[go: up one dir, main page]

JPH01107109A - Dynamic quantity sensor - Google Patents

Dynamic quantity sensor

Info

Publication number
JPH01107109A
JPH01107109A JP26342087A JP26342087A JPH01107109A JP H01107109 A JPH01107109 A JP H01107109A JP 26342087 A JP26342087 A JP 26342087A JP 26342087 A JP26342087 A JP 26342087A JP H01107109 A JPH01107109 A JP H01107109A
Authority
JP
Japan
Prior art keywords
layer
acceleration
sensor
piezoelectric
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26342087A
Other languages
Japanese (ja)
Inventor
Masayuki Wakamiya
若宮 正行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP26342087A priority Critical patent/JPH01107109A/en
Publication of JPH01107109A publication Critical patent/JPH01107109A/en
Pending legal-status Critical Current

Links

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

PURPOSE:To measure dynamic quantity with high accuracy even when a severe mag netic field or heat source is present in the outside, by providing a layer composed of a superconductive material to the surface layer of a mechanical quantity/quantity-of- electricity converting sensor. CONSTITUTION:A ceramics layer 2 relatively inferior to heat conductivity is arranged to the inside of a layer composed of a superconductive material and a copper alloy 3 having good heat conductivity is subsequently fixed to the inside of said ceramics layer 2. Further, a holder 4 and two rectangular piezoelectric elements 5 having polariz ing axes in mutually opposite directions and bonded to each other are mounted therein. A U-shaped slit 6 by laser processing is formed to the center of this piezoelectric rectangular plate and the part surrounded thereby is set to a bending vibrator 7 having a cantilevered structure and output take-out electrodes are provided to both upper and lower surfaces thereof. The vibrator 7 vibrates at acceleration applied from the outside and acceleration can be measured on the basis of the voltages generated in the electrodes at this time. By this constitution, the resistance against the noise to the disturbing agitation of an external electromagnetic wave is enhanced and the effect of heat radiation is excluded even when there is a heat source in the vicinity.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はアモルファス合金等の磁歪材料や圧電材料など
の力学量(機械量)−電気量変換特性を利用した、力や
加速度を検出す乞力学量センサに関するものである。
[Detailed Description of the Invention] Industrial Application Field The present invention is a mechanical quantity that detects force and acceleration by using the mechanical quantity (mechanical quantity) - electrical quantity conversion characteristic of magnetostrictive materials such as amorphous alloys and piezoelectric materials. It is related to sensors.

従来の技術 従来、力、加速度等の力学量を検出するセンサとしては
アモルファス合金等の磁歪材料や圧電材料などの力学量
(機械量)−電気量変換特性を利用した力学量センサが
作製されている。例えば、前者では、特開昭61−14
1931号公報にみられるように、アモルファス合金に
外部から力が与えられると応力−磁気効果(磁歪効果)
により、その磁気特性が変化し、このため、磁気回路を
構成したコイルのインピーダンスが変化し、これを電気
的に検出するものである。一方、特開昭59−7092
3号公報には圧電効果を利用した加速度(振動)センサ
が記載されている。外部から与えられた振動などの加速
度が圧電材料に応力を発生させ、これによって圧電材料
に発生した電荷を出力として検出するセンサである。
Conventional technology Conventionally, mechanical quantity sensors that utilize the mechanical quantity (mechanical quantity) - electrical quantity conversion characteristics of magnetostrictive materials such as amorphous alloys and piezoelectric materials have been manufactured as sensors for detecting mechanical quantities such as force and acceleration. There is. For example, in the former case, JP-A-61-14
As seen in Publication No. 1931, when an external force is applied to an amorphous alloy, stress-magnetic effect (magnetostrictive effect)
As a result, its magnetic properties change, and as a result, the impedance of the coil that constitutes the magnetic circuit changes, and this is electrically detected. On the other hand, JP-A-59-7092
Publication No. 3 describes an acceleration (vibration) sensor that utilizes the piezoelectric effect. It is a sensor that generates stress in a piezoelectric material due to acceleration such as vibration applied from the outside, and detects the electric charge generated in the piezoelectric material as an output.

発明が解決しようとする問題点 アモルファス合金の応力−磁気効果(磁歪効果)により
圧力などの力学量を検出するセンサにおいては、その検
出に磁気回路を構成するため、外部から強力な磁界がセ
ンサに加えられるとそれによって異常な電圧が発生し、
力学量検出に大きな誤差を生じる。また、圧電材料をト
ランスジューサ材料として用いた加速度センサでは、加
速度を検出すると同時に、該材料が外界によって温度変
化を受ければやはり電荷を発生する。このパイロ電気の
発生は次式によって与えられる。
Problems to be Solved by the Invention Sensors that detect mechanical quantities such as pressure using the stress-magnetic effect (magnetostrictive effect) of amorphous alloys have a magnetic circuit for detection, so a strong magnetic field is applied to the sensor from the outside. When applied, it creates an abnormal voltage,
This causes a large error in the detection of mechanical quantities. Further, in an acceleration sensor using a piezoelectric material as a transducer material, at the same time as detecting acceleration, if the material undergoes a temperature change due to the outside world, an electric charge is also generated. The generation of this pyroelectricity is given by the following equation.

dQ/d t=k −dT/d t     (1)こ
こでQは電荷、Tは温度、tは時間、モしてkは比例定
数をあられす。即ち、この電荷の発生は検出すべき加速
度によって発生した電荷と区別することが不可能であり
、加速度の計測に大きな誤差をもたらす。この場合熱は
センサに空気を通じて伝達される他にふ(射熱として伝
わり、高温熱源が近傍に存在する場合、後者がより大き
な影響を与える。このように、これらの力学量センサに
おいて、磁気やふく射熱のような所謂電磁波がセンサの
出力を発生し、本来計測すべき力学量が性格に計測でき
な(なるという問題があった。
dQ/d t=k −dT/d t (1) Here, Q is electric charge, T is temperature, t is time, and k is proportionality constant. That is, the generation of this charge cannot be distinguished from the charge generated by the acceleration to be detected, resulting in a large error in the measurement of acceleration. In this case, heat is transferred to the sensor not only through the air but also as radiation heat, and if a high-temperature heat source is nearby, the latter has a greater effect.In this way, in these mechanical quantity sensors, magnetic and There was a problem in that so-called electromagnetic waves such as radiant heat generated the output of the sensor, making it impossible to properly measure the mechanical quantities that were originally supposed to be measured.

そこで、本発明はこれらの電磁波による影響をな(し、
外部に過酷な磁界、あるいは熱源が存在する場合でも、
高精度に力学量のみを計測できる力学量センサを供給し
ようとするものである。
Therefore, the present invention eliminates the influence of these electromagnetic waves.
Even in the presence of harsh external magnetic fields or heat sources,
The purpose is to provide a mechanical quantity sensor that can measure only mechanical quantities with high precision.

問題点を解決するための手段 力、加速度等の力学量を電気量に変換する力学量センサ
において、該センサ筺体の表面層に超伝導材料からなる
層をすくなくとも一層形成する。
Means for Solving the Problems In a mechanical quantity sensor that converts mechanical quantities such as force and acceleration into electrical quantities, at least one layer made of a superconducting material is formed on the surface layer of the sensor housing.

作  用 センサ筺体の表面層に超伝導材料からなる層をすくなく
とも一層形成することにより、該材料が超伝導状態を示
すとき、電磁波を遮蔽する特性をを有する。これによっ
て電磁波である電波、磁場、及び熱線等をことごとく遮
断することによって計測対象である力学量のみを精度良
(検出しうる力学量センサが得られる。
By forming at least one layer made of a superconducting material on the surface layer of the sensor housing, it has the property of shielding electromagnetic waves when the material exhibits a superconducting state. As a result, by blocking all electromagnetic waves such as radio waves, magnetic fields, heat rays, etc., a mechanical quantity sensor that can accurately detect only the mechanical quantity to be measured can be obtained.

実施例 本発明を実施例をもって詳述する。Example The present invention will be explained in detail with reference to examples.

実施例1 第1図は、本発明の一実施例である加速度センサを示し
、(a)、(b)、(C)及び(d)はそれぞれ、その
上面断面図、側面断面図、片持ち梁構造の屈曲型圧電撮
動子の断面図、及びその斜視図を示す。1は超伝導材料
であり、Y2O3,BaCO3及びCUO3を、YBa
2Cu2O7−d(dは微量)の組成比となるよう秤量
、混合し、900℃、6時間、大気中で仮焼後粉砕した
。この粉砕粉を有機バインダーで塗布、乾燥して超伝導
材料層とし、センサの周囲を覆った。その層の内側にア
ルミナ磁器などの比較的熱伝導の悪いセラミックス2を
配置し、さらに、その内側に熱伝導の良好な銅合金3と
固着している。さらに、その内部に圧電材料を保持する
保持具4、及び厚み方向に互いに反対方向に分極軸を有
し互いに接着した2枚の長方形状圧電素子を内蔵してい
る。この圧電長方形板の中央にレーザ加工によって″コ
″の字型のスリット(切り抜き)6を形成し、スリット
6で囲まれた部分は片持ち梁構造の屈曲振動子7となる
。この上下面には電極を有し出力取り出し電極となる。
Embodiment 1 FIG. 1 shows an acceleration sensor that is an embodiment of the present invention, and (a), (b), (C), and (d) are top sectional views, side sectional views, and cantilevered views, respectively. 1 shows a cross-sectional view and a perspective view of a bent piezoelectric sensor having a beam structure. 1 is a superconducting material, Y2O3, BaCO3 and CUO3, YBa
They were weighed and mixed to have a composition ratio of 2Cu2O7-d (d is a trace amount), calcined in the air at 900°C for 6 hours, and then ground. This pulverized powder was coated with an organic binder and dried to form a superconducting material layer that covered the sensor. A ceramic 2 having relatively poor heat conduction, such as alumina porcelain, is placed inside the layer, and a copper alloy 3 having good heat conduction is further fixed inside the layer. Further, it contains therein a holder 4 for holding a piezoelectric material, and two rectangular piezoelectric elements bonded to each other and having polarization axes in opposite directions in the thickness direction. A "U"-shaped slit (cutout) 6 is formed in the center of this piezoelectric rectangular plate by laser processing, and the portion surrounded by the slit 6 becomes a bending vibrator 7 having a cantilever structure. Electrodes are provided on the upper and lower surfaces of the electrodes, which serve as output extraction electrodes.

この振動子は外部から加えられた加速度によって振動し
、このとき電極に生じる電圧によって加速度の大きさが
計測できる。このような構成の加速度センサは外部から
の電磁波による外的かく乱に対するノイズに強(、近傍
に熱源が存在する場合もその熱ふく射の影響を殆ど受け
ず圧電材料のdT/dtを極めて小さ(できる。従って
加速度のみの信号を精度よ(出力することができる。
This vibrator vibrates due to externally applied acceleration, and the magnitude of the acceleration can be measured by the voltage generated across the electrodes. Acceleration sensors with such a configuration are resistant to noise from external disturbances caused by external electromagnetic waves (even if there is a heat source nearby, it is almost unaffected by the heat radiation, and the dT/dt of the piezoelectric material is extremely low (possible). Therefore, it is possible to output a signal containing only acceleration with high accuracy.

実施例2 第2図は本特許の他の実施例であるトルクセンサの断面
図である。11はセンサの最外層に円筒形状に設けた超
伝導材料の層であり、実施例1と同様な方法でこの層を
作製した。その内部にコイル12を配置し、トルク伝達
シャフト13の表面に磁歪を有するFe系アモルファス
合金14を巻回接着している。トルク伝達シャフトにト
ルクが伝達されるアモルファス合金内部に応力が発生し
、これによってコイルのインピーダンスが変化する。こ
の変化を検知することによってトルクが検出できる。こ
の構造を持つトルクセンサでは外部からの電磁波による
外的か(乱に対するノイズに強(、従ってトルクのみの
信号を精度よ(出力することができる。
Embodiment 2 FIG. 2 is a sectional view of a torque sensor which is another embodiment of this patent. Reference numeral 11 denotes a layer of superconducting material provided in the outermost layer of the sensor in a cylindrical shape, and this layer was produced in the same manner as in Example 1. A coil 12 is disposed inside the shaft, and a magnetostrictive Fe-based amorphous alloy 14 is wound and bonded to the surface of the torque transmission shaft 13. Stress is generated inside the amorphous alloy through which torque is transmitted to the torque transmission shaft, which changes the impedance of the coil. Torque can be detected by detecting this change. A torque sensor with this structure is resistant to noise caused by external electromagnetic waves and can therefore output a torque-only signal with high accuracy.

発明の効果 本発明によれば、超伝導材料の層を機械量−電気量変換
センサの表面層1こ設けることによって、センサに熱変
化によって誘起される出力や電磁波により誘起されるノ
イズを太き(低減することができ、精度の良い力学量セ
ンサを作製することができる。
Effects of the Invention According to the present invention, by providing one layer of superconducting material on the surface of a mechanical quantity-to-electrical quantity conversion sensor, the output induced by thermal changes and the noise induced by electromagnetic waves in the sensor can be increased. (This makes it possible to produce a highly accurate mechanical quantity sensor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における加速度センサを示し
、(a)、(b)、(C)及び(社)はそれぞれその上
面断面図、側面断面図、要部断面図、要部斜視図、1・
・・超伝導材料層、2・・・アルミナ磁器などのセラミ
ックス、3・・・銅合金、4・・・保持具、5・・・長
方形状圧電素子、6・・・”コ゛の字型のスリット(切
り抜き)、7・・・屈曲振動子、11・・・超伝導材料
層、12・・・コイル、13・・・トルク伝達シャフト
、14・・・Fe系アモルファス合金。 代理人の氏名 弁理士 中尾敏男 ほか1名1−−一超
4x専材料層 第1図     3−綱春全 4−保持具 5 = −&7形状圧電素子 c1 (ch
FIG. 1 shows an acceleration sensor according to an embodiment of the present invention, and (a), (b), (C) and (Company) are respectively a top sectional view, a side sectional view, a sectional view of a main part, and a perspective view of a main part. Figure, 1.
... superconducting material layer, 2 ... ceramics such as alumina porcelain, 3 ... copper alloy, 4 ... holder, 5 ... rectangular piezoelectric element, 6 ... "C-shaped" Slit (cutout), 7... Flexural vibrator, 11... Superconducting material layer, 12... Coil, 13... Torque transmission shaft, 14... Fe-based amorphous alloy. Name of agent: Patent attorney Toshio Nakao and 1 other person 1--1 super 4x special material layer Figure 1 3-Tsunaharu all 4-Holder 5 = -&7 shaped piezoelectric element c1 (ch

Claims (1)

【特許請求の範囲】[Claims]  力、加速度等の力学量を電気量に変換する力学量セン
サにおいて、該センサ筺体の表面層に超伝導材料からな
る層をすくなくとも一層形成したことを特徴とする力学
量センサ。
A mechanical quantity sensor that converts mechanical quantities such as force and acceleration into electrical quantities, characterized in that at least one layer made of a superconducting material is formed on the surface layer of the sensor housing.
JP26342087A 1987-10-19 1987-10-19 Dynamic quantity sensor Pending JPH01107109A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26342087A JPH01107109A (en) 1987-10-19 1987-10-19 Dynamic quantity sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26342087A JPH01107109A (en) 1987-10-19 1987-10-19 Dynamic quantity sensor

Publications (1)

Publication Number Publication Date
JPH01107109A true JPH01107109A (en) 1989-04-25

Family

ID=17389245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26342087A Pending JPH01107109A (en) 1987-10-19 1987-10-19 Dynamic quantity sensor

Country Status (1)

Country Link
JP (1) JPH01107109A (en)

Similar Documents

Publication Publication Date Title
US4884453A (en) Strain gauge
KR920010551B1 (en) Distortion measuring method and distortion measuring device
CN109212264B (en) Annular shear flexoelectric acceleration sensor and laminated structure acceleration sensor
CN107817045B (en) A magnetic coupling resonance type frequency detection device and frequency detection method
US9810749B2 (en) Magnetic field measuring device with vibration compensation
Donzier et al. Integrated magnetic field sensor
CN103743925A (en) Cantilever beam type electromagnetic acceleration sensor
US7658111B2 (en) Sensors with high temperature piezoelectric ceramics
JPH01107109A (en) Dynamic quantity sensor
JPH0677052B2 (en) Magnetic detection device
Hetrick A vibrating cantilever magnetic-field sensor
CN111426993B (en) A magnetic gradiometer based on magnetoelectric effect
CN207894514U (en) A kind of magnet coupled resonant type frequency detecting device
US4979395A (en) Apparatus and method of forming a magnetic domain strain gage
JPH0777552A (en) Method and apparatus for measuring piezo-electricity
RU2212736C2 (en) Bender transducer
JPH01196585A (en) Sensor using superconductive material
JPH01185463A (en) magnetic sensing element
US4829828A (en) Pressure transducer
Andrä et al. Current measurements based on thin-film magnetoresistive sensors
JPH01110210A (en) Angle of inclination sensor
JPH01148970A (en) Acceleration sensor
RU2347228C1 (en) Vector piezoelectric vibration inverter
JPH01307615A (en) Inclination angle sensor
JPH0875570A (en) Dynamic quantity sensor