JPS61125123A - Molecular beam crystal growth device - Google Patents
Molecular beam crystal growth deviceInfo
- Publication number
- JPS61125123A JPS61125123A JP24760684A JP24760684A JPS61125123A JP S61125123 A JPS61125123 A JP S61125123A JP 24760684 A JP24760684 A JP 24760684A JP 24760684 A JP24760684 A JP 24760684A JP S61125123 A JPS61125123 A JP S61125123A
- Authority
- JP
- Japan
- Prior art keywords
- molecular beam
- crystal growth
- film
- monitoring
- intensity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/02631—Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は分子線結晶成長装置、特に結晶成長中に分子線
強度をモニターすることが可能な分子線結晶成長装置に
関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a molecular beam crystal growth apparatus, and particularly to a molecular beam crystal growth apparatus capable of monitoring molecular beam intensity during crystal growth.
半導体装置等には単結晶基板上に所要の単結晶層をエピ
タキシャル成長した基体が広く用いられている。2. Description of the Related Art Substrates in which a required single crystal layer is epitaxially grown on a single crystal substrate are widely used in semiconductor devices and the like.
エピタキシャル成長には種々の方法が行われているが、
分子線結晶成長方法(MB2法)は、単結晶層の構成元
素及び不純物元素を10− ” Torr程度の高真空
中でセルから蒸発させ、ビーム状に基板に照射してエピ
タキシャル成長を行う方法である。Various methods are used for epitaxial growth, but
The molecular beam crystal growth method (MB2 method) is a method in which constituent elements and impurity elements of a single crystal layer are evaporated from a cell in a high vacuum of about 10-'' Torr, and the substrate is irradiated with a beam to perform epitaxial growth. .
MB2法では基板に到達する各元素の分子数は、蒸発系
の幾何学的形状と蒸発源温度とによって一義的に決定さ
れる。従って結晶の成長速度、混晶の組成比或いは不純
物ドープ量などを正確に制御することが可能で、例えば
超格子構造など最も精密な結晶成長に適している。In the MB2 method, the number of molecules of each element that reaches the substrate is uniquely determined by the geometric shape of the evaporation system and the evaporation source temperature. Therefore, it is possible to accurately control the crystal growth rate, the composition ratio of the mixed crystal, the amount of impurity doping, etc., and is suitable for the most precise crystal growth such as a superlattice structure.
しかしながらこの制御を的確に行うためには、結晶成長
中に分子線の強度をモニターすることが必要であり、従
来の分子線結晶成長装置はこの点についてなお不十分で
ある。However, in order to perform this control accurately, it is necessary to monitor the intensity of the molecular beam during crystal growth, and conventional molecular beam crystal growth apparatuses are still inadequate in this respect.
〔従来の技術と発明が解決しようとする問題点〕分子線
結晶成長装置の結晶成長中の分子線強度モニターには、
従来、真空ゲージで分子線を直接に受けて真空度として
読む方法、あるいは4電極質量分析計により分子線強度
を読む方法等が行われている。[Problems to be solved by the prior art and the invention] The molecular beam intensity monitor during crystal growth in a molecular beam crystal growth apparatus requires
Conventionally, methods have been used such as directly receiving the molecular beam with a vacuum gauge and reading it as the degree of vacuum, or reading the intensity of the molecular beam with a four-electrode mass spectrometer.
しかしながらこれらの方法では、成長室の真空度によっ
てその読みが変化すること、また真空ゲージや質量分析
計の感度が例えばフィラメントの消耗等により経時変化
することなどの理由により、十分な精度で分子線強度を
測定することが困難であり、分子線結晶成長方法を活用
して目的とするエピタキシャル成長層を得るためには、
結晶成長中の分子線強度測定方法の改善が強く要望され
ている。However, with these methods, the readings vary depending on the degree of vacuum in the growth chamber, and the sensitivity of vacuum gauges and mass spectrometers changes over time due to filament wear, etc., so it is difficult to measure molecular beams with sufficient accuracy. It is difficult to measure the strength, and in order to obtain the desired epitaxial growth layer using the molecular beam crystal growth method,
There is a strong need for improved methods of measuring molecular beam intensity during crystal growth.
前記問題点は、所要の単結晶のエピタキシャル成長中に
、成長室内に備えたモニター用部材上に測定しようとす
る分子線により皮膜を形成し、該モニター用部材を透過
する光の該皮膜による透過率の変化により該分子線の強
度をモニターする手段を備えてなる本発明による分子線
結晶成長装置により解決される。The above problem is that during the epitaxial growth of the required single crystal, a film is formed by the molecular beam to be measured on a monitoring member provided in the growth chamber, and the transmittance of light transmitted through the monitoring member by the film is reduced. This problem is solved by the molecular beam crystal growth apparatus according to the present invention, which is equipped with means for monitoring the intensity of the molecular beam based on changes in the molecular beam.
本発明の分子線結晶成長装置ではその成長室内に、測定
する分子線のみを所要の時間入射させ、その他の分子線
を阻止して、ここに装着されたモニター用部材上に測定
する分子線による皮膜を形成することが可能な構造と、
モニター用部材の光透過率を測定するための光源及び光
検知装置もしくはこれに相当する光学系とを備える。In the molecular beam crystal growth apparatus of the present invention, only the molecular beam to be measured enters the growth chamber for the required time, other molecular beams are blocked, and the molecular beam to be measured is placed on a monitoring member mounted here. A structure capable of forming a film,
It is equipped with a light source and a light detection device or an optical system equivalent thereto for measuring the light transmittance of the monitoring member.
このモニター用部材は例えば石英等の前記光源の光を透
過する材料からなり、通常は板状に加工されている。This monitoring member is made of a material such as quartz that transmits the light from the light source, and is usually processed into a plate shape.
所要の時点において、このモニター用部材上に測定する
分子線を所要の時間照射して、その皮膜を形成する。At a required time point, the molecular beam to be measured is irradiated onto the monitoring member for a required period of time to form a film.
次いでモニター用部材の光透過率を、前記皮膜形成の前
後、あるいは前記皮膜を形成した領域と皮膜を形成しな
い領域等との間で比較することにより、予め求めた較正
データに基づいて、該皮膜の厚さ、これを形成した分子
線の強度などを容易にモニターすることができる。Next, the light transmittance of the monitoring member is compared before and after the film formation, or between the area where the film is formed and the area where the film is not formed, based on the calibration data obtained in advance. The thickness of the membrane, the intensity of the molecular beam that formed it, etc. can be easily monitored.
以下本発明を実施例により具体的に説明する。 The present invention will be specifically explained below using examples.
第1図(a)は本発明による分子線結晶成長装置の実施
例の成長室を示す模式図、同図(b)はその分子線強度
モニター装置部分を示す模式図である。FIG. 1(a) is a schematic diagram showing a growth chamber of an embodiment of the molecular beam crystal growth apparatus according to the present invention, and FIG. 1(b) is a schematic diagram showing the molecular beam intensity monitoring device portion thereof.
図において、1は成長室壁、2及び3は分子線源となる
セル、4は基板ホルダー、5はエピタキシャル成長を行
う基板、6及び7は分子線シールド板、8はシャッター
、9はシャッターの操作軸、10は光ファイバー、11
は光検知装置、12はモニター用部材ホルダー、13は
モニター用部材ホルダーの操作軸、14はモニター用部
材を示す。In the figure, 1 is the wall of the growth chamber, 2 and 3 are cells that serve as molecular beam sources, 4 is a substrate holder, 5 is a substrate for epitaxial growth, 6 and 7 are molecular beam shield plates, 8 is a shutter, and 9 is the operation of the shutter. axis, 10 is optical fiber, 11
1 is a photodetector, 12 is a monitor member holder, 13 is an operating shaft of the monitor member holder, and 14 is a monitor member.
本実施例の分子線強度モニター装置は基板ホルダー4の
近傍に設けられているが、分子線シールド板7によって
光透過率測定部は総ての分子線に対して遮蔽され、皮膜
形成部は分子線シールド板6によってセル3からの分子
線3Rに対して遮Meれていて、セル2からの分子線2
Bのみが、図(blに示す如くシャッター8が開かれて
いるときに、皮膜形成部に入射する。The molecular beam intensity monitoring device of this embodiment is installed near the substrate holder 4, but the light transmittance measurement part is shielded from all molecular beams by the molecular beam shield plate 7, and the film forming part is shielded from all molecular beams. The molecular beam 3R from the cell 3 is shielded by the ray shield plate 6, and the molecular beam 2 from the cell 2 is
Only B enters the film forming portion when the shutter 8 is opened as shown in FIG.
本実施例の分子線結晶成長装置を用いて、例えば砒化ガ
リウム(GaAs)基板上にGaAs層をエピタキシャ
ル成長する場合に、セル2をGaAs層のエピタキシャ
ル成長速度を支配するガリウム(Ga)分子線源、セル
3を砒素(As)分子線源とする。When epitaxially growing a GaAs layer on, for example, a gallium arsenide (GaAs) substrate using the molecular beam crystal growth apparatus of this embodiment, the cell 2 is a gallium (Ga) molecular beam source that controls the epitaxial growth rate of the GaAs layer. 3 is an arsenic (As) molecular beam source.
本実施例では、モニター用部材14として石英板を用い
ているが、結晶成長中、あるいは結晶成長準備中などの
任意の時点で、シャッター8を一定時間だけ開放し、モ
ニター用部材14上にGa分子線2Bを照射してGa皮
膜を形成する。In this example, a quartz plate is used as the monitoring member 14, but at any time during crystal growth or during preparation for crystal growth, the shutter 8 is opened for a certain period of time, and Ga is deposited on the monitoring member 14. A Ga film is formed by irradiating the molecular beam 2B.
次いでこのGa皮膜形成部分を光ファイバー10と光検
知装置11との間に移動させ、例えばヘリウム−ネオン
(He−Ne) レーザ光に対するその光透過率を測定
する。Next, this Ga film-formed portion is moved between the optical fiber 10 and the photodetector 11, and its light transmittance to, for example, helium-neon (He-Ne) laser light is measured.
第2図に模式的に示す如く、例えば皮膜形成時間を一定
としてGa皮膜の厚さによって定まるGa分子線2Bの
強度と、光透過率との相関を予め求めておき、Ga皮膜
が形成されていないモニター用部材14の光透過率と、
ここで得られた光透過率との差から、Ga分子線2Bの
強度をモニターすることが出来る。更にこのGa分子線
2Bの強度からGaAsエピタキシャル成長層の成長中
にその速度をモニターし、これを制御することが可能と
なる。As schematically shown in FIG. 2, for example, the correlation between the intensity of the Ga molecular beam 2B, which is determined by the thickness of the Ga film, and the light transmittance, with the film formation time constant, is determined in advance, and the correlation between the light transmittance and the Ga film formation time is determined in advance. The light transmittance of the monitoring member 14 is
The intensity of the Ga molecular beam 2B can be monitored from the difference in light transmittance obtained here. Furthermore, from the intensity of the Ga molecular beam 2B, it is possible to monitor and control the growth rate of the GaAs epitaxial growth layer.
エピタキシャル成長する単結晶層が、例えば砒化アルミ
ニウムガリウム(^l zGa 、 −、As)である
場合には、前記分子線強度のモニターをアルミニウム(
^l)とガリウム(Ga)とについて実施するために、
前記モニター装置を2基設けるか、あるいは1基のモニ
ター装置に2種の分子線を別個に照射する手′段を設け
る。4元化合物単結晶等についても同様である。When the epitaxially grown single crystal layer is, for example, aluminum gallium arsenide (^l zGa , -, As), the molecular beam intensity monitor is
^l) and gallium (Ga),
Either two monitoring devices are provided, or one monitoring device is provided with means for separately irradiating two types of molecular beams. The same applies to quaternary compound single crystals and the like.
前記モニター用部材14上の皮膜の形成面積は僅少でよ
く、マスクで遮蔽するなどの方法により、1枚のモニタ
ー用部材14で多数のモニター測定を実施して、管理を
容易に徹底することできる。また、モニター用部材14
にマスクで遮蔽した部分、切り欠きなどを設けて、前記
皮膜が形成されない状態との比較を容易にすることも可
能である。The formation area of the film on the monitoring member 14 may be small, and by using a method such as shielding with a mask, a large number of monitoring measurements can be performed with one monitoring member 14, and management can be easily and thoroughly carried out. . In addition, the monitor member 14
It is also possible to provide a portion shielded by a mask, a notch, etc. to facilitate comparison with a state in which the film is not formed.
前記実施例ではモニター用部材14に石英板を用いてい
るが、その他にシリコン(Si)、サファイア、ガラス
等を用いることができる。In the embodiment described above, a quartz plate is used for the monitoring member 14, but other materials such as silicon (Si), sapphire, and glass may also be used.
また測定光源は、本実施例より長波長の半導体レーザや
発光ダイオード等を用いてもよい。Further, as the measurement light source, a semiconductor laser, a light emitting diode, or the like having a longer wavelength than in this embodiment may be used.
以上説明した如く本発明によれば、分子線結晶成長方法
によるエピタキシャル成長中に、分子i強度の正確で安
定したモニターが可能となり、本成長方法の特徴を良く
発揮して、超格子構造などを精密に再現性よく成長する
ことが出来る。As explained above, according to the present invention, it is possible to accurately and stably monitor the molecular i intensity during epitaxial growth using the molecular beam crystal growth method, and to make good use of the characteristics of this growth method, the superlattice structure etc. can be precisely formed. can be grown with good reproducibility.
第1図は本発明の実施例を示す模式図、第2図は分子線
の強度と光透過率との相関の模式図である。
図において、
lは成長室壁、
2及び3は分子線源となるセル、
4は基板ホルダー、
5はエピタキシャル成長を行う基板、
6及び7は分子線シールド板、
8はシャッター、
9はシャッターの操作軸、
10は光ファイバー、
11は光検知装置、
12はモニター用部材ホルダー、
13はモニター用部材ホルダーの操作軸、14はモニタ
ー用部材を示す。
% 1 図FIG. 1 is a schematic diagram showing an example of the present invention, and FIG. 2 is a schematic diagram of the correlation between molecular beam intensity and light transmittance. In the figure, l is the growth chamber wall, 2 and 3 are cells that serve as molecular beam sources, 4 is a substrate holder, 5 is a substrate for epitaxial growth, 6 and 7 are molecular beam shield plates, 8 is a shutter, and 9 is shutter operation 10 is an optical fiber, 11 is a photodetector, 12 is a monitor member holder, 13 is an operating shaft of the monitor member holder, and 14 is a monitor member. % 1 figure
Claims (1)
に備えたモニター用部材上に測定しようとする分子線に
より皮膜を形成し、該モニター用部材を透過する光の該
皮膜による透過率の変化により該分子線の強度をモニタ
ーする手段を備えてなることを特徴とする分子線結晶成
長装置。 2、前記透過率の変化として、前記皮膜の有無による前
記透過率の差を検知することを特徴とする特許請求の範
囲第1項記載の分子線結晶成長装置。[Scope of Claims] 1. During the epitaxial growth of a required single crystal, a film is formed by the molecular beam to be measured on a monitoring member provided in the growth chamber, and the film is transmitted through the monitoring member. 1. A molecular beam crystal growth apparatus comprising means for monitoring the intensity of the molecular beam based on changes in transmittance caused by the change in transmittance. 2. The molecular beam crystal growth apparatus according to claim 1, wherein a difference in the transmittance due to the presence or absence of the film is detected as the change in the transmittance.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24760684A JPS61125123A (en) | 1984-11-22 | 1984-11-22 | Molecular beam crystal growth device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24760684A JPS61125123A (en) | 1984-11-22 | 1984-11-22 | Molecular beam crystal growth device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61125123A true JPS61125123A (en) | 1986-06-12 |
Family
ID=17166008
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24760684A Pending JPS61125123A (en) | 1984-11-22 | 1984-11-22 | Molecular beam crystal growth device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61125123A (en) |
-
1984
- 1984-11-22 JP JP24760684A patent/JPS61125123A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4931132A (en) | Optical control of deposition of crystal monolayers | |
US4807994A (en) | Method of mapping ion implant dose uniformity | |
US7663752B2 (en) | Polarization modulation imaging ellipsometer | |
DE69031976T2 (en) | Method and device for the epitaxial growth of a crystal of a chemical compound | |
EP0632494A2 (en) | Method for evaluating epitaxial layers and test pattern for process evaluation | |
JPH03216526A (en) | Method of measuring temperature of semiconductor material by light transmission factor | |
US4492871A (en) | Method for determining impurities in epitaxial silicon crystals | |
JPH07153692A (en) | Method and equipment for making thin film grow on semiconductor substrate | |
JPS61125123A (en) | Molecular beam crystal growth device | |
JP2790020B2 (en) | Method for measuring substitutional carbon concentration in silicon single crystal and automatic measuring device | |
KR100227788B1 (en) | Method of manufacturing brag deflection film | |
KR950007482B1 (en) | Meteorological Growth Method | |
JPS5992998A (en) | Method for growing crystal using molecular beam | |
JPS62189723A (en) | Apparatus for vapor growth | |
McClintock et al. | Optical measurement of Ga beam flux for MBE | |
US5598260A (en) | Apparatus and method for optical-based flux monitoring of an effusion cell adjacent the output orifice | |
JPH057253Y2 (en) | ||
Sozontov et al. | Photoemission in Bragg diffraction of X‐rays by bicrystals | |
Dittrich | Correlation Between Photoreflectance and CV Measurements of n‐GaAs Epitaxial Layers | |
JPH0714894A (en) | Evaluation method of compound semiconductor | |
Severin | The Influence of the Phase Shift on Thickness Measurements of Silicon Epitaxial Layers with a Fourier Transform Spectrometer | |
SU890083A1 (en) | Method of determination of optically active impurities in solid bodies | |
JPS625631A (en) | Molecular beam crystal growth apparatus and its method | |
Moore et al. | Spatially resolved composition measurements of ternary epitaxial layers | |
JPH0722134B2 (en) | Vapor growth method |