JPH01128364A - Generator of fused carbonate type fuel cell - Google Patents
Generator of fused carbonate type fuel cellInfo
- Publication number
- JPH01128364A JPH01128364A JP62285405A JP28540587A JPH01128364A JP H01128364 A JPH01128364 A JP H01128364A JP 62285405 A JP62285405 A JP 62285405A JP 28540587 A JP28540587 A JP 28540587A JP H01128364 A JPH01128364 A JP H01128364A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- cathode
- reformer
- anode
- fuel cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/06—Combination of fuel cells with means for production of reactants or for treatment of residues
- H01M8/0606—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
- H01M8/0612—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は燃料の有する化学エネルギーを直接電気エネル
ギーに変換させるエネルギ一部門で用いる燃料電池のう
ち、特に、溶融炭酸塩型燃料電池のカソードとアノード
との間で生じる差圧を零にするための系統を有する溶融
炭酸塩型燃料電池の発電装置に関するものである。[Detailed Description of the Invention] [Industrial Application Field] The present invention applies to fuel cells used in the energy sector that directly converts the chemical energy of fuel into electrical energy, and in particular to the cathode of molten carbonate fuel cells. The present invention relates to a power generation device for a molten carbonate fuel cell having a system for reducing the differential pressure generated between the anode and the anode to zero.
[従来の技術]
現在までに提案されている溶融炭酸塩型燃料電池は、溶
融炭酸塩を電解質として多孔質物質にしみ込ませてなる
電解質板(タイル)を、カソード(酸素穫)とアノード
(燃料極)で両面から挟み、カソード側に酸化ガスを供
給すると共にアノード側に燃料ガスを供給することによ
りカソードとアノードとの間で発生する電位差により発
電が行われるようにしたものを1セルとし、各セルをセ
パレータを介して多層に積層した構成のものとしである
。[Prior Art] The molten carbonate fuel cells that have been proposed to date use an electrolyte plate (tile), which is made by impregnating a porous material with molten carbonate as an electrolyte, as a cathode (oxygen collector) and an anode (fuel One cell is one in which electricity is generated by the potential difference generated between the cathode and the anode by sandwiching the cell from both sides with the electrodes, supplying oxidizing gas to the cathode side and supplying fuel gas to the anode side. It has a structure in which each cell is laminated in multiple layers with a separator in between.
上記溶融炭酸塩型燃料電池では、アノード側で
H2+ CO3−−→H20+ C02+ 2 e−の
反応が行われ、カソード側で
の反応が行われるため、アノード側で得られるC 02
をカソード側に送る°ようにする必要が必る。In the above-mentioned molten carbonate fuel cell, the reaction H2+ CO3--→H20+ C02+ 2 e- takes place on the anode side, and the reaction takes place on the cathode side, so the C 02 obtained on the anode side
It is necessary to make sure that the current is sent to the cathode side.
従来提案されている天然ガスを燃料ガスとして用いる天
然ガス改質溶融炭酸塩型燃料電池の発電システムにおい
ては、上記アノード側で得られるCO2をカソード側に
送ることができるように、第2図に概略を示す如き系統
としである。In the conventional power generation system of a natural gas reformed molten carbonate fuel cell that uses natural gas as the fuel gas, the power generation system shown in FIG. The system is as outlined below.
すなわち、燃料電池1のカソード2には、酸化ガスを供
給するため、空気Aをブロワ4で圧縮した後、空気予熱
器(図示せず)で予熱し、ライン5によりカソード2に
供給すると共に、−部を改質器6に分岐ライン7により
供給するようにし、上記カソード2から排出されたガス
は、ライン8を通り上記空気予熱器を通し排出させるよ
うにしである。一方、燃料電池1のアノード3に供給さ
れる天然ガスNGは、ライン9により改質器6内に導入
され、ここで改質されてアノード3に供給されるように
し、該アノード3から排出された未燃ガスは、改質器用
燃料とするため上記改質器6に導入される天然ガスNG
を予熱するための予熱器(図示せず)等を通して改質器
6に導くようにし、更に、改質器6から排出された炭酸
ガスを含むガスを、CO2回収ライン10より前記ライ
ン5に導き、空気とともにカソード2に供給するように
して、炭酸ガスをカソード2側へ回収するようにしてい
る。That is, in order to supply oxidizing gas to the cathode 2 of the fuel cell 1, air A is compressed by a blower 4, preheated by an air preheater (not shown), and supplied to the cathode 2 by a line 5. - part is supplied to the reformer 6 by a branch line 7, and the gas discharged from the cathode 2 is discharged through a line 8 through the air preheater. On the other hand, natural gas NG supplied to the anode 3 of the fuel cell 1 is introduced into the reformer 6 through a line 9, reformed there, supplied to the anode 3, and discharged from the anode 3. The unburned gas is natural gas NG, which is introduced into the reformer 6 to be used as fuel for the reformer.
The gas containing carbon dioxide discharged from the reformer 6 is further led to the line 5 from the CO2 recovery line 10. , is supplied to the cathode 2 together with air, and carbon dioxide gas is recovered to the cathode 2 side.
[発明が解決しようとする問題点]
ところが、上記従来の発電システムでは、燃料電池のカ
ソード2と7ノード3の間でガスの圧力差が生じ易く、
差圧が生じると、電解質板の割れ等を生じさせるおそれ
があるため、出来るだけカソードとアノード間で差圧を
生じないようにする必要があり、そのために、図示の如
くカソード2とアノード3の出口側(入口側でも良い)
の間に差圧計11を設け、且つアノード3の出口側にバ
ルブ12を設け、バルブ12の開度を調節して7ノード
3とカソード2の差圧が8′[言値内におさまるように
する差圧制御機構の設置が必要であった。[Problems to be Solved by the Invention] However, in the conventional power generation system described above, a gas pressure difference tends to occur between the cathode 2 and the 7-node 3 of the fuel cell.
If a pressure difference occurs, there is a risk of cracking the electrolyte plate, so it is necessary to prevent the pressure difference between the cathode and the anode as much as possible. Exit side (inlet side is also fine)
A differential pressure gauge 11 is provided between them, and a valve 12 is provided on the outlet side of the anode 3, and the opening degree of the valve 12 is adjusted so that the differential pressure between the node 3 and the cathode 2 falls within the suggested value of 8'. It was necessary to install a differential pressure control mechanism.
そこで、本発明は、上記従来方式にあける如き差圧制御
機構を設けなくてもアノードとカソード間の差圧を零に
することができるようにしようとするものである。Therefore, the present invention aims to make it possible to reduce the differential pressure between the anode and cathode to zero without providing a differential pressure control mechanism as in the conventional system.
[問題点を解決するための手段]
本発明は、上記目的を達成するために、燃料電池のアノ
ードから排出されるガスと同様にカソードから排出され
る排ガスを改質器の燃焼室内に導入させるように配管す
ると共に、該カソードからの排ガスの一部をバイパスさ
せて排出させるようにし、且つ上記改質器から排出され
る炭酸ガスを含むガス中の炭酸ガスを回収して上記カソ
ードに供給させるよう配管し、上記アノードには天然ガ
スを上記改質器で改質して供給させるよう配管した構成
とする。[Means for Solving the Problems] In order to achieve the above object, the present invention introduces the exhaust gas discharged from the cathode into the combustion chamber of the reformer in the same manner as the gas discharged from the anode of the fuel cell. At the same time, part of the exhaust gas from the cathode is bypassed and discharged, and carbon dioxide gas in the gas containing carbon dioxide discharged from the reformer is recovered and supplied to the cathode. The piping is configured such that natural gas is reformed by the reformer and supplied to the anode.
[作 用]
改質器の燃焼室側を燃料電池のアノードとカソードの共
通ヘッダ化することによりアノードとカソード間の差圧
が零になり、従来の如き差圧制御のための機構を別個に
設ける必要がない。[Function] By making the combustion chamber side of the reformer a common header for the anode and cathode of the fuel cell, the differential pressure between the anode and cathode becomes zero, eliminating the need for a separate mechanism for differential pressure control as in the past. There is no need to provide one.
又、アノードでの反応で得られた炭酸ガスと水を改質器
の燃焼室出口より取り出して、そのうちカソードに必要
な炭酸ガスはカソードへの空気供給ラインよりカソード
に送られる。カソードから排出された排ガスの仝母を改
質器の燃焼室に入れると、該排ガスには不活性ガス等が
含まれているため改質反応に必要な温度まで燃焼温度を
上げることができないことになるが、排ガスの一部をバ
イパスすることにより、かかる問題を回避することがで
きる。Further, carbon dioxide gas and water obtained by the reaction at the anode are taken out from the combustion chamber outlet of the reformer, and the carbon dioxide gas necessary for the cathode is sent to the cathode through an air supply line to the cathode. When the exhaust gas discharged from the cathode is introduced into the combustion chamber of the reformer, the combustion temperature cannot be raised to the temperature required for the reforming reaction because the exhaust gas contains inert gas, etc. However, by bypassing a portion of the exhaust gas, this problem can be avoided.
[実 施 例] 以下、本発明の実施例を図面を参照して説明する。[Example] Embodiments of the present invention will be described below with reference to the drawings.
第1図は本発明の一実施例を示すもので、天然ガスNG
を、天然ガス予熱器13、脱硫器14を経てライン9に
より改質器6内に導入し、ここで改質してライン15に
より上記天然ガス予熱器13を通した後、燃料電池1の
7ノード3に供給するようにすると共に、該アノード3
から排出されたガスは、上記改質器6の燃焼室内へ排出
側ライン16により導入されるようにし、一方、燃料電
池1のカソード2に酸化ガスを供給するために、空気△
をブロワ4で圧縮した後、空気予熱器7を通してライン
5によりカソード2に全量供給するようにすると共に、
該カソード2から排出されたガスを、本発明の特徴であ
るライン18により上記改質器6の燃焼室内へそのまま
導入させるようにして、改質器6の燃焼室側をカソード
側ガス及びアノード側ガスの共通ヘッダとして使用させ
るようにし、且つ上記ライン18の途中に分岐ライン1
9を接続し、カソード2から排出されるガスの一部を分
岐ライン19によりバイパスさせ、上記空気予熱器17
を通して排出させるようにする。又、上記のように改質
器6の燃焼室側を、アノード3、カソード2からの各排
出ガスの共通ヘッダ化することから、カソード2で必要
とする炭酸ガス(CO2)をアノード3側からカソード
2側へ送るために、前記改質器6から排出されるガス(
アノードで得られた炭酸ガスと水が含まれている)中の
炭酸ガスを回収するために、ライン20により蒸気発生
器21、熱回収用熱交換器22を経て気水分離器23へ
導き、該気水分離器23で水から分離された炭酸ガス(
CO2)を含むガスは、燃料電池1のカソード2へ送る
ために、上記気水分離器23よりC02回収ライン24
により前記空気予熱器17の入口側に導入させるように
し、一方、上記気水分離器23てガスから分離された水
(I(20)は、ライン25により蒸気発生器21に導
き、ここから蒸気として天然カスのライン9に導くよう
にし、天然ガスとともに改質器6に入れられるようにす
る。FIG. 1 shows an embodiment of the present invention.
is introduced into the reformer 6 via a line 9 via a natural gas preheater 13 and a desulfurizer 14, reformed there, and passed through the natural gas preheater 13 via a line 15. In addition to supplying the anode 3 to the node 3,
The gas discharged from the reformer 6 is introduced into the combustion chamber of the reformer 6 through the discharge line 16, while the air △
After being compressed by the blower 4, the entire amount is supplied to the cathode 2 through the air preheater 7 and the line 5, and
The gas discharged from the cathode 2 is directly introduced into the combustion chamber of the reformer 6 through the line 18, which is a feature of the present invention, so that the combustion chamber side of the reformer 6 is connected to the cathode side gas and the anode side. It is used as a common header for gas, and a branch line 1 is installed in the middle of the above line 18.
9 is connected, a part of the gas discharged from the cathode 2 is bypassed by the branch line 19, and the air preheater 17 is connected to the air preheater 17.
Let it drain through. In addition, since the combustion chamber side of the reformer 6 is used as a common header for each exhaust gas from the anode 3 and cathode 2 as described above, carbon dioxide (CO2) required by the cathode 2 is transferred from the anode 3 side. The gas (
In order to recover the carbon dioxide gas (containing carbon dioxide gas and water obtained at the anode), it is guided through a line 20 to a steam generator 21, a heat recovery heat exchanger 22, and a steam/water separator 23. The carbon dioxide gas (
The gas containing CO2 is sent from the steam/water separator 23 to the CO2 recovery line 24 in order to be sent to the cathode 2 of the fuel cell 1.
On the other hand, water (I(20) separated from the gas in the steam/water separator 23 is led to the steam generator 21 through a line 25, from where it is introduced into the inlet side of the air preheater 17. The waste gas is introduced into the natural gas line 9 and fed into the reformer 6 together with the natural gas.
従来の溶融炭酸塩型燃料電池の発電システムでは、カソ
ード2から排出されたガスは熱回収した後に排出させて
いたが、本発明では、カソード側からの排ガスを、アノ
ード3から排出されるガスと同様に改質器6の燃焼室内
へ導入させるようにして、該改質器6の燃焼室側を、7
ノードからのガスとカソードからのガスの共通ヘッダと
したので、アノード3とカソード2との間の差圧は原理
的に零となる。したがって、別個に差圧制御機構を設置
することを省略することができる。この際、カソード2
から排出されるガスには、燃料電池内の冷却用空気が多
く含まれている(冷却用空気は反応に必要な空気の7〜
8倍)ので、カソード2からの排ガスの全量を改質器6
の燃焼室に導入すると、改質反応に必要な温度まで燃焼
温度を上げることができなくなるが、分岐ライン19に
よりカソード2からの排ガスの一部をバイパスさせてい
るので、改質に必要な温度は確保できる。この場合、上
記排ガスには冷却用ガスが多く含まれているので、バイ
パスされる空気も多くなる。In conventional power generation systems using molten carbonate fuel cells, the gas discharged from the cathode 2 is discharged after heat recovery, but in the present invention, the exhaust gas from the cathode side is combined with the gas discharged from the anode 3. Similarly, the combustion chamber side of the reformer 6 is introduced into the combustion chamber of the reformer 6.
Since the common header is used for the gas from the node and the gas from the cathode, the differential pressure between the anode 3 and the cathode 2 becomes zero in principle. Therefore, it is possible to omit separately installing a differential pressure control mechanism. At this time, cathode 2
The gas discharged from the fuel cell contains a large amount of cooling air inside the fuel cell (cooling air accounts for 7 to 70% of the air required for the reaction).
8 times), the entire amount of exhaust gas from cathode 2 is transferred to reformer 6.
If the exhaust gas is introduced into the combustion chamber of the cathode 2, it will not be possible to raise the combustion temperature to the temperature required for the reforming reaction, but since a part of the exhaust gas from the cathode 2 is bypassed by the branch line 19, the temperature required for reforming will be increased. can be secured. In this case, since the exhaust gas contains a large amount of cooling gas, a large amount of air is bypassed.
一方、改質器6の燃焼室出口から取り出されたガスには
、アノード3で得られたCO2と820が含まれている
が、このガスは熱回収された後に気水分離器23で炭酸
ガスを含むガスと水とに分離され、水は改質反応に必要
な蒸気として天然ガスに混入して回収され、炭酸ガスは
空気とともにカソード2へ供給されることによって回収
される。この際、改質器6の燃焼室から取り出したガス
を気水分離してそのまま回収するので、7ノード3での
反応で出来たC 02と820を出来るだけ稀釈しない
で回収することができる。On the other hand, the gas taken out from the combustion chamber outlet of the reformer 6 contains CO2 and 820 obtained at the anode 3, but after heat recovery, this gas is passed through the steam separator 23 to become carbon dioxide. The water is mixed into the natural gas and recovered as steam necessary for the reforming reaction, and the carbon dioxide gas is recovered by being supplied to the cathode 2 together with air. At this time, the gas taken out from the combustion chamber of the reformer 6 is separated into steam and water and recovered as is, so that the C 02 and 820 produced by the reaction at the 7 nodes 3 can be recovered without being diluted as much as possible.
なお、本発明は上記実施例のみに限定されるものではな
く、たとえば、熱回収用の熱交換器を省略する等、本発
明の要旨を逸脱しない範囲内で種々変更を加え1qるこ
とは勿論である。It should be noted that the present invention is not limited to the above-mentioned embodiments, and it is of course possible to make various changes within the scope of the present invention, such as omitting a heat exchanger for heat recovery, etc., without departing from the gist of the present invention. It is.
[発明の効果]
以上述べた如く本発明によれば、溶融炭酸塩型燃料電池
のカソードから排出されたガスを改質器の燃焼室内に直
接導入するようにして、改質器の燃焼室側を、カソード
からのガスとアノードからのガスの共通ヘッダとして使
用するようにしたので、原理的にアノードとカソード間
の差圧を零にすることができ、差圧を制御する機構を設
置する必要性をなくすことができ、又、改質器の燃焼室
出口から取り出したCO2、H2Oを含むガスを気水分
離して回収するので、アノードでできたCO2と820
を出来るだけ稀釈させないで回収できる、等の優れた効
果を奏し得る。[Effects of the Invention] As described above, according to the present invention, the gas discharged from the cathode of the molten carbonate fuel cell is directly introduced into the combustion chamber of the reformer, and the gas discharged from the combustion chamber side of the reformer is directly introduced into the combustion chamber of the reformer. Since it is used as a common header for gas from the cathode and gas from the anode, the differential pressure between the anode and cathode can be reduced to zero in principle, and there is no need to install a mechanism to control the differential pressure. In addition, since the gas containing CO2 and H2O taken out from the combustion chamber outlet of the reformer is separated and recovered, CO2 and 820 produced at the anode can be removed.
It is possible to achieve excellent effects such as being able to recover the material without diluting it as much as possible.
第1図は本発明の一実施例を示す系統図、第2図は従来
の溶融炭酸塩型燃料電池の発電システムの概略を示す図
である。
1・・・燃料電池、2・・・カソード、3・・・アノー
ド、6・・・改質器、17・・・空気予熱器、18・・
・ライン、19・・・分岐ライン、23・・・気水分離
器。FIG. 1 is a system diagram showing an embodiment of the present invention, and FIG. 2 is a diagram schematically showing a power generation system using a conventional molten carbonate fuel cell. DESCRIPTION OF SYMBOLS 1... Fuel cell, 2... Cathode, 3... Anode, 6... Reformer, 17... Air preheater, 18...
- Line, 19...branch line, 23...steam water separator.
Claims (1)
スを改質器の燃焼室に導入させると共に、カソードから
排出されるガスを、一部をバイパスさせて残りを上記改
質器の燃焼室へ直接導入させるよう各々配管し、且つ上
記改質器の燃焼室出口からのガス中の炭酸ガスを回収し
て上記カソードに供給させ、上記アノードには天然ガス
を上記改質器で改質して供給させるよう各々配管したこ
とを特徴とする溶融炭酸塩型燃料電池の発電装置。1) The gas discharged from the anode of the molten carbonate fuel cell is introduced into the combustion chamber of the reformer, and a part of the gas discharged from the cathode is bypassed and the rest is introduced into the combustion chamber of the reformer. The carbon dioxide gas in the gas from the combustion chamber outlet of the reformer is recovered and supplied to the cathode, and the natural gas is reformed by the reformer to the anode. What is claimed is: 1. A power generation device using a molten carbonate fuel cell, characterized in that each pipe is connected to supply a molten carbonate fuel cell.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62285405A JP2595579B2 (en) | 1987-11-13 | 1987-11-13 | Power generator for molten carbonate fuel cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62285405A JP2595579B2 (en) | 1987-11-13 | 1987-11-13 | Power generator for molten carbonate fuel cell |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01128364A true JPH01128364A (en) | 1989-05-22 |
JP2595579B2 JP2595579B2 (en) | 1997-04-02 |
Family
ID=17691095
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62285405A Expired - Lifetime JP2595579B2 (en) | 1987-11-13 | 1987-11-13 | Power generator for molten carbonate fuel cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2595579B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0418864A2 (en) * | 1989-09-19 | 1991-03-27 | Ishikawajima-Harima Heavy Industries Co., Ltd. | Method of and apparatus for utilizing and recovering carbondioxide in combustion exhaust gas |
EP0456848A1 (en) * | 1989-01-09 | 1991-11-21 | Ishikawajima-Harima Heavy Industries Co., Ltd. | Electric power producing system using molten carbonate type fuel cell |
US5208114A (en) * | 1991-01-21 | 1993-05-04 | Ishikawajima-Harima Heavy Industries Co., Ltd. | Power generation system using molten carbonate fuel cells |
EP0642184A2 (en) * | 1993-07-09 | 1995-03-08 | Ishikawajima-Harima Heavy Industries Co., Ltd. | Differential pressure controlling method for plate reformer of fuel cell power generation system |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62237677A (en) * | 1986-04-07 | 1987-10-17 | Mitsubishi Electric Corp | Forming catalyst for fuel cell |
JPS63126173A (en) * | 1986-11-14 | 1988-05-30 | Japan Fuel Technol Corp | Power generating system of fused carbonate type fuel cell |
-
1987
- 1987-11-13 JP JP62285405A patent/JP2595579B2/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62237677A (en) * | 1986-04-07 | 1987-10-17 | Mitsubishi Electric Corp | Forming catalyst for fuel cell |
JPS63126173A (en) * | 1986-11-14 | 1988-05-30 | Japan Fuel Technol Corp | Power generating system of fused carbonate type fuel cell |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0456848A1 (en) * | 1989-01-09 | 1991-11-21 | Ishikawajima-Harima Heavy Industries Co., Ltd. | Electric power producing system using molten carbonate type fuel cell |
EP0418864A2 (en) * | 1989-09-19 | 1991-03-27 | Ishikawajima-Harima Heavy Industries Co., Ltd. | Method of and apparatus for utilizing and recovering carbondioxide in combustion exhaust gas |
US5232793A (en) * | 1989-09-19 | 1993-08-03 | Ishikawajima-Harima Heavy Industries Co., Ltd. | Method of and apparatus for utilizing and recovering co2 in combustion exhaust gas |
US5208114A (en) * | 1991-01-21 | 1993-05-04 | Ishikawajima-Harima Heavy Industries Co., Ltd. | Power generation system using molten carbonate fuel cells |
EP0642184A2 (en) * | 1993-07-09 | 1995-03-08 | Ishikawajima-Harima Heavy Industries Co., Ltd. | Differential pressure controlling method for plate reformer of fuel cell power generation system |
EP0642184A3 (en) * | 1993-07-09 | 1995-05-17 | Ishikawajima Harima Heavy Ind | Differential pressure control method for plate reformer of a current generating fuel cell system. |
Also Published As
Publication number | Publication date |
---|---|
JP2595579B2 (en) | 1997-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6277508B1 (en) | Fuel cell power supply with exhaust recycling for improved water management | |
US5780179A (en) | Fuel cell system for use on mobile bodies | |
JPS61114478A (en) | Fuel cell device | |
JP2002319428A (en) | Molten carbonate fuel cell power generation equipment | |
JP2000501227A (en) | Operating method of high-temperature fuel cell equipment and high-temperature fuel cell equipment | |
JP4570904B2 (en) | Hot standby method of solid oxide fuel cell system and its system | |
JPH01128364A (en) | Generator of fused carbonate type fuel cell | |
JP2007128680A (en) | Fuel cell system | |
JP2001023668A (en) | Fuel cell power generating system | |
WO2022092051A1 (en) | Fuel cell power generation system, and control method for fuel cell power generation system | |
JP3246515B2 (en) | Fuel cell system | |
JP3575650B2 (en) | Molten carbonate fuel cell | |
JPH0665060B2 (en) | Molten carbonate fuel cell power generation system | |
JPH01143155A (en) | Fuel cell power generator | |
JP4656286B2 (en) | Fuel cell system | |
JPH06103994A (en) | Fuel cell power generating system | |
JPS6280970A (en) | Fuel cell power generation method | |
JPS63190257A (en) | Power generation method using molten carbonate fuel cell | |
JP2832640B2 (en) | Molten carbonate fuel cell power generator | |
JP2751526B2 (en) | Molten carbonate fuel cell power generator | |
JPH04101364A (en) | Fuel cell | |
JP2595585B2 (en) | Fuel cell generator | |
JPS62184771A (en) | Fuel cell power generating system | |
JPH01225066A (en) | Power generation with fuel cell | |
JPH0757754A (en) | Anode inlet temperature control method for molten carbonate fuel cell power generator |