JPH01108198A - How to grow multi-element compound crystals - Google Patents
How to grow multi-element compound crystalsInfo
- Publication number
- JPH01108198A JPH01108198A JP26409787A JP26409787A JPH01108198A JP H01108198 A JPH01108198 A JP H01108198A JP 26409787 A JP26409787 A JP 26409787A JP 26409787 A JP26409787 A JP 26409787A JP H01108198 A JPH01108198 A JP H01108198A
- Authority
- JP
- Japan
- Prior art keywords
- crystal
- composition ratio
- crystal growth
- scattered light
- optical lattice
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000013078 crystal Substances 0.000 title claims abstract description 85
- 150000001875 compounds Chemical class 0.000 title abstract description 13
- 239000000203 mixture Substances 0.000 claims abstract description 37
- 230000003287 optical effect Effects 0.000 claims abstract description 23
- 238000000034 method Methods 0.000 claims description 11
- 238000001069 Raman spectroscopy Methods 0.000 abstract description 4
- 230000001678 irradiating effect Effects 0.000 abstract description 4
- 238000001514 detection method Methods 0.000 abstract description 3
- 238000011065 in-situ storage Methods 0.000 abstract 1
- 239000004065 semiconductor Substances 0.000 description 16
- 238000010586 diagram Methods 0.000 description 7
- 238000001451 molecular beam epitaxy Methods 0.000 description 5
- 229910052785 arsenic Inorganic materials 0.000 description 3
- 229910052733 gallium Inorganic materials 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 2
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 2
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 1
- MDPILPRLPQYEEN-UHFFFAOYSA-N aluminium arsenide Chemical compound [As]#[Al] MDPILPRLPQYEEN-UHFFFAOYSA-N 0.000 description 1
- RNQKDQAVIXDKAG-UHFFFAOYSA-N aluminum gallium Chemical compound [Al].[Ga] RNQKDQAVIXDKAG-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 238000005424 photoluminescence Methods 0.000 description 1
- 238000001004 secondary ion mass spectrometry Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
- Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
- Recrystallisation Techniques (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
Description
【発明の詳細な説明】
【概要〕
多元化合物を均一な組成比で結晶成長させる成長方法に
関し、
結晶組成比を“その場”決定しながら結晶成長を行うこ
とにより均一な組成比をもつ多元化香物結晶を得ること
を目的とし、
結晶成長が行われている結晶成長装置内の多元化合物結
晶にレーザ光を照射し、該結晶面から反射されるストー
クス散乱光と反ストークス散乱光トノ強度比と光学格子
エネルギーから該結晶の表面温度を求めた後、光学格子
エネルギーの温度依存性から組成比を決め、前記結晶成
長装置を自動的に制御して結晶成長を行う。[Detailed Description of the Invention] [Summary] Concerning a growth method for growing crystals of a multicomponent compound with a uniform composition ratio, crystal growth is performed while determining the crystal composition ratio “on the spot”, thereby achieving a multicomponent compound with a uniform composition ratio. For the purpose of obtaining aromatic crystals, a laser beam is irradiated onto a multi-component crystal in a crystal growth apparatus where crystal growth is being carried out, and the tono intensity ratio of Stokes scattered light and anti-Stokes scattered light reflected from the crystal plane is calculated. After determining the surface temperature of the crystal from the optical lattice energy and the optical lattice energy, the composition ratio is determined from the temperature dependence of the optical lattice energy, and the crystal growth apparatus is automatically controlled to grow the crystal.
本発明は組成比を“その場”算出しながら結晶成長を行
う多元化合物結晶の成長方法に関する。The present invention relates to a method for growing a crystal of a multi-component compound, in which crystal growth is performed while calculating the composition ratio "on the spot".
IC,LSIなどの半導体集積回路については、多くの
ものがシリコン(St)などの単体半導体を基板にして
デバイスが形成されているが、半導体レーザ。Regarding semiconductor integrated circuits such as ICs and LSIs, many devices are formed using a single semiconductor such as silicon (St) as a substrate, but semiconductor lasers.
高電子移動度トランジスタ(略称HEMT) 、発光素
子。High electron mobility transistor (abbreviated as HEMT), light emitting device.
受動素子などのデバイスは化合物半導体を用いてデバイ
スが形成されている。Devices such as passive elements are formed using compound semiconductors.
いま、半導体レーザを例にとると、発振波長が7500
〜9゛OOO人の波長領域にはガリウム・アルミニラム
・砒素(Ga AI As)レーザが、また1 〜1
.7μmの波長領域にはインジウム・ガリウム・砒素・
燐(In Ga As P)レーザが使用されている。Now, taking a semiconductor laser as an example, the oscillation wavelength is 7500.
~9゛OOOO In the human wavelength range, there are gallium aluminum arsenic (Ga AI As) lasers, and 1 ~1
.. Indium, gallium, arsenic,
A phosphorous (InGaAsP) laser is used.
こ\で、これらのレーザは導電型を異にしたり、組成を
変えて禁止帯幅を変゛えた複数の半導体層をエピタキシ
ャル成長させて構成されているが、性能の維持と製造歩
留まりの向上のためには、それぞれの半導体層は設計通
りの組成比をもって均質に形成されていることが必要で
ある。These lasers are constructed by epitaxially growing multiple semiconductor layers with different conductivity types or compositions with different band gaps, but in order to maintain performance and improve manufacturing yield, For this purpose, each semiconductor layer must be uniformly formed with a designed composition ratio.
そのためには、半導体層の成長過程に組成のチエツクを
しつ一結晶成長を行うことが望ましい。To this end, it is desirable to perform single crystal growth while checking the composition during the growth process of the semiconductor layer.
先に記したように多元化合物半導体結晶を用いたデバイ
スは多く存在するが、組成比が所望通りのものか否かの
決定は結晶成長が終わった後に、二次イオンによる質量
分析(Secondary fan MassSpec
troscopy 略称SIMS) 、 X線回折、
フォトルミネッセンスなどの測定技術を用いて行われて
いる。As mentioned earlier, there are many devices using multi-component compound semiconductor crystals, but determining whether the composition ratio is as desired is done after the crystal growth is completed using secondary ion mass spectrometry (Secondary fan Mass Spec).
troscopy (abbreviated as SIMS), X-ray diffraction,
This is done using measurement techniques such as photoluminescence.
そして、結晶成長中に組成比を決定することば行われて
いなかった。Furthermore, the composition ratio was not determined during crystal growth.
すなわち、結晶組成の制御法としては、一定の成長条件
のもとで得られる組成比の関係を経験的に求めておき、
これに基づいて多元化合物半導体結晶の成長が行われて
いる。In other words, as a method of controlling the crystal composition, the relationship between the composition ratios obtained under certain growth conditions is empirically determined, and
Based on this, multi-compound semiconductor crystals are grown.
そのため、結晶成長条件の変動には対応できず、組成比
のずれた結晶の成長が起こり易く、測定の結果、組成比
がずれている場合は廃棄する以外に方法がなく、これら
のことから結晶成長時に“その場”決定できる技術が必
要であった。Therefore, it cannot respond to fluctuations in crystal growth conditions, and crystals with a different composition ratio tend to grow.If the measurement results show that the composition ratio is different, there is no other way than to discard the crystal. There was a need for technology that could make decisions "on the spot" during growth.
以上記したように多元化合物半導体結晶を用いたデバイ
スは各種存在するが、この製造歩留まりを向上するには
結晶成長時に結晶組成をその場で決定してフィードバッ
クすることが望ましく、その方法を開発することが課題
である。As mentioned above, there are various devices using multi-compound semiconductor crystals, but in order to improve the manufacturing yield, it is desirable to determine the crystal composition on the spot during crystal growth and provide feedback, and we are developing a method to do so. That is the issue.
c問題点を解決するための手段〕
上記の問題は結晶成長が行やれている結晶成長装置内の
多元化合物結晶にレーザ光を照射し、該結晶面から放射
されるストークス散乱光と反ストークス散乱光との強度
比と光学格子エネルギーとから該結晶の表面温度を求め
、光学格子エネルギーの温度依存性から組成比をその場
で求め、この結果を結晶成長装置にフィードバックする
ことにより解決することができる。Measures to Solve Problem c] The above problem is solved by irradiating a laser beam onto a multi-component compound crystal in a crystal growth apparatus in which crystal growth is taking place, and then detecting the Stokes scattered light and anti-Stokes scattered light emitted from the crystal plane. This can be solved by determining the surface temperature of the crystal from the intensity ratio with light and the optical lattice energy, determining the composition ratio on the spot from the temperature dependence of the optical lattice energy, and feeding this result back to the crystal growth apparatus. can.
本発明は光学格子振動エネルギーは測定温度により異な
るもの一1多元化合物半導体結晶を構成する組成の関数
であることから、結晶成長が行われている表面温度と光
学格子振動エネルギーを求め、これより結晶組成を求め
るものである。In the present invention, the optical lattice vibrational energy varies depending on the measurement temperature.Since it is a function of the composition constituting the multi-compound semiconductor crystal, the surface temperature where the crystal is growing and the optical lattice vibrational energy are determined, and from this, the crystal This is to find the composition.
こ−で、光学格子振動エネルーの求めかたとしては、結
晶成長しつ−ある結晶表面にレーザ光を照射すると光学
格子振動からストークス散乱光と反ストークス散乱光と
を生ずるが、
ストークス散乱光の強度を!5.。In this way, the optical lattice vibrational energy can be found by irradiating a laser beam onto the surface of a growing crystal, which generates Stokes scattered light and anti-Stokes scattered light from the optical lattice vibration. Strength! 5. .
反ストークス散乱光の強度を■、8.とし、両者の強度
比をI、Iとすると、
1 m = Ims/ I s #exp(−EL+/
kl e T) =(1)但し、ELピ・・光学格
子エネルギー
に、・・・ボルツマン定数
T ・・・絶対温度
の関係がある。Intensity of anti-Stokes scattered light is ■,8. If the intensity ratio of both is I, I, then 1 m = Ims/Is #exp(-EL+/
kle T) = (1) However, there is a relationship between EL pi...optical lattice energy,...Boltzmann constant T...absolute temperature.
そこで、本発明は結晶表面にレーザ光を照射してl^3
.■3およびELIを測定して(11式からTを求め、
予め求めておいた温度Tにおける組成比と光学格子エネ
ルギーの関係から組成比を決定するものである。Therefore, in the present invention, the crystal surface is irradiated with laser light.
.. ■Measure 3 and ELI (calculate T from equation 11,
The composition ratio is determined from the relationship between the composition ratio and the optical lattice energy at a temperature T determined in advance.
なお、組成比が求まると、この結果を結晶成長が行われ
ている成長炉の制御機構にフィードバックして補正する
ことにより所望通りの組成比のエピタキシャル成長を行
うことができる。Note that once the composition ratio is determined, epitaxial growth can be performed with a desired composition ratio by feeding back this result to the control mechanism of the growth furnace in which crystal growth is being performed and correcting it.
第1図は本発明に係る結晶成長制御法を示すブロック図
であって、
多元化合物半導体結晶の成長が行われている結晶炉1の
中の結晶の表面にレーザ光源2よりレーザ光を照射し、
ストークス光と反ストークス光とからなるラマン散乱光
の検出3を行い、この強度比と光学格子エネルギーを測
定することにより、結晶面の温度計測4を行うものであ
る。FIG. 1 is a block diagram showing a crystal growth control method according to the present invention, in which a laser light source 2 irradiates the surface of a crystal in a crystal furnace 1 where a multi-component compound semiconductor crystal is grown. ,
Detection 3 of Raman scattered light consisting of Stokes light and anti-Stokes light is performed, and temperature measurement 4 of the crystal plane is performed by measuring the intensity ratio and optical lattice energy.
このようにして得た計測温度は直ちに結晶成長炉1の成
長制御機構5にインプットすると共に、予め求めである
光学格子エネルギーの組成依存性データとの照合6を行
い、これより結晶組成の決定7を行い、この結果を成長
制御機構5にインプットして結晶成長炉1の成長制御を
行う。The measured temperature obtained in this way is immediately input to the growth control mechanism 5 of the crystal growth furnace 1, and is compared with the composition dependence data of the optical lattice energy obtained in advance 6, and from this, the crystal composition is determined 7. The results are input to the growth control mechanism 5 to control the growth of the crystal growth furnace 1.
このような方法をとることにより、所定の組成比を保っ
て多元化合物半導体結晶の成長を行うことができる。By adopting such a method, a multi-component compound semiconductor crystal can be grown while maintaining a predetermined composition ratio.
なお、使用するレーザ光は結晶表面での散乱光を得るた
めに、エピタキシャル成長を行う半導体結晶の禁止帯の
帯域幅よりも大きな格子エネルギーをもっていることが
必要で、■−■族化合物半導体に対してはアルゴン(A
r) レー゛ザの使用が適している。In addition, in order to obtain scattered light on the crystal surface, the laser beam used must have a lattice energy larger than the bandgap band of the semiconductor crystal that is epitaxially grown. is argon (A
r) The use of laser is suitable.
第2図は本発明を適用した分子線エピタキシャル装置(
略称MBE装置)の部分構成図であって、分子線エピタ
キシィ(MBE)を行う分子線源などは省略しである。Figure 2 shows a molecular beam epitaxial device (
This is a partial configuration diagram of the MBE apparatus (abbreviated as MBE apparatus), and the molecular beam source for performing molecular beam epitaxy (MBE) and the like are omitted.
こ\で、MBB装置8の中央に設置されている基台の上
にはアルミニウム・ガリウム・砒素(AIGa As)
結晶9が載置されて結晶成長が行われている。Here, on the base installed in the center of the MBB device 8 is aluminum gallium arsenic (AIGaAs).
A crystal 9 is placed and crystal growth is being performed.
この状態でArレーザ光源10よりレーザ光をAIGa
As結晶9に照射し、結晶面からの散乱光をシャッタ
11を開け、MBE装置8に設けられている窓を通して
レンズ12で光ファイバ13の端部に集光し、これを通
してマルチチャネル検出器14に入力し、検出器制御装
置15によりマルチチャネル検出器14から必要とする
ストークス散乱光1反ストークス散乱光について、光強
度と光学格子エネル ゛ギーを求め、データ処理装置
16で71GaAs結晶9の表面温度を求めて結晶の組
成比を決定する。In this state, laser light is emitted from the Ar laser light source 10 to the AIGa
The light scattered from the crystal plane is irradiated onto the As crystal 9, the shutter 11 is opened, the light is focused on the end of the optical fiber 13 by the lens 12 through the window provided in the MBE device 8, and is passed through the multi-channel detector 14. The detector control device 15 calculates the light intensity and optical lattice energy of the required Stokes scattered light 1 anti-Stokes scattered light from the multichannel detector 14, and the data processing device 16 calculates the light intensity and optical lattice energy of the 71GaAs crystal 9. The temperature is determined to determine the composition ratio of the crystal.
第3図はA I O+ sGa、、、5As結晶にAr
レーザを照射した場合に得られるラマン散乱光の出力信
号であって、0に対し一側にある散乱光(L −In
L −t)がストークス散乱光、+側にある散乱光(L
oll L。2)は反ストークス散乱光である。Figure 3 shows Ar in AIO+ sGa,...,5As crystal.
This is the output signal of Raman scattered light obtained when irradiating a laser, and the scattered light on one side with respect to 0 (L -In
L - t) is the Stokes scattered light, and scattered light on the + side (L
oll L. 2) is anti-Stokes scattered light.
こ\で、ピークL−+で示す散乱光はAn!GaAs結
晶のGaとAsの結合に基づく縦型光学格子振動のスト
ークス散乱光、またピークL+1はその反ストークス散
乱光である。Here, the scattered light indicated by the peak L-+ is An! The Stokes scattered light is caused by vertical optical lattice vibration based on the bond between Ga and As in the GaAs crystal, and the peak L+1 is the anti-Stokes scattered light.
そこで、バックグラウンドの散乱光強度を差し引いたL
+lとL−;の強度を測定して両者の強度比■8を求
め、これとL +l或いはL−、の光学格子エネルギか
ら先に示した(11式を用いてAn!GaAs結晶の表
面温度が求まる。Therefore, after subtracting the background scattered light intensity, L
Measure the intensities of +l and L-; to find the intensity ratio (8) of the two, and from this and the optical lattice energy of L +l or L-, as shown earlier (using equation 11, the surface temperature of the An!GaAs crystal is found.
次に、第4図は表面温度をパラメータとしたA11Ga
As結晶中のA1組成比と光学格子エネルギーとの関係
図であり、先に求めた表面温度と光学格子エネルギーと
からAJの組成比を求めることができる。Next, Figure 4 shows A11Ga with surface temperature as a parameter.
It is a relationship diagram between the A1 composition ratio and the optical lattice energy in the As crystal, and the AJ composition ratio can be determined from the previously determined surface temperature and optical lattice energy.
そして、か−るデータをフィードバックしながら結晶成
長を行うことにより所望の組成の結晶成長を行うことが
できる。By performing crystal growth while feeding back such data, crystal growth with a desired composition can be performed.
本発明の実施により結晶成長を行う過程で組成の決定を
行うことができ、このデータにより結晶成長を制御する
ことにより所望の組成の多元化合物半導体結晶を得るこ
とができる。By implementing the present invention, the composition can be determined during the crystal growth process, and by controlling the crystal growth using this data, a multi-component compound semiconductor crystal with a desired composition can be obtained.
第1図は本発明に係る結晶成長制御法を示すブロック図
、
第2図は本発明を適用したMBE装置の部分構成図、
第3図はA j! 6.5Gao、 sAs結晶のラマ
ン散乱光の出力信号、
第4図はA1組成比と光学格子エネルギーとの関係図、
である。
図において、
9はAj2GaAs結晶、 10はArレーザ光源、
14はマルチチャネル検出器、
15は検出器制御装置、 16はデータ処理装置、で
ある。
第1区FIG. 1 is a block diagram showing a crystal growth control method according to the present invention, FIG. 2 is a partial configuration diagram of an MBE apparatus to which the present invention is applied, and FIG. 3 is a block diagram showing a crystal growth control method according to the present invention. 6.5 Gao, output signal of Raman scattered light of sAs crystal. Figure 4 is a relationship diagram between A1 composition ratio and optical lattice energy. In the figure, 9 is an Aj2GaAs crystal, 10 is an Ar laser light source,
14 is a multi-channel detector, 15 is a detector control device, and 16 is a data processing device. Ward 1
Claims (1)
晶にレーザ光を照射し、該結晶面から反射されるストー
クス散乱光と反ストークス散乱光との強度比と光学格子
エネルギーから該結晶の表面温度を求めた後、光学格子
エネルギーの温度依存性から組成比を決め、前記結晶成
長装置を自動的に制御することを特徴とする多元化合物
結晶の成長方法。A laser beam is irradiated onto a multi-component crystal in a crystal growth apparatus where crystal growth is being performed, and the surface of the crystal is determined from the intensity ratio of the Stokes scattered light and anti-Stokes scattered light reflected from the crystal plane and the optical lattice energy. A method for growing a multi-component crystal, characterized in that after determining the temperature, the composition ratio is determined from the temperature dependence of optical lattice energy, and the crystal growth apparatus is automatically controlled.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26409787A JPH01108198A (en) | 1987-10-20 | 1987-10-20 | How to grow multi-element compound crystals |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26409787A JPH01108198A (en) | 1987-10-20 | 1987-10-20 | How to grow multi-element compound crystals |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01108198A true JPH01108198A (en) | 1989-04-25 |
Family
ID=17398468
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26409787A Pending JPH01108198A (en) | 1987-10-20 | 1987-10-20 | How to grow multi-element compound crystals |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01108198A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2300256A (en) * | 1995-04-26 | 1996-10-30 | Electrotech Equipments Ltd | Optical semi-conductor wafer temperature sensing |
CN109313123A (en) * | 2016-06-15 | 2019-02-05 | 康宁股份有限公司 | For handling method, system and the equipment of glass material according to crystal state |
-
1987
- 1987-10-20 JP JP26409787A patent/JPH01108198A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2300256A (en) * | 1995-04-26 | 1996-10-30 | Electrotech Equipments Ltd | Optical semi-conductor wafer temperature sensing |
GB2300256B (en) * | 1995-04-26 | 1999-09-29 | Electrotech Equipments Ltd | Temperature sensing methods and apparatus |
CN109313123A (en) * | 2016-06-15 | 2019-02-05 | 康宁股份有限公司 | For handling method, system and the equipment of glass material according to crystal state |
CN109313123B (en) * | 2016-06-15 | 2021-08-27 | 康宁股份有限公司 | Method, system and apparatus for processing glass materials according to crystalline state |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4931132A (en) | Optical control of deposition of crystal monolayers | |
Almeida et al. | Incubation effect during laser micromachining of GaN films with femtosecond pulses | |
US7656514B2 (en) | Method and apparatus for evaluating semiconductor layers | |
JPH03216526A (en) | Method of measuring temperature of semiconductor material by light transmission factor | |
JPH01108198A (en) | How to grow multi-element compound crystals | |
US6744501B2 (en) | Method of analyzing silicon-germanium alloys and apparatus for manufacturing semiconductor layer structures with silicon-germanium alloy layers | |
KR950007482B1 (en) | Meteorological Growth Method | |
Dubreuil et al. | Structure and bandgap determination of InN grown by RP-MOCVD | |
JP3688383B2 (en) | Crystal defect detection method | |
US9086321B2 (en) | Method of analyzing nitride semiconductor layer and method of manufacturing nitride semiconductor substrate using the analysis method | |
JP2950362B2 (en) | Method for measuring nitrogen concentration in compound semiconductor | |
JPH01115896A (en) | Apparatus for growing crystal thin film | |
JPS62189723A (en) | Apparatus for vapor growth | |
JP2740903B2 (en) | Evaluation method for compound semiconductor substrate | |
JP6033723B2 (en) | Method for evaluating compound semiconductors | |
CN110470611A (en) | A kind of on-line measuring device and method of gaN series film growth conditions | |
JPH01231341A (en) | Device for evaluating semiconductor crystal | |
TW200416934A (en) | Quality determination method for semiconductor epitaxy wafer, and wafer manufacturing method using the same | |
JP2005233733A (en) | Method, instrument, and program for measuring carrier concentration and stress in semiconductor device | |
JPS60126816A (en) | Molecular beam epitaxial growth device | |
JPS61125123A (en) | Molecular beam crystal growth device | |
JP2025043173A (en) | Crystal analysis method, crystal analysis apparatus, semiconductor substrate and manufacturing method thereof, and semiconductor device manufacturing method | |
JP3003508B2 (en) | Simple measurement method of Si concentration in GaP single crystal | |
JP5125252B2 (en) | Nitride semiconductor evaluation method and evaluation apparatus | |
JPH01176292A (en) | Method for molecular-beam epitaxial growth and apparatus therefor |