 is a compressor.
[発明が解決しようとする問題点]
ところが、上記第2図に示す発電システムでは、改質器
5に導入する都市ガスのライン4途中にZno等を脱硫
触媒とする脱硫器7を設け、発電装置の起動時の未だ改
質器5等で水素が発生していないときから上記脱硫器7
を用いて脱硫作用を行わせるようにし、又、改質器5等
で水素が発生した後は改質器5とアノード3とをつなぐ
ライン6の途中からライン19によりライン4の圧縮機
18上流側へ水素を入れて脱硫器7で水素を使用させる
ようにしであるため、■起動時に触媒還元のための水素
が必要となるが、起動時は水素が発生していないので水
素ボンベを設置することが必要となること、■起動時に
触媒還元という操作が入ることによって起動に時間と手
数がかかること、
■脱硫塔を脱硫に適した温度にコントロールしなければ
ならず、又、ぞのための熱交換器や制御システムが必要
になること、
■脱硫のために通常運転時にも水素が必要であることか
ら、燃料電池1のアノード3に供給すべき水素の一部を
脱硫器7の入口に戻さなければならず、それだけ発電効
率が下がること、
等の問題がある。[Problems to be Solved by the Invention] However, in the power generation system shown in FIG. From the time when hydrogen is not yet generated in the reformer 5 etc. when the device is started up, the desulfurizer 7
In addition, after hydrogen is generated in the reformer 5 etc., a line 19 is connected to the line 4 upstream of the compressor 18 from the middle of the line 6 connecting the reformer 5 and the anode 3. Since hydrogen is introduced to the side and used in the desulfurizer 7, hydrogen is required for catalyst reduction at startup, but since no hydrogen is generated at startup, a hydrogen cylinder is installed. ■ It takes time and effort to start up due to the catalytic reduction operation that is required at startup; ■ The temperature of the desulfurization tower must be controlled to an appropriate temperature for desulfurization; Since a heat exchanger and a control system are required; ■Hydrogen is required even during normal operation for desulfurization, a portion of the hydrogen to be supplied to the anode 3 of the fuel cell 1 is supplied to the inlet of the desulfurizer 7. There are problems such as having to return the power to the source, which reduces power generation efficiency.
そこで、本発明は、上記従来の溶融炭酸塩型燃料電池発
電装置で用いられている脱硫器に代えて、起動時から通
常運転時において脱硫に水素を用いないようにして上述
した従来の方式の諸問題を解消しようとするものである
。Therefore, in place of the desulfurizer used in the conventional molten carbonate fuel cell power generation device, the present invention aims to eliminate the use of hydrogen for desulfurization from startup to normal operation. It is an attempt to solve various problems.
[問題点を解決するための手段]
本発明は、上記目的を達成するために、燃料電池のアノ
ードに供給する燃料として、硫黄分の入った常温のガス
体を利用する燃料電池発電装置において、上記硫黄分の
入った常温のガス体を改質のため改質器に導入するライ
ンの途中に、脱硫剤として活性炭を用いた脱硫器のみを
複数個設け、且つ該各脱硫器のうち適宜の脱硫器を再生
式とした構成とする。[Means for Solving the Problems] In order to achieve the above object, the present invention provides a fuel cell power generation device that uses a room temperature gas containing sulfur as a fuel to be supplied to the anode of a fuel cell. A plurality of desulfurizers using activated carbon as a desulfurizing agent are installed in the line in which the room temperature gas containing sulfur is introduced into the reformer for reforming, and an appropriate desulfurizer is installed among the desulfurizers. The desulfurizer will be configured as a regenerative type.
[作 用]
発電装置の起動時は、活性炭を用いた複数個の脱硫器の
うちの1個の脱硫器により脱硫を行わせる。その後適宜
別の脱硫器により脱硫を行わせ、その間他の脱硫器は活
性炭を再生させるようにし、順次切り替えて通常運転時
でも活性炭を用いた脱硫器で脱硫させる。これにより起
動時も従来方式における如き触媒還元のために必要な水
素を供給するための水素ボンベを設置しなくてすみ、且
つ通常運転時も改質器等で発生した水素を一部脱硫のた
めに使用することもなくなる。[Function] When starting up the power generation device, desulfurization is performed by one desulfurizer out of a plurality of desulfurizers using activated carbon. Thereafter, desulfurization is performed by another desulfurizer as appropriate, while the other desulfurizers regenerate activated carbon, and the desulfurizers are sequentially switched to perform desulfurization using the desulfurizer using activated carbon even during normal operation. This eliminates the need to install a hydrogen cylinder to supply the hydrogen necessary for catalytic reduction as in the conventional method during startup, and also allows some of the hydrogen generated in the reformer to be used for desulfurization during normal operation. It will no longer be used for.
[実 施 例] 以下、本発明の実施例を図面を参照して説明する。[Example] Embodiments of the present invention will be described below with reference to the drawings.
第1図は本発明の実施例を示すもので、第2図に示して
おる従来の都市ガス改質溶融炭酸塩型燃料電池の発電装
置と同じように、硫黄分の入った常温のガスTGを改質
器5で改質した後、燃料電池1のアノード3に供給する
ようにし、該アノード3から排出されたガスを途中で上
記ガス1Gと熱交換させた後に改質器5の燃焼室に導入
させるようにし、一方、空気へは圧縮機10で圧縮し、
タービン12て膨張させ、予熱して燃料電池1のカソー
ド2へ供給すると共に、一部を分岐ライン15にて改質
器5の燃焼室に導入させるようにし、更に、改質器5の
燃焼室出口から排出された炭酸ガスを含むガスをカソー
ド2に供給するようにしである構成において、硫黄分の
入った常温のガス1Gを改質器5に導入させるためのラ
イン4の途中にある従来方式の脱硫器7に代る脱硫器を
設ける。すなわら、脱硫剤として活性炭を用いた複数個
(図では2個の場合を示す)のub硫蒸器1920を、
上記ライン4における圧縮機18の入口側に並列に設置
し、両脱硫器19.20を交互に切り替えて使用できる
ようにし、且つ上記脱硫器19.20には、改質器5に
導入される蒸気の一部を活性炭の再生として用いるため
蒸気配管21を接続し、必要に応じて活性炭を再生でき
るようにする。FIG. 1 shows an embodiment of the present invention, in which, like the conventional city gas reformed molten carbonate fuel cell power generation device shown in FIG. After being reformed in the reformer 5, the gas is supplied to the anode 3 of the fuel cell 1, and the gas discharged from the anode 3 is heat-exchanged with the gas 1G on the way, and then supplied to the combustion chamber of the reformer 5. On the other hand, the air is compressed by a compressor 10,
The turbine 12 expands, preheats and supplies the fuel to the cathode 2 of the fuel cell 1, and a portion of the fuel is introduced into the combustion chamber of the reformer 5 through a branch line 15. In a configuration in which gas containing carbon dioxide discharged from the outlet is supplied to the cathode 2, there is a conventional method in the middle of the line 4 for introducing 1G of room temperature gas containing sulfur into the reformer 5. A desulfurizer is provided in place of the desulfurizer 7. In other words, a plurality of (the figure shows the case of two) UB sulfur evaporators 1920 using activated carbon as a desulfurization agent,
The desulfurizers 19 and 20 are installed in parallel on the inlet side of the compressor 18 in the line 4 so that both desulfurizers 19 and 20 can be used alternately, and the desulfurizers 19 and 20 are connected to the reformer 5. A steam pipe 21 is connected to use a part of the steam to regenerate activated carbon, so that activated carbon can be regenerated as needed.
なお、図中、第2図に示しであるものと同一のものには
同一の符号が付しである。In the figure, the same parts as shown in FIG. 2 are given the same reference numerals.
上記実施例の如く、脱硫器19と20の2個を設置した
場合の運転では、いずれか一方の脱硫器、たとえば、脱
硫器20を発電装置の起動時に使用するときは、使方の
脱硫器19の使用を止めておき、脱硫器19を使用する
ときは脱硫器20の使用を止めるようにする。In the case where two desulfurizers 19 and 20 are installed as in the above embodiment, when one of the desulfurizers, for example, the desulfurizer 20, is used when starting up the power generation equipment, the desulfurizer used The use of the desulfurizer 19 is stopped, and when the desulfurizer 19 is used, the use of the desulfurizer 20 is also stopped.
今、発電装置の起動時は、脱硫器20を使用して、ライ
ン4に供給されるガスTGの脱硫を行わせる。適宜脱硫
器20の使用を止めて脱硫器19を使用し、ガス中の硫
黄分を除去させるようにする。この間、使用を止めた脱
硫器20には発電装置内で発生した蒸気を蒸気配管21
を通して導入することにより活性炭を再生させるように
する。Now, when starting up the power generator, the desulfurizer 20 is used to desulfurize the gas TG supplied to the line 4. The use of the desulfurizer 20 is stopped as appropriate and the desulfurizer 19 is used to remove the sulfur content from the gas. During this period, the desulfurizer 20, which has ceased to be used, carries the steam generated in the power generator through the steam pipe 2
The activated carbon is regenerated by introducing the activated carbon through the catalyst.
脱硫器19を所定時間使用すると、該脱硫器19の使用
を止めて脱硫器20を使用するようにし、脱硫器19は
活性炭の再生を行わせるようにする。After the desulfurizer 19 is used for a predetermined period of time, the desulfurizer 19 is stopped and the desulfurizer 20 is used, and the desulfurizer 19 regenerates the activated carbon.
このように活性炭を用いた脱硫器のみを使用して長期間
にわたり脱硫作用させるようにする。In this way, desulfurization is carried out over a long period of time by using only a desulfurizer using activated carbon.
これにより従来方式における脱硫器7、水素取り出し用
のライン19、天然ガス予熱器9を省略できる。As a result, the desulfurizer 7, hydrogen extraction line 19, and natural gas preheater 9 in the conventional system can be omitted.
なお、脱硫器19.20のほかに更に別の脱硫器を用意
して、ライン4の途中に3個あるいは3個以上並列に設
置してもよく、この場合は、そのうちの1個の脱硫器を
起動時の脱硫用とし、残りの複数個の脱硫器を通常運転
時に交互に使用するようにして、いずれかを使用してい
るとき他の脱硫器を再生しているように運転させるよう
にしてもよい。又、溶融炭酸塩型燃料電池 lを例とし
て示したが、これに限定されるものではない。In addition, other desulfurizers may be prepared in addition to the desulfurizers 19 and 20, and three or three or more desulfurizers may be installed in parallel in the middle of the line 4. In this case, one of the desulfurizers is used for desulfurization at startup, and the remaining desulfurizers are used alternately during normal operation, so that when one is in use, the other desulfurizers operate as if they were being regenerated. You can. Further, although the molten carbonate fuel cell 1 is shown as an example, the present invention is not limited thereto.
[発明の効果]
以上述べた如く、本発明の燃料電池発電装置によれば、
燃料として、硫黄分の入った常温のガス体を改質器に導
入させるためのラインの途中に、活性炭を用いた脱硫器
を複数個設()、起動時から通常運転に入った後も上記
脱硫器により脱硫を行わせるようにし、且つ上記脱硫器
を再生できるようにしたので、起動時でも従来の如き水
素ボンベを用意する必要がなく、又、従来方式における
水素により触媒還元という操作もないので、起動に時間
と手数がかかることがなく、更に、脱硫塔を脱硫に適し
た温度にコントロールする必要もなくなって熱交換器等
の機器を省略できるほか、通常運転中でも水素を必要と
しないことから水素取り出しのラインを省略できると共
に発電効率の低下を防ぐこともできる、等の優れた効果
を奏し得る。[Effects of the Invention] As described above, according to the fuel cell power generation device of the present invention,
Multiple desulfurizers using activated carbon are installed in the middle of the line for introducing room-temperature gas containing sulfur into the reformer as fuel (), and the above-mentioned conditions are maintained even after startup and normal operation. Since desulfurization is performed by a desulfurizer and the desulfurizer can be regenerated, there is no need to prepare a hydrogen cylinder like in the past even at startup, and there is no need for catalytic reduction with hydrogen as in the conventional method. Therefore, it does not take time and effort to start up, and there is no need to control the temperature of the desulfurization tower to the appropriate temperature for desulfurization, so equipment such as a heat exchanger can be omitted, and hydrogen is not required even during normal operation. It is possible to achieve excellent effects such as being able to omit a line for extracting hydrogen from the fuel cell and preventing a decrease in power generation efficiency.
第1図は本発明の実施例を示す系統構成図、第2図は従
来の発電システムの系統構成図でおる。
1・・・燃料電池、2・・・カソード、3・・・アノー
ド、4・・・ライン、5・・・改質器、19.20・・
・脱硫器、21・・・蒸気配管。FIG. 1 is a system configuration diagram showing an embodiment of the present invention, and FIG. 2 is a system configuration diagram of a conventional power generation system. 1... Fuel cell, 2... Cathode, 3... Anode, 4... Line, 5... Reformer, 19.20...
・Desulfurizer, 21...Steam piping.
Claims (1)
の入った常温のガス体を利用する燃料電池発電装置にお
いて、上記硫黄分の入つた常温のガス体を改質のため改
質器に導入するラインの途中に、脱硫剤として活性炭を
用いた脱硫器のみを複数個切替使用できるように設け、
且つ適宜の脱硫器を再生式としたことを特徴とする燃料
電池発電装置。1) In a fuel cell power generation device that uses a room-temperature gas containing sulfur as fuel to be supplied to the anode of a fuel cell, the room-temperature gas containing sulfur is introduced into a reformer for reforming. In the middle of the line, multiple desulfurizers that use activated carbon as a desulfurizing agent are installed so that they can be used selectively.
A fuel cell power generation device characterized in that an appropriate desulfurizer is of a regenerative type.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62299175A JPH01143156A (en) | 1987-11-27 | 1987-11-27 | fuel cell power generator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62299175A JPH01143156A (en) | 1987-11-27 | 1987-11-27 | fuel cell power generator |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01143156A true JPH01143156A (en) | 1989-06-05 |
Family
ID=17869105
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62299175A Pending JPH01143156A (en) | 1987-11-27 | 1987-11-27 | fuel cell power generator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01143156A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003003491A3 (en) * | 2001-06-26 | 2003-04-03 | Atotech Deutschland Gmbh | Device for removing sulfur from a medium and fuel cell system |
-
1987
- 1987-11-27 JP JP62299175A patent/JPH01143156A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003003491A3 (en) * | 2001-06-26 | 2003-04-03 | Atotech Deutschland Gmbh | Device for removing sulfur from a medium and fuel cell system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101634391B1 (en) | Fuel cell power production system with an integrated hydrogen utilization device | |
CA2094129A1 (en) | Process and installation for the combined generation of electrical and mechanical energy | |
WO2010044113A1 (en) | Apparatus and method for capturing carbon dioxide from combustion exhaust gas and generating electric energy by means of mcfc systems | |
JP2000501227A (en) | Operating method of high-temperature fuel cell equipment and high-temperature fuel cell equipment | |
JP5127395B2 (en) | Fuel cell power generation system | |
JPS63207054A (en) | Solid electrolyte fuel cell power generator | |
JPH01143156A (en) | fuel cell power generator | |
JPH05114414A (en) | Fuel cell power generation system | |
JP3079317B2 (en) | Molten carbonate fuel cell power generator | |
JPH01143155A (en) | Fuel cell power generator | |
JP3377523B2 (en) | Fuel cell system | |
JP3257604B2 (en) | Fuel cell generator | |
JP4307060B2 (en) | Fuel cell device | |
JPS63126173A (en) | Power generating system of fused carbonate type fuel cell | |
JP2508781B2 (en) | Fuel cell generator | |
JPH01128364A (en) | Generator of fused carbonate type fuel cell | |
JP2832640B2 (en) | Molten carbonate fuel cell power generator | |
JPH01183073A (en) | How to stop operation of fuel cell power generation equipment | |
JP2595585B2 (en) | Fuel cell generator | |
JPH01225066A (en) | Power generation with fuel cell | |
JPS63141268A (en) | Generating unit for natural-gas reformed molten carbonate type fuel cell | |
JP3240783B2 (en) | Internal reforming fuel cell | |
JP3582131B2 (en) | Molten carbonate fuel cell power generator | |
JPH03216964A (en) | Power generation method using molten carbonate fuel cell | |
JPS6280970A (en) | Fuel cell power generation method |