[go: up one dir, main page]

JPH01124236A - Method and apparatus for forming wiring using laser - Google Patents

Method and apparatus for forming wiring using laser

Info

Publication number
JPH01124236A
JPH01124236A JP28341187A JP28341187A JPH01124236A JP H01124236 A JPH01124236 A JP H01124236A JP 28341187 A JP28341187 A JP 28341187A JP 28341187 A JP28341187 A JP 28341187A JP H01124236 A JPH01124236 A JP H01124236A
Authority
JP
Japan
Prior art keywords
laser
laser beam
wiring
substrate
drawn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28341187A
Other languages
Japanese (ja)
Other versions
JPH0577328B2 (en
Inventor
Tsutomu Niizawa
新澤 勉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP28341187A priority Critical patent/JPH01124236A/en
Publication of JPH01124236A publication Critical patent/JPH01124236A/en
Publication of JPH0577328B2 publication Critical patent/JPH0577328B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To form a wiring without causing the step-cut of the wiring ad damaging a material, by drawing the wiring by scanning, while keeping constant the distance from a laser beam irradiation point to the tip of the wiring during drawing. CONSTITUTION:A drawing line 21 being drawn by a laser CVD has a precedence part 24 growing in a drawing direction 23 from a laser irradiation point 22 converged by laser beam by heat diffusion at an appropriate moving speed, while a boundary of the drawing line 21 and a substrate material can be determined, for example, as a portion taking a maximum value of the change in brightness and darkness near the place having the laser irradiation part as a center by drawing process. Since the drawing direction 23 is previously given, the distance between the laser beam irradiation point 22 and these boundaries is computed and for example, the average of several points on a boundary line ahead of the laser beam irradiation point 22 facing a moving direction, for example, one point along the drawing direction 23 and two points crossing with a line having an angle of 60 deg. at its both ends becomes a precedence length. The precedence length increases when a laser beam intensity increases, while decreases when the moving speed increases, and increases when the concentration of a raw material gas increases.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はレーザ気相化学成長(レーザCVD)を用いる
配線形成方法とその装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a wiring forming method using laser chemical vapor deposition (laser CVD) and an apparatus therefor.

〔従来の技術〕[Conventional technology]

従来レーザCVOを用いた配線形成装置としてJ。 J as a conventional wiring forming device using laser CVO.

Vac、Sci、Technol、誌1987年85巻
496頁に記載されているような技術(知られている。
Techniques such as those described in Vac, Sci, Technol, 1987, Vol. 85, p. 496 (known).

ここでは、光源にアルゴンイオンレーザを用い、照射光
学系を通して金属を含む分子の蒸気を封入したCVDセ
ル内に設置された基板上に、レーザ光を集光照射し、セ
ルをパルスモータ駆動のX−Yステージで水平面内に移
動させることにより、マスクを用いずに基板上に微細な
金属線を描画することができる。
Here, an argon ion laser is used as a light source, and the laser beam is condensed and irradiated through an irradiation optical system onto a substrate installed in a CVD cell filled with vapor of molecules containing metal. - By moving in the horizontal plane with the Y stage, fine metal lines can be drawn on the substrate without using a mask.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら従来のレーザCVDを利用する配線形成装
置では、異なる熱伝導率を持つ材料の上で、熱拡散長の
違いにより線幅が変化したり、配線の段切れを起すこと
や、基板材料に損傷を与えるといった欠点があった。
However, with conventional wiring forming equipment that uses laser CVD, on materials with different thermal conductivities, the line width may change due to differences in thermal diffusion length, the wiring may break, or damage may occur to the substrate material. There was a drawback that it gave

本発明の目的は、レーザCvDによって描画された配線
の形状をモニタし、レーザ照射部から掃引方向に先行す
る部分の大きさに応じて基板位置の掃引速度、原料ガス
の濃度、レーザ光の入射強度を逐次制御す6.::へに
1す・異な6熱伝導率を持つ材料の上で、線幅′を一定
に保ち、配線の段切れを起すことなく、シかも材料に損
傷を与えないで配線形成を行うレーザ利用配線形成装置
を提供することにある。
The purpose of the present invention is to monitor the shape of wiring drawn by laser CvD, and adjust the sweep speed of the substrate position, the concentration of source gas, and the incidence of laser light according to the size of the portion preceding the laser irradiation part in the sweep direction. Sequential control of intensity 6. :: A laser that forms wiring on materials with different thermal conductivities by keeping the line width constant and without breaking the wiring or damaging the material. An object of the present invention is to provide a wiring forming device that can be used.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の第(1)の発明は、化学反応により導電性物質
を堆積する原料気体を含む雰囲気中におかれた基板上に
、レーザ光を集光照射し、前記レーザ光を基板に対し相
対的に走査することにより配線を描画する配線形成方法
において、レーザ光照射点から描画中の配線の先端まで
の距離を一定に保ちつつ走査して配線を描画することを
特徴とするレーザ利用配線形成方法である。
The first aspect of the present invention is to irradiate a focused laser beam onto a substrate placed in an atmosphere containing a raw material gas for depositing a conductive substance by a chemical reaction, and to direct the laser beam relative to the substrate. A wiring forming method using a laser, which is characterized in that the wiring is drawn by scanning while maintaining a constant distance from the laser beam irradiation point to the tip of the wiring being drawn. It's a method.

第(2)の発明は第1図において、レーザ光源(Arイ
オンレーザ6)と、このレーザ光源6の出射光を基板1
の表面に導く光学系(集光レンズ5、第1のミラー15
)と、”この出射光によりこの基板1を熱しその熱で分
解し金属を析出する蒸気をこの基板1の表面に導くガス
供給系(原料ガス流量制御ユニット10)と、この基板
1の表面をこの蒸気の雰囲気中に保持し、前記出射光を
導入する窓3を備えた反応槽2と、この反応槽2を水平
面内で移動可能に保持する機構(x−yステージ4、位
置制御ユニット13)と、前記レーザ光照射部を含む前
記基板表面をモニタする光学系(モニタ用光源9、第2
のミラー14)と、前記モニタ部分を照明するモニタ用
光源9および、前記モニタ部分の拡大画像を取り入れる
モニタ用カメラ7と、前記拡大画像を表示するモニタ用
テレビ8とを備えたレーザ利用配線形成装置において、
前記拡大画像中の描画部分の輪郭を認識し、レーザ光照
射点22からの前記描画線の描画方向への伸びの量を計
量する画像処理ユニット11と、この計量された前記伸
びの量から、前記レーザ光源の強度と、前記原料蒸気の
濃度および流量と、前記反応槽を移動させる速度とを決
定する制御ユニット(基本制御値設定ユニット12)を
具備していることを特徴とするレーザ利用配線形成装置
である。
The second invention is a laser light source (Ar ion laser 6) in FIG.
An optical system (condensing lens 5, first mirror 15
), a gas supply system (raw material gas flow rate control unit 10) that heats the substrate 1 with the emitted light, decomposes it with the heat, and guides vapor to the surface of the substrate 1 (raw material gas flow rate control unit 10); A reaction tank 2 is maintained in this steam atmosphere and equipped with a window 3 for introducing the emitted light, and a mechanism (an x-y stage 4, a position control unit 13) that holds this reaction tank 2 movably in a horizontal plane ), an optical system (monitoring light source 9, second
a mirror 14), a monitor light source 9 that illuminates the monitor portion, a monitor camera 7 that takes in an enlarged image of the monitor portion, and a monitor television 8 that displays the enlarged image. In the device,
An image processing unit 11 that recognizes the outline of the drawn portion in the enlarged image and measures the amount of elongation of the drawn line in the drawing direction from the laser beam irradiation point 22, and from the measured amount of elongation, Laser-based wiring characterized by comprising a control unit (basic control value setting unit 12) that determines the intensity of the laser light source, the concentration and flow rate of the raw material vapor, and the speed at which the reaction tank is moved. It is a forming device.

〔発明の作用・原理〕[Function/principle of the invention]

本発明においては、基板を映像によりモニタし、描画線
の描画方向の先端部のレーザ光照射位置からの伸長状態
を■雫処理して計量し、基板の熱伝導率の違いによる描
画線の伸長状態の違いを基準値と比較して判断している
。この伸びの差が正(負)の場合はレーザ光の強度を小
さく(大きく)する方向に補正するか、又は基板の移動
速度を大きく(小さく)する方向に補正するか、原料蒸
気の分圧を小さく(大きく)する方向に補正することに
より、描画線の伸長量を基準値に戻すことができる。
In the present invention, the board is monitored by video, and the elongation state of the tip of the drawn line from the laser beam irradiation position in the drawing direction is measured by droplet processing, and the elongation of the drawn line due to the difference in thermal conductivity of the board is measured. Differences in condition are determined by comparing them with standard values. If the difference in elongation is positive (negative), either correct the intensity of the laser beam to a smaller (larger) direction, or correct the moving speed of the substrate to a larger (smaller) direction, or correct the partial pressure of the raw material vapor. By correcting in the direction of decreasing (increasing) the drawing line, the amount of expansion of the drawing line can be returned to the reference value.

伸長量の基準値を設定しておくことにより、基板が直接
レーザ光を照射されなくなり、描画線を保護膜に利用す
ることでダメージを与えないで描画することができる。
By setting a reference value for the amount of elongation, the substrate is not directly irradiated with laser light, and by using the drawing line as a protective film, drawing can be performed without causing damage.

伸長量は描画線の先端部における線幅を与えるパラメー
タになっており、これを一定の値に保つことにより線幅
も一定にすることができる。
The amount of expansion is a parameter that gives the line width at the tip of the drawn line, and by keeping this at a constant value, the line width can also be kept constant.

正の値の伸長量を保つことにより、進行方向に描画線を
段切れなく描画させることができる。
By keeping the amount of expansion at a positive value, the drawing line can be drawn in the advancing direction without any breaks.

〔実施例〕〔Example〕

次に図を参照して本発明にかかわる実施例について詳細
に説明する。
Next, embodiments of the present invention will be described in detail with reference to the drawings.

第1図は本発明による構成を明示するための全体構成図
である。図において、Arイオンレーザ6からのレーザ
光は第1のミラー15で反射され、集光用レンズ5によ
り反応槽2内の基板1に集光照射される。レーザ光強度
は外部からの信号で調整することができる。基板1には
5in2熱酸化膜上に3IIM幅、IIIM厚のAQ配
線を形成したものを用いた。
FIG. 1 is an overall configuration diagram for clearly showing the configuration according to the present invention. In the figure, a laser beam from an Ar ion laser 6 is reflected by a first mirror 15, and is condensed and irradiated onto a substrate 1 in a reaction tank 2 by a condensing lens 5. The laser light intensity can be adjusted by an external signal. The substrate 1 used was one in which AQ wiring having a width of 3IIM and a thickness of IIIM was formed on a 5in2 thermal oxide film.

レーザ光は窓3を通して反応槽2の内部に導かれる。レ
ーザCVD用ガスとしてはW(CO)、蒸気を用いた。
The laser beam is guided into the reaction chamber 2 through the window 3. W(CO) and steam were used as the gas for laser CVD.

原料ガス制御ユニットではり(CO)、をアルゴンをキ
ャリアとし、更にアルゴンで希釈しながら、この希釈ア
ルゴン流量を制御することにより1w(Co)sの濃度
を制御する1反応槽2はX−Yステージ4上に固定され
、水平面内で位置制御ユニット13により移動させるこ
とができる。モニタ用光源9の光はレンズ5を通してレ
ーザ光照射部を含む部分を照明し、基板1からの反射光
を第2のミラー14を通してモニタ用カメラ7で受けこ
れを電気信号に変換し、この信号をモニタ用テレビ8お
よび画像処理ユニット11に送る。画像処理ユニット1
1では描画された配線の形状をパターン認識し、現在描
画している方向への照射部からの先行部分の大きさ(先
行部)を算出し、基本制御値設定ユニット12に送る。
The raw material gas control unit uses argon as a carrier and further dilutes it with argon, controlling the concentration of 1w(Co)s by controlling the flow rate of this diluted argon.1 Reaction tank 2 is an X-Y It is fixed on the stage 4 and can be moved by the position control unit 13 in a horizontal plane. The light from the monitor light source 9 passes through the lens 5 and illuminates the area including the laser beam irradiation section, and the reflected light from the substrate 1 is received by the monitor camera 7 through the second mirror 14 and converted into an electrical signal. is sent to the monitor television 8 and the image processing unit 11. Image processing unit 1
In step 1, the shape of the drawn wiring is pattern recognized, the size of the preceding portion from the irradiation unit in the current drawing direction (preceding portion) is calculated, and sent to the basic control value setting unit 12.

基本制御値設定ユニット12では暉像ユニット11から
得た先行部を、予め設定された先行部と比較し、その設
定値に近付くように、移動速度、レーザ光強度あるいは
原料ガス濃度を制御する。
The basic control value setting unit 12 compares the leading part obtained from the optical imaging unit 11 with a preset leading part, and controls the moving speed, laser light intensity, or raw material gas concentration so that it approaches the set value.

第2図は本発明の画像処理部の機構を説明する概念図で
ある。レーザCVDで描画しつつある描画線2】はある
適当な移動速度で、レーザ光を集光照射したレーザ照射
点22から熱の拡散により描画方向23に成長する先行
部分24を持つ。画像処理により、レーザ光照射部を中
心とした近傍部分で描画線21と基板材料の境界を、例
えば明暗の変化が最大値を取る部分として決めることが
できる。描画方向23は予め与えられているのでレーザ
光照射点22からのこれら境界線までの距離を算出し1
例えば進行方向に向かってレーザ光照射点22より前方
の境界線上の数点、例えば描画方向23に沿って1点、
その両側で60慣の角をなす線と交わる2点の平均を先
行部とする。
FIG. 2 is a conceptual diagram illustrating the mechanism of the image processing section of the present invention. The drawing line 2 which is being drawn by laser CVD has a leading portion 24 that grows in the drawing direction 23 by heat diffusion from the laser irradiation point 22 where laser light is focused and irradiated at a certain appropriate moving speed. Through image processing, it is possible to determine the boundary between the drawing line 21 and the substrate material in the vicinity of the laser beam irradiation part, for example, as the part where the change in brightness takes the maximum value. Since the drawing direction 23 is given in advance, the distances from the laser beam irradiation point 22 to these boundary lines are calculated 1
For example, several points on the boundary line in front of the laser beam irradiation point 22 in the traveling direction, for example, one point along the drawing direction 23,
The average of the two points intersecting the line forming an angle of 60 mm on both sides is taken as the leading part.

先行部は、レーザ光強度が増加すると増加し、移動速度
が増加すると減少し、原料ガス濃度が増加すると増加す
る。これらの制御パラメータを用いて先行部を制御した
例を次に示す。
The leading portion increases as the laser light intensity increases, decreases as the moving speed increases, and increases as the source gas concentration increases. An example in which the preceding section is controlled using these control parameters is shown below.

移動速度4−/S、入射強度200mV、 V(Co)
s分圧10Torrの条件で5in2熱酸化膜上では、
先行部が2−となったが、AQ線との境界近傍では、先
行部が減少し、フィードバックをかけないときは、描画
線が断線してしまう。
Movement speed 4-/S, incident intensity 200mV, V(Co)
On the 5in2 thermal oxide film under the condition of s partial pressure of 10 Torr,
Although the leading part became 2-, the leading part decreased near the boundary with the AQ line, and the drawn line would be broken if no feedback was applied.

先行部が減少した場合、減少量に応じて移動速度を減少
させる。移動速度の減少のみでは先行部を回復できない
場合はレーザ光強度を基板にダメージを与えない値を上
限として増加させる。こうしてフィードバックをかける
とAQ線との境界領域でもダメージを与えずに、均一幅
で段切れなくW線を描画することができた。
When the leading portion decreases, the moving speed is decreased according to the amount of decrease. If the leading portion cannot be recovered only by reducing the moving speed, the laser beam intensity is increased to a value that does not damage the substrate as an upper limit. By applying feedback in this way, it was possible to draw a W line with a uniform width and no breaks without causing any damage even in the boundary area with the AQ line.

〔発明の効果〕〔Effect of the invention〕

以上説明したことから明らかなように、本発明を用いる
と、し2χCVDによって描画された配線の形状をモニ
タし、レーザ照射部から掃引方向に先行する部分の大き
さに応じて基板位置の掃引速度、原料ガスの濃度、レー
ザ光の入射強度を逐次制御することにより、異なる熱伝
導率を持つ材料の上で、線幅を一定に保ち、配線の段切
れを起すことなく、しかも材料に損傷を与えないで配線
形成を行うことができる。
As is clear from the above explanation, when the present invention is used, the shape of the wiring drawn by 2χ CVD is monitored, and the sweep speed of the substrate position is determined according to the size of the portion leading in the sweep direction from the laser irradiation part. By sequentially controlling the concentration of the raw material gas and the incident intensity of the laser beam, it is possible to maintain a constant line width on materials with different thermal conductivities, without causing breaks in the wiring, and without damaging the materials. Wiring can be formed without applying any

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に基づ〈実施例に用いる描画装置の全体
構成図、第2図は本発明に基づく画像処理部を説明する
ための直描線の概念図である。 1・・・基板       2・・・反応槽3・・・窓
        4X−Yステージ5・・・集光用レン
ズ    6・・・Arイオンレーザ(レーザ光源)7
・・・モニタ用カメラ  8・・・モニタ用テレビ9・
・・モニタ用光源   10・・・原料ガス流量制御ユ
ニット11・・・画像処理ユニット 12・・・基本制
御値設定ユニット13・・・位置制御ユニット 14・
・・第2のミラー15・・・第1のミラー   21・
・・描画線24・・・先行部分
FIG. 1 is an overall configuration diagram of a drawing device used in an embodiment based on the present invention, and FIG. 2 is a conceptual diagram of direct drawing lines for explaining an image processing section based on the present invention. 1...Substrate 2...Reaction tank 3...Window 4X-Y stage 5...Condensing lens 6...Ar ion laser (laser light source) 7
...Monitor camera 8...Monitor television 9.
... Monitoring light source 10 ... Raw material gas flow rate control unit 11 ... Image processing unit 12 ... Basic control value setting unit 13 ... Position control unit 14.
...Second mirror 15...First mirror 21.
...Drawing line 24...preceding part

Claims (2)

【特許請求の範囲】[Claims] (1)化学反応により導電性物質を堆積する原料気体を
含む雰囲気中におかれた基板上に、レーザ光を集光照射
し、前記レーザ光を基板に対し相対的に走査することに
より配線を描画する配線形成方法において、レーザ光照
射点から描画中の配線の先端までの距離を一定に保ちつ
つ走査して配線を描画することを特徴とするレーザ利用
配線形成方法。
(1) A condensed laser beam is irradiated onto a substrate placed in an atmosphere containing a raw material gas that deposits a conductive substance through a chemical reaction, and the wiring is formed by scanning the laser beam relative to the substrate. A wiring forming method using a laser, characterized in that the wiring is drawn by scanning while keeping a constant distance from the laser beam irradiation point to the tip of the wiring being drawn.
(2)レーザ光源と、このレーザ光源の出射光を基板の
表面に導く光学系と、この出射光によりこの基板を熱し
その熱で分解し金属を析出する蒸気をこの基板の表面に
導くガス供給系と、この基板の表面をこの蒸気の雰囲気
中に保持し、前記出射光を導入する窓を備えた反応槽と
、この反応槽を保持し水平面内で移動させる機構と、前
記レーザ光照射部を含む前記基板表面をモニタする光学
系と、前記モニタ部分を照明するモニタ用光源および、
前記モニタ部分の拡大画像を取り入れるモニタ用カメラ
と、前記拡大画像を表示するモニタ用テレビとを備える
レーザ利用配線形成装置において、前記拡大画像中の描
画部分の輪郭を認識し、レーザ光照射点からの前記描画
線の描画方向への伸びの量を計量する画像処理ユニット
と、この計量された前記伸びの量から、前記レーザ光源
の強度と、前記原料蒸気の濃度および流量と、前記反応
槽を移動させる速度とを決定する制御ユニットを具備し
ていることを特徴とするレーザ利用配線形成装置。
(2) A laser light source, an optical system that guides the emitted light from the laser light source to the surface of the substrate, and a gas supply that heats the substrate with the emitted light and guides vapor that decomposes and deposits metal to the surface of the substrate. a reaction tank that holds the surface of the substrate in the vapor atmosphere and has a window for introducing the emitted light, a mechanism that holds and moves the reaction tank in a horizontal plane, and the laser beam irradiation section. an optical system that monitors the surface of the substrate including a monitor light source that illuminates the monitor portion;
In the laser-based wiring forming apparatus, which includes a monitor camera that takes in an enlarged image of the monitor portion, and a monitor television that displays the enlarged image, the outline of the drawn portion in the enlarged image is recognized, and the outline of the drawn portion is recognized from the laser beam irradiation point. an image processing unit that measures the amount of elongation of the drawn line in the drawing direction; and from the measured amount of elongation, the intensity of the laser light source, the concentration and flow rate of the raw material vapor, and the amount of the reaction tank. A laser-based wiring forming apparatus characterized by comprising a control unit that determines a moving speed.
JP28341187A 1987-11-09 1987-11-09 Method and apparatus for forming wiring using laser Granted JPH01124236A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28341187A JPH01124236A (en) 1987-11-09 1987-11-09 Method and apparatus for forming wiring using laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28341187A JPH01124236A (en) 1987-11-09 1987-11-09 Method and apparatus for forming wiring using laser

Publications (2)

Publication Number Publication Date
JPH01124236A true JPH01124236A (en) 1989-05-17
JPH0577328B2 JPH0577328B2 (en) 1993-10-26

Family

ID=17665181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28341187A Granted JPH01124236A (en) 1987-11-09 1987-11-09 Method and apparatus for forming wiring using laser

Country Status (1)

Country Link
JP (1) JPH01124236A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6136096A (en) * 1996-05-01 2000-10-24 Nec Corporation Method and apparatus for correcting defects in photomask

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6136096A (en) * 1996-05-01 2000-10-24 Nec Corporation Method and apparatus for correcting defects in photomask

Also Published As

Publication number Publication date
JPH0577328B2 (en) 1993-10-26

Similar Documents

Publication Publication Date Title
US4874460A (en) Method and apparatus for modifying patterned film
EP0165685B1 (en) Laser-based system for the total repair of photomasks
EP0247714A2 (en) Method and apparatus for forming a film on a substrate
JPH0870144A (en) How to make superconducting parts
US5544182A (en) Laser system for laser ablation process and laser ablation process for preparing thin film of oxide superconductor material thereby
JPH11217667A (en) Operation method of high output electron beam
WO2018074283A1 (en) Laser processing apparatus and laser processing method
JP3081990B2 (en) Ion beam processing equipment
US6412682B2 (en) Wave soldering method and system used for the method
KR20100100889A (en) Method and system for continuous or semi-continuous laser deposition
JPH01124236A (en) Method and apparatus for forming wiring using laser
JP3489989B2 (en) Pattern film forming method and focused ion beam processing apparatus used therefor
JP3741161B2 (en) Splash monitoring device for continuous vacuum deposition equipment
JP4936328B2 (en) Laser processing equipment
JP2005199350A (en) Method and device for laser beam welding for reducing appearance of welded seam
JPH06291035A (en) Beam annealing apparatus
JP2981983B2 (en) Pattern film repair device
JP2776218B2 (en) Laser CVD equipment
JP2610456B2 (en) Pattern film correction method
JP3111615B2 (en) Method and apparatus for forming transparent film
JPH069743B2 (en) Groove detection method and device
JPH05200579A (en) Laser processing equipment
JP2799861B2 (en) Pattern film correction method
JPH0553259B2 (en)
JPH0582480A (en) Energy beam local processing method and apparatus thereof