[go: up one dir, main page]

JPH01140643A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH01140643A
JPH01140643A JP62298329A JP29832987A JPH01140643A JP H01140643 A JPH01140643 A JP H01140643A JP 62298329 A JP62298329 A JP 62298329A JP 29832987 A JP29832987 A JP 29832987A JP H01140643 A JPH01140643 A JP H01140643A
Authority
JP
Japan
Prior art keywords
substrate
wiring
fet
gaas layer
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62298329A
Other languages
Japanese (ja)
Other versions
JP2550623B2 (en
Inventor
Toyokazu Onishi
豊和 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP62298329A priority Critical patent/JP2550623B2/en
Publication of JPH01140643A publication Critical patent/JPH01140643A/en
Application granted granted Critical
Publication of JP2550623B2 publication Critical patent/JP2550623B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Junction Field-Effect Transistors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To evade the intersection of internal wirings and the increase of wiring length, by forming an active element on a GaAs layer epitaxially grown on an Si or Ge substrate of low resistance, and constituting a wiring member to supply a specific potential to the element by using the Si substrate. CONSTITUTION:After a semi-insulative GaAs layer 2 is epitaxially grown on an Si substrate 1 of low resistance, and an element like an FET is formed, a vial hole is opened, and the surface region of the GaAs layer 2 and the substrate are connected by a metal layer 3. On the GaAs layer 2, the metal layer is connected to. e.g., the source electrode of the FET. When the Si substrate is connected to ground potential, it is supplied to the source of the FET, too. As a result, the Si substrate operates as a wiring member to supply the ground potential to the source of each FET. Thereby enabling the back surface connection, evading the intersection of wiring, and reducing parasitic capacitances between electrodes.

Description

【発明の詳細な説明】 〔概 要〕 本発明はGaAsLSIの配線構造に関し、内部配線の
交差や配線長の増大を避けることを目的とし、 低抵抗St(若しくはGe)基板上にエピタキシャル成
長したGaAs能動層を設け、 該GaAs層にFETなどの能動素子を形成し、該素子
への特定電位配線体をSt基板により構成する。特定電
位は例えばグラウンド電位である。
[Detailed Description of the Invention] [Summary] The present invention relates to the wiring structure of GaAs LSI, and aims to avoid intersections of internal wiring and increase in wiring length. A layer is provided, an active element such as an FET is formed on the GaAs layer, and a specific potential wiring body to the element is formed of an St substrate. The specific potential is, for example, ground potential.

〔産業上の利用分野〕[Industrial application field]

GaAs集積回路(LSI)を構成する素子数は近年増
加の一途をたどっているが、チップの大型化と共に配線
長の増加が避けられなくなっている。
Although the number of elements constituting a GaAs integrated circuit (LSI) has been steadily increasing in recent years, as chips become larger, the length of wiring becomes unavoidable.

配線長が大になると信号伝達に遅延を生じ、装置の高速
作動を阻害する。
When the wiring length becomes large, a delay occurs in signal transmission, which impedes high-speed operation of the device.

これを避けるため、素子や配線パターンを微細化し、チ
ップサイズを小にすることが行われているが、併せて他
の有効な処置がとられることが望ましい。そのような対
策の一つとして、半導体基板の背面に配線の一部を形成
することが提寡されている。それによって配線形成領域
の面積を低減すると共に、配線交差部分に於いて不要の
結合が生じさせることを避けようとするのである。
In order to avoid this, efforts have been made to miniaturize elements and wiring patterns and reduce chip size, but it is also desirable to take other effective measures. As one such countermeasure, it has been proposed to form part of the wiring on the back surface of the semiconductor substrate. This is intended to reduce the area of the wiring formation region and to avoid unnecessary coupling at wiring intersections.

しかしながら、通常の半導体基板を用いてかかる構造を
具体化するのは非常に困難である。即ち、GaAs基板
に半絶縁性GaAsjiをエピタキシャル成長させた基
板は厚さが400〜500umあるので、これを貫通す
る小口径のバイアホールを形成することが難しく、更に
、バイアホール内に導電体を充填して基板の表裏両面間
を電気的に接続することも困難である。バイアホールの
口径を大にすればこれらの作業は容易になるが、配線長
の低減という所期の目的にそぐわな(なる。
However, it is very difficult to embody such a structure using a normal semiconductor substrate. That is, since the thickness of a GaAs substrate on which semi-insulating GaAsji is epitaxially grown is 400 to 500 um, it is difficult to form a small-diameter via hole penetrating it, and furthermore, it is difficult to form a small diameter via hole through it. It is also difficult to electrically connect the front and back surfaces of the substrate. Increasing the diameter of the via hole would make these tasks easier, but it would not be compatible with the intended purpose of reducing the wiring length.

基板を含むチップ厚を減することによって上記構造を実
現することも考えられるが、GaAsのような襞間し易
い結晶を100μm以下の厚みにしたのでは機械的強度
が不足するため、プロセス作業中のウェファの破損が頻
発することはもちろん、仮にLSIチップが完成しても
使用中に破損するおそれがあり、信顧性に欠けるものと
なる。
It may be possible to achieve the above structure by reducing the thickness of the chip including the substrate, but if the thickness of a crystal that easily creases, such as GaAs, is reduced to less than 100 μm, the mechanical strength would be insufficient, so it would be difficult to achieve this during the process. Not only do wafers frequently break, but even if an LSI chip is completed, it may be damaged during use, resulting in a lack of reliability.

(従来の技術〕 基板背面に配線を設けた半導体装置としては、GaAs
FETを用いた簡単な構成の増幅装置で、FETのソー
ス電極に基板をW通ずる背面接続を設けたものがある。
(Prior art) As a semiconductor device with wiring provided on the back side of a substrate, GaAs
There is an amplification device using a FET with a simple configuration, in which the source electrode of the FET is provided with a backside connection through which W is connected to the substrate.

該装置では背面接続形成対象であるソース電極は比較的
大面積であり、貫通孔は異方性エツチングによって開け
られるので背面側の開口部のサイズも大である。
In this device, the source electrode to which the back surface connection is formed has a relatively large area, and the through hole is formed by anisotropic etching, so the size of the opening on the back side is also large.

該装置に於いて背面接続を採用する目的は配線の交差を
回避することと、電極間の寄生容量の低減である。
The purpose of employing backside connection in this device is to avoid wiring crossings and to reduce parasitic capacitance between electrodes.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

既に述べたように、従来と同じ基板構造で背面配線を実
現しようとするのは困難である。また、背面側に配線層
を被着形成するための工程の増加も避けられない。
As already mentioned, it is difficult to realize backside wiring with the same board structure as before. Furthermore, an increase in the number of steps for forming a wiring layer on the back side is also unavoidable.

本発明の目的は機械的強度が十分あり、プロセス作業上
も問題のない背面配線型半導体装置を提(共することで
ある。
An object of the present invention is to provide a back wiring type semiconductor device which has sufficient mechanical strength and is free from problems in process operations.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的を達成するため本発明の半導体装置で低抵抗の
Si若しくはGe単結晶基板上にエピタキシャル成長さ
れた低不純物濃度のGaAs層に能動素子が形成され、 特定の電圧が供給される前記該能動素子の電極は、前記
GaAsJiを貫通して設けられたi電体によって、前
記低抵抗のSi若しくはGe単結晶基板に接続された構
造となっている。
To achieve the above object, in the semiconductor device of the present invention, an active element is formed in a low impurity concentration GaAs layer epitaxially grown on a low resistance Si or Ge single crystal substrate, and the active element is supplied with a specific voltage. The electrode has a structure in which it is connected to the low resistance Si or Ge single crystal substrate by an i-electric body provided through the GaAsJi.

実施例に於いてはSi基板はグラウンド電位を各FET
のソースに供給するための配線体として機能している。
In the embodiment, the Si substrate connects the ground potential to each FET.
It functions as a wiring body for supplying to the source.

〔作 用〕[For production]

実施例の如くグラウンド配線を素子形成層の背面に設け
ることによって、表面側の配線領域が縮小され、配線長
が小となる。更に、交差配線をなくすことができるので
、表面側の配線形成工程が簡略化され、寄生容量も低減
される。
By providing the ground wiring on the back side of the element formation layer as in the embodiment, the wiring area on the front side is reduced and the wiring length is reduced. Furthermore, since crossing wiring can be eliminated, the wiring formation process on the front side is simplified and parasitic capacitance is also reduced.

〔実施例〕〔Example〕

第1図は本発明の基本構造を示す断面模式図である。 FIG. 1 is a schematic cross-sectional view showing the basic structure of the present invention.

咳図に於いて1は低抵抗Si基板であり、その上に半絶
縁性のQ a A s q 2がエピタキシャル成長さ
れている。該GaAsJIにFETなどの素子が形成さ
れた後、バイアホールが開けられ、金属層3によってG
aAs層表面領域と基板が電気的に接続されている。
In the diagram, 1 is a low resistance Si substrate, on which semi-insulating Q a A s q 2 is epitaxially grown. After forming elements such as FETs on the GaAsJI, via holes are opened and G
The aAs layer surface region and the substrate are electrically connected.

GaAs層上面では金属層は例えばFETのソース電極
に接続されているので、Si基板がグラウンド電位に接
続されると、FETのソースにもグラウンド′電位が供
給されることになる。Si基板の比抵抗が10−4Ω口
程度の低い値であれば動作電流の変化によるソース電位
の変動は無視し得る程度であり、集積回路の動作上なん
ら問題はない。
On the upper surface of the GaAs layer, the metal layer is connected to, for example, the source electrode of the FET, so when the Si substrate is connected to the ground potential, the ground' potential is also supplied to the source of the FET. If the resistivity of the Si substrate is as low as about 10<-4 >[Omega], the variation in source potential due to changes in operating current is negligible and causes no problem in the operation of the integrated circuit.

貫通接続用のオーミック電極は、例えばTiとAuを積
層したものである。
The ohmic electrode for through connection is made by laminating Ti and Au, for example.

3iとGaAsは格子定数が若干異なるので、従来はS
i基板上にG、aAsをエビクキシャル成長させること
は困難とされていたが、近年結晶成長技術の進歩により
、この組み合わせのエピタキシャル成長が出来るように
なった。なおGe基板の場合は、GaAsと格子定数が
近似しているので従来からエピタキシャル成長は可能で
ある。
3i and GaAs have slightly different lattice constants, so conventionally S
Although it was considered difficult to epitaxially grow G and aAs on an i-substrate, recent advances in crystal growth technology have made it possible to epitaxially grow this combination. Note that in the case of a Ge substrate, epitaxial growth is conventionally possible since the lattice constant is similar to that of GaAs.

第2図の3人力NOR回路に本発明を適用した実施例が
第3図である。咳層のFatはレイアウトを示す平面図
であり、そのY−Y ’断面がfb1図に模式的に示さ
れている。NOR回路は周知のものであるから説明は省
略する。
FIG. 3 shows an embodiment in which the present invention is applied to the three-man power NOR circuit shown in FIG. 2. Fat of the cough layer is a plan view showing the layout, and its YY' cross section is schematically shown in figure fb1. Since the NOR circuit is well known, its explanation will be omitted.

図の1はI XIO”CJ−”のe(P)を不純物とし
て含むSi基板であり、比抵抗は2X10−’Ω値程度
、基板面は(100)である、該基板上にはソ3μmの
厚さの半絶縁性GaAs層2がエピタキシャル成長され
ており、核層にMg3型のFETが形成されている。
1 in the figure is a Si substrate containing e(P) of I A semi-insulating GaAs layer 2 having a thickness of 2 is epitaxially grown, and an Mg3 type FET is formed in the core layer.

図の5はFETのソース領域、6はドレイン領域、7は
ショットキバリヤを有するゲート電極である。これ等各
領域の形成法は公知技術による。
In the figure, 5 is a source region of the FET, 6 is a drain region, and 7 is a gate electrode having a Schottky barrier. The method for forming each of these regions is based on known techniques.

また、3は選択されたFETのソースとSi基板を接続
するオーミック電極であり、4は通常の装置と同様にF
ETのS/D?IN域に設けられたオーミック電極であ
る。後者のオーミック電極は平面図であるfa1図に示
されるように、表面側の配線8によって所定の節点或い
は電源に接続されている。
In addition, 3 is an ohmic electrode that connects the source of the selected FET and the Si substrate, and 4 is an FET as in a normal device.
ET's S/D? This is an ohmic electrode provided in the IN region. The latter ohmic electrode is connected to a predetermined node or power source by a wiring 8 on the front side, as shown in the plan view fa1.

本実施例では山)図に明示されているように、論理入力
を受ける3個のFETのソースがGaAs層を貫通する
オーミック電極によって低抵抗のSi基板に接続されて
おり、Si基板が背面配線を形成している。
In this example, the sources of the three FETs that receive logic inputs are connected to a low-resistance Si substrate by ohmic electrodes penetrating the GaAs layer, and the Si substrate is connected to the back wiring. is formed.

〔発明の効果〕〔Effect of the invention〕

第2図のNOR回路を従来技術により、同し設計ルール
で形成した場合のレイアウトが第4図に示されている。
FIG. 4 shows a layout when the NOR circuit of FIG. 2 is formed using the conventional technology and the same design rules.

同図ta+は平面図、(blはそのz−z ’断面であ
る。これは周知の技術によって形成される周知の構造な
ので説明は省略するが、これと比較すれば明らかなよう
に、第3図のものはパターン寸法が縮小されている。な
お、ここではGaAs基板1′が使用されている。
ta+ in the same figure is a plan view, (bl is its zz' cross section. This is a well-known structure formed by a well-known technique, so the explanation is omitted, but as is clear from the comparison with this, the third In the figure, the pattern size is reduced. Note that a GaAs substrate 1' is used here.

以上説明したように、本発明によって実質的に背面配線
を有する半導体装置が実現することになるが、このよう
に基板を低抵抗化して配線体とするのは、Si若しくは
Geを用いることによって始めて可能になるのであり、
従来の装置のようにGaAs基板を使用するのでは十分
な低抵抗化を実現することができず、グラウンド電位を
供給するための配線体として使用することは望めない。
As explained above, the present invention substantially realizes a semiconductor device having backside wiring, but it is only by using Si or Ge that the substrate can be made into a wiring body by lowering its resistance. It becomes possible,
If a GaAs substrate is used as in the conventional device, it is not possible to achieve a sufficiently low resistance, and it cannot be expected to be used as a wiring body for supplying a ground potential.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の基本構造を示す断面模式図、第2図は
NOR回路を示す結線図、 第3図は本発明によるNOR回路の構造を示す模式図、 第4図は従来技術によるNOR回路の構造を示す模式図
であって、 図に於いて ■はSi基板、 1′はGaAs基板、 2はGaAs層、 3.4はオーミック電極、 5はソース、 6はドレイン、 7はゲート電極、 8は配線体、 9は絶縁膜 である。
Fig. 1 is a cross-sectional schematic diagram showing the basic structure of the present invention, Fig. 2 is a wiring diagram showing a NOR circuit, Fig. 3 is a schematic diagram showing the structure of a NOR circuit according to the present invention, and Fig. 4 is a NOR circuit according to the prior art. This is a schematic diagram showing the structure of the circuit. In the figure, ■ is a Si substrate, 1' is a GaAs substrate, 2 is a GaAs layer, 3.4 is an ohmic electrode, 5 is a source, 6 is a drain, and 7 is a gate electrode. , 8 is a wiring body, and 9 is an insulating film.

Claims (1)

【特許請求の範囲】  低抵抗のSi若しくはGe単結晶基板上にエピタキシ
ャル成長された低不純物濃度のGaAs層に能動素子が
形成され、 特定の電圧が供給される前記該能動素子の電極は、前記
GaAs層を貫通して設けられた導電体によって、前記
低抵抗のSi若しくはGe単結晶基板に接続されて成る
ことを特徴とする半導体装置。
[Claims] An active element is formed in a low impurity concentration GaAs layer epitaxially grown on a low resistance Si or Ge single crystal substrate, and an electrode of the active element to which a specific voltage is supplied is formed of the GaAs layer. A semiconductor device, characterized in that the semiconductor device is connected to the low resistance Si or Ge single crystal substrate by a conductor provided through the layers.
JP62298329A 1987-11-26 1987-11-26 Semiconductor device Expired - Lifetime JP2550623B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62298329A JP2550623B2 (en) 1987-11-26 1987-11-26 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62298329A JP2550623B2 (en) 1987-11-26 1987-11-26 Semiconductor device

Publications (2)

Publication Number Publication Date
JPH01140643A true JPH01140643A (en) 1989-06-01
JP2550623B2 JP2550623B2 (en) 1996-11-06

Family

ID=17858251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62298329A Expired - Lifetime JP2550623B2 (en) 1987-11-26 1987-11-26 Semiconductor device

Country Status (1)

Country Link
JP (1) JP2550623B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003051507A (en) * 2001-08-07 2003-02-21 Nec Kagobutsu Device Kk Fet device
JP2006086398A (en) * 2004-09-17 2006-03-30 Matsushita Electric Ind Co Ltd Semiconductor device and manufacturing method thereof
JP2006196869A (en) * 2004-12-13 2006-07-27 Matsushita Electric Ind Co Ltd Semiconductor device and manufacturing method thereof
JP2008193123A (en) * 2003-05-15 2008-08-21 Matsushita Electric Ind Co Ltd Semiconductor device
JP2010135824A (en) * 2010-02-01 2010-06-17 Panasonic Corp Semiconductor device and manufacturing method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003051507A (en) * 2001-08-07 2003-02-21 Nec Kagobutsu Device Kk Fet device
JP2008193123A (en) * 2003-05-15 2008-08-21 Matsushita Electric Ind Co Ltd Semiconductor device
JP2006086398A (en) * 2004-09-17 2006-03-30 Matsushita Electric Ind Co Ltd Semiconductor device and manufacturing method thereof
JP2006196869A (en) * 2004-12-13 2006-07-27 Matsushita Electric Ind Co Ltd Semiconductor device and manufacturing method thereof
JP2010135824A (en) * 2010-02-01 2010-06-17 Panasonic Corp Semiconductor device and manufacturing method thereof

Also Published As

Publication number Publication date
JP2550623B2 (en) 1996-11-06

Similar Documents

Publication Publication Date Title
DE3850855T2 (en) Semiconductor device.
DE68918066T3 (en) Three-dimensional stacked LSI.
DE102019101054A1 (en) Quantum computing arrangements
DE10349185A1 (en) Semiconductor package
DE112013004261T5 (en) Latch-up suppression and reduction of substrate noise coupling through a substrate back-link for 3D integrated circuits
JPH01140643A (en) Semiconductor device
JP3078420B2 (en) Semiconductor device
JPH01129441A (en) Semiconductor device
JP2852679B2 (en) Semiconductor device and manufacturing method thereof
JPH01128562A (en) Semiconductor device
JPS628550A (en) Resistor-element forming method for semiconductor device
JPS61251162A (en) Structure of semiconductor resistance element
DE102024202708B3 (en) METHOD FOR MANUFACTURING A SUPERCONDUCTING INTEGRATED CIRCUIT DEVICE
DE10361696A1 (en) Integrated semiconductor circuit has at least two modules or chips in a common housing that are galvanically separated by an integrated microprocessed structure
DE102024100132A1 (en) MAGNETIC BONDING STRUCTURE AND METHOD OF FORMING THE SAME
DE102022107599A1 (en) SEMICONDUCTOR DEVICE HAVING A CONTACT PAD STRUCTURE
JPS63131569A (en) Semiconductor device
JPH06132320A (en) Semiconductor integrated circuit
JPS6136977A (en) Semiconductor device and manufacture thereof
JP2790079B2 (en) Oxide superconducting circuit
JPH0682692B2 (en) Method for manufacturing semiconductor device
JPH01128448A (en) Wiring connection of semiconductor device
JPH03174729A (en) Semiconductor device and manufacture thereof
JPS62291975A (en) High-frequency semiconductor device
JP2001077370A (en) SOI semiconductor integrated circuit