[go: up one dir, main page]

JP7648345B2 - Pure water production method and production equipment - Google Patents

Pure water production method and production equipment Download PDF

Info

Publication number
JP7648345B2
JP7648345B2 JP2020098528A JP2020098528A JP7648345B2 JP 7648345 B2 JP7648345 B2 JP 7648345B2 JP 2020098528 A JP2020098528 A JP 2020098528A JP 2020098528 A JP2020098528 A JP 2020098528A JP 7648345 B2 JP7648345 B2 JP 7648345B2
Authority
JP
Japan
Prior art keywords
water
treated
tower
ion exchange
pure water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020098528A
Other languages
Japanese (ja)
Other versions
JP2021191566A (en
Inventor
一重 高橋
史生 須藤
広 菅原
惟 塩谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP2020098528A priority Critical patent/JP7648345B2/en
Priority to TW110113663A priority patent/TW202216295A/en
Publication of JP2021191566A publication Critical patent/JP2021191566A/en
Application granted granted Critical
Publication of JP7648345B2 publication Critical patent/JP7648345B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

本発明は純水製造方法及び製造装置に関する。 The present invention relates to a method and apparatus for producing pure water.

従来から、半導体デバイス、液晶ディスプレイ、シリコンウエハ、プリント基板等の電子部品製造工程、医薬品の製造工程等においては、イオン状物質、微粒子、有機物、溶存ガス、生菌等の不純物含有量の極めて少ない超純水が使用されている。特に、半導体デバイスをはじめとする電子部品製造工程においては、多くの超純水が使用されており、半導体デバイスの集積度の向上に伴って、超純水の純度に対する要求は益々厳しくなってきている。例えば、半導体製造用超純水では、抵抗率18.2MΩ・cm以上、0.05μm以上の微粒子数1個/mL未満、全有機炭素(TOC:Total Organic Carbon)1μg/L未満、金属成分1ng/L未満等のスペックが要求され、要求水質はさらに厳しくなる傾向にある。 Conventionally, ultrapure water with extremely low impurity content such as ionic substances, fine particles, organic matter, dissolved gas, and live bacteria has been used in the manufacturing process of electronic parts such as semiconductor devices, liquid crystal displays, silicon wafers, and printed circuit boards, as well as in the manufacturing process of pharmaceuticals. In particular, a large amount of ultrapure water is used in the manufacturing process of electronic parts, including semiconductor devices, and as the integration density of semiconductor devices increases, the requirements for the purity of ultrapure water are becoming increasingly strict. For example, ultrapure water for semiconductor manufacturing requires specifications such as a resistivity of 18.2 MΩ·cm or more, less than 1 fine particle of 0.05 μm or more per mL, total organic carbon (TOC) of less than 1 μg/L, and metal components of less than 1 ng/L, and the required water quality tends to become even stricter.

なかでも、近年微量の不純物として、例えばホウ素及びTOCの低減が求められている。一般的にホウ素は、非再生式イオン交換装置しか持たない超純水製造装置(サブシステム)では完全に除去することが難しく、一次純水システムで除去することが検討されている。一次純水システムでホウ素やTOCを除去する方法としては、酸及びアルカリを再生剤とする再生式イオン交換装置が広く利用されている。一方、再生式イオン交換装置は、一次純水システムから隔離して再生操作を行った後、運転を開始するまでの間、一定時間待機している。この待機時間中にイオン交換体から有機物である母体の一部が溶出し、処理水の水質に影響を及ぼす可能性がある。 In particular, in recent years there has been a demand for the reduction of trace impurities such as boron and TOC. In general, it is difficult to completely remove boron using ultrapure water production equipment (subsystems) that only have non-regenerative ion exchange equipment, and removal of boron using primary pure water systems has been considered. Regenerative ion exchange equipment that uses acids and alkalis as regenerants is widely used as a method for removing boron and TOC in primary pure water systems. However, regenerative ion exchange equipment is isolated from the primary pure water system and is placed on standby for a certain period of time after the regeneration operation is performed before operation can begin. During this standby time, some of the organic parent material may dissolve from the ion exchanger, potentially affecting the quality of the treated water.

特許文献1には、汽力発電所の復水脱塩装置における脱塩塔の再生後の保管方法が開示されている。カチオン層とアニオン層の再生が終了した後、これらを逆洗で分離し、その後、カチオン層とアニオン層に連続的または間歇的に洗浄水が通水される。これによって、カチオン樹脂から溶出する有機物成分がアニオン樹脂を汚染することが防止される。 Patent Document 1 discloses a method for storing a demineralization tower in a condensate demineralization unit of a thermal power plant after regeneration. After the regeneration of the cation layer and anion layer is completed, they are separated by backwashing, and then washing water is passed through the cation layer and anion layer continuously or intermittently. This prevents organic components eluted from the cation resin from contaminating the anion resin.

特開平7-116526号公報Japanese Unexamined Patent Publication No. 7-116526

特許文献1に記載された脱塩塔の再生後の保管方法は、復水の水質を早期に安定させることが目的であり、純水製造方法に関するものではない。 The storage method for a demineralization tower after regeneration described in Patent Document 1 aims to quickly stabilize the water quality of the condensate, and is not a method for producing pure water.

本発明の目的は、再生式イオン交換装置を迅速かつ低溶出で立ち上げることができる、純水製造方法を提供することである。 The object of the present invention is to provide a method for producing pure water that can start up a regenerative ion exchange device quickly and with low leaching.

本発明の純水製造方法は、再生可能なイオン交換体が充填され並列配置され複数のイオン交換装置において、被処理水を処理する運転状態と、被処理水の供給を停止して、イオン交換体を再生し、次の運転状態まで待機する再生待機状態とを複数のイオン交換装置の間で交互に繰り返すことを有し、複数のイオン交換装置の各々の再生待機状態において、イオン交換体の再生終了後次の運転状態が始まるタイミングまで連続して、洗浄水をイオン交換体に通水する。 The method for producing pure water of the present invention comprises alternating between a plurality of ion exchange devices arranged in parallel and filled with regenerative ion exchangers between an operating state in which water to be treated is treated and a regeneration standby state in which the supply of the water to be treated is stopped, the ion exchangers are regenerated, and the system waits until the next operating state, and in the regeneration standby state of each of the plurality of ion exchange devices , wash water is passed through the ion exchangers continuously until the timing when the next operating state begins after the regeneration of the ion exchangers is completed.

本発明によれば、再生式イオン交換装置を迅速かつ低溶出で立ち上げることができる、純水製造方法を提供することできる。 The present invention provides a method for producing pure water that allows a regenerative ion exchange device to be started up quickly and with low leaching.

本発明の一実施形態に係る純水製造装置の概要図(A塔運転時)である。FIG. 1 is a schematic diagram of a pure water production system according to an embodiment of the present invention (when tower A is in operation). 本発明の一実施形態に係る純水製造装置の概要図(A塔カチオン樹脂再生時)である。FIG. 1 is a schematic diagram of a pure water producing system according to one embodiment of the present invention (when tower A cation resin is being regenerated). 本発明の一実施形態に係る純水製造装置の概要図(A塔アニオン樹脂再生時)である。FIG. 2 is a schematic diagram of a pure water producing system according to one embodiment of the present invention (when tower A anion resin is being regenerated). 本発明の一実施形態に係る純水製造装置の概要図(A塔待機時)である。FIG. 1 is a schematic diagram of a pure water production system according to an embodiment of the present invention (when tower A is on standby). 本発明の一実施形態に係る純水製造装置の概要図(A塔運転再開時)である。FIG. 2 is a schematic diagram of a pure water production system according to one embodiment of the present invention (when tower A is restarted from operation). 実施例と比較例における試験装置の概略構成図である。FIG. 2 is a schematic diagram of a test device in the examples and comparative examples. 実施例と比較例における通水量と処理水のTOCの関係を示すグラフである。1 is a graph showing the relationship between the amount of water passing through and the TOC of the treated water in an example and a comparative example.

以下、図面を参照して本発明の純水製造方法と純水製造装置の一実施形態について説明する。図1A~1Eは純水製造装置1の概略構成と再生式イオン交換装置2の再生方法を示している。各図において、太線は被処理水、処理水または洗浄水が流通しているラインを示す。純水製造装置(1次システム)は上流側の前処理システムと下流側のサブシステム(2次システム)とともに超純水製造装置を構成する。再生式イオン交換装置2は定期的な再生が必要とされるが、半導体製造工程などに利用される超純水は連続的に製造する必要がある。このため、本実施形態では3つの樹脂塔(以下、A塔2A、B塔2B、C塔2Cという)を並列に設け、2塔が運転し1塔が純水製造装置1から隔離されるように、3塔の間で運転状態と再生待機状態とを交互に繰り返す。以下の説明では、A塔2Aを運転状態から再生待機状態に切り替え、再生後所定時間待機した後、運転状態に切り替える方法について説明する。 The following describes an embodiment of the pure water production method and pure water production apparatus of the present invention with reference to the drawings. Figures 1A to 1E show the schematic configuration of the pure water production apparatus 1 and the regeneration method of the regenerative ion exchange apparatus 2. In each figure, the thick lines indicate the lines through which the water to be treated, the treated water, or the cleaning water flows. The pure water production apparatus (primary system) constitutes an ultrapure water production apparatus together with the upstream pretreatment system and the downstream subsystem (secondary system). The regenerative ion exchange apparatus 2 requires periodic regeneration, but ultrapure water used in semiconductor manufacturing processes and the like needs to be produced continuously. For this reason, in this embodiment, three resin towers (hereinafter referred to as tower A 2A, tower B 2B, and tower C 2C) are provided in parallel, and the three towers are alternately switched between an operating state and a regeneration standby state so that two towers are operating and one tower is isolated from the pure water production apparatus 1. In the following explanation, a method is described for switching tower A 2A from an operating state to a regeneration standby state, waiting for a predetermined time after regeneration, and then switching it to an operating state.

図1AはA塔2A、B塔2Bが運転状態、C塔2Cが再生待機状態にある純水製造装置1を示している。本実施形態の純水製造装置1は、原水タンク3、原水ポンプ4、ろ過器5、活性炭塔6、カチオン樹脂塔7、脱炭酸装置8、アニオン樹脂塔9、逆浸透膜装置10、逆浸透膜装置処理水タンク(以下、RO処理水タンクという)11、逆浸透膜装置処理水移送ポンプ(以下、RO処理水ポンプという)12、紫外線酸化装置13を有し、これらは被処理水の流通方向Dに関し上流から下流に向かって、ラインL1上に沿って直列に配置されている。前処理システムで製造され原水タンク3に貯蔵された原水(以下、被処理水という)は原水ポンプ4で昇圧された後、ろ過器5で比較的粒径の大きな塵埃等が除去され、活性炭塔6で過酸化水素や塩素、有機物などの不純物が除去される。被処理水はカチオン樹脂塔7でカチオン成分を、脱炭酸装置8で炭酸を、アニオン樹脂塔9でアニオン成分を除去され、逆浸透膜装置10でイオン成分をさらに除去される。さらに逆浸透膜装置10の処理水はRO処理水タンク11に送られ、RO処理水ポンプ12によって昇圧された後、紫外線酸化装置13によって有機物成分が分解され、その後再生式イオン交換装置2に送られる。 Figure 1A shows a pure water production system 1 in which A tower 2A and B tower 2B are in operation and C tower 2C is in a standby state for regeneration. The pure water production system 1 of this embodiment has a raw water tank 3, a raw water pump 4, a filter 5, an activated carbon tower 6, a cation resin tower 7, a decarbonation device 8, an anion resin tower 9, a reverse osmosis membrane device 10, a reverse osmosis membrane device treated water tank (hereinafter referred to as RO treated water tank) 11, a reverse osmosis membrane device treated water transfer pump (hereinafter referred to as RO treated water pump) 12, and an ultraviolet oxidation device 13, which are arranged in series along a line L1 from upstream to downstream in the flow direction D of the water to be treated. The raw water (hereinafter referred to as water to be treated) produced in the pretreatment system and stored in the raw water tank 3 is pressurized by the raw water pump 4, and then relatively large particle size dust and the like are removed by the filter 5, and impurities such as hydrogen peroxide, chlorine, and organic matter are removed by the activated carbon tower 6. The water to be treated has its cationic components removed in the cation resin tower 7, its carbon dioxide removed in the decarbonation device 8, and its anionic components removed in the anion resin tower 9, and then its ionic components are further removed in the reverse osmosis membrane device 10. The treated water from the reverse osmosis membrane device 10 is then sent to the RO treated water tank 11, where it is pressurized by the RO treated water pump 12, after which the organic components are decomposed by the ultraviolet oxidation device 13, and then sent to the regenerative ion exchange device 2.

再生式イオン交換装置2のA塔2A、B塔2B、C塔2Cには、再生可能なイオン交換体、本実施形態ではイオン交換樹脂が充填されている。イオン交換樹脂は被処理水中の有機物成分やイオン成分を除去する。特に、ホウ素は樹脂に対する吸着力が弱いため、樹脂から離脱しやすい。サブシステムに設けられるイオン交換装置は、被処理水のイオン負荷が小さいこともあり、通常はカートリッジ型の非再生式である。非再生式イオン交換装置は、イオン交換性能が低下し交換時期に至るまで長時間使用されるため、捕捉したホウ素が被処理水中に流出しやすい。これに対して、再生式イオン交換装置2は、樹脂に捕捉されたホウ素が、樹脂から破過する前に再生によって除去することが可能であることから、ホウ素の除去手段として有効である。 Towers A 2A, B 2B, and C 2C of the regenerative ion exchange device 2 are filled with regenerative ion exchangers, which in this embodiment are ion exchange resins. The ion exchange resins remove organic components and ionic components from the water being treated. In particular, boron has a weak adsorption force to resins, so it is easy to remove from the resin. The ion exchange devices installed in the subsystems are usually cartridge-type non-regenerative devices, partly because the ionic load of the water being treated is small. Non-regenerative ion exchange devices are used for long periods of time until their ion exchange performance deteriorates and they need to be replaced, so the captured boron is likely to flow into the water being treated. In contrast, the regenerative ion exchange device 2 is effective as a means of removing boron, because the boron captured in the resin can be removed by regeneration before it breaks through the resin.

3つの樹脂塔(A塔2A、B塔2B、C塔2C)はすべて同じ構成を有しているため、以下主にA塔2Aについて説明する。説明は省略するが、ラインL6~L9,弁V3~V8はB塔2B及びC塔2Cにも同様に設けられている。A塔2A、B塔2B、C塔2Cは入口側で、ラインL1から分岐するラインL2A、ラインL2B、ラインL2Cにそれぞれ接続され、出口側で、ラインL4に合流するラインL3A、ラインL3B、ラインL3Cにそれぞれ接続されている。ラインL4は、サブシステムに接続するラインL5に接続されている。ラインL2A、ラインL2B、ラインL2Cにはそれぞれ弁V1A,V1B,V1Cが、ラインL3A、ラインL3B、ラインL3Cにはそれぞれ弁V2A,V2B,V2Cが設けられている。弁V1A,V1BとV2A,V2Bは開かれており、弁V1C,V2Cは閉じられている。従って、A塔2A、B塔2Bは被処理水の処理をする運転状態にあり、C塔2Cは純水製造装置1から隔離された再生待機状態にある。 As all three resin towers (Tower A 2A, Tower B 2B, Tower C 2C) have the same configuration, the following explanation will mainly focus on Tower A 2A. Although explanation will be omitted, lines L6 to L9 and valves V3 to V8 are also provided in Tower B 2B and Tower C 2C in the same way. Tower A 2A, Tower B 2B, and Tower C 2C are connected at the inlet to lines L2A, L2B, and L2C, respectively, which branch off from line L1, and at the outlet to lines L3A, L3B, and L3C, respectively, which merge with line L4. Line L4 is connected to line L5, which connects to the subsystem. Lines L2A, L2B, and L2C are provided with valves V1A, V1B, and V1C, respectively, and lines L3A, L3B, and L3C are provided with valves V2A, V2B, and V2C, respectively. Valves V1A, V1B and V2A, V2B are open, and valves V1C, V2C are closed. Therefore, towers A 2A and B 2B are in operation to treat the water to be treated, and tower C 2C is in a standby state for regeneration, isolated from the pure water production system 1.

A塔2Aは下部にアニオン交換樹脂からなるアニオン層21が、上部にカチオン交換樹脂からなるカチオン層22が充填された、複床式のイオン交換樹脂塔である。アニオン層21とカチオン層22はイオン交換繊維、モノリス状イオン交換体等で形成してもよい。アニオン層21とカチオン層22との間には、アニオン層21の再生剤を供給するためのヘッダ23が設けられている。ラインL2AはA塔2Aの底部に接続され、ラインL3AはA塔2Aの頂部に接続されている。従って、被処理水は上向流としてA塔2Aに導入され、アニオン層21でアニオン成分を除去され、次にカチオン層22でカチオン成分を除去され、その後ラインL3Aから排出される。再生式イオン交換装置2は、カチオン交換樹脂とアニオン交換樹脂を一つの樹脂塔内に混合充填した混床式、カチオン交換樹脂とアニオン交換樹脂を異なる樹脂塔に充填して、これらの樹脂塔を直列に接続した2床2塔型のものであってもよい。また、カチオン層22が下部に、アニオン層21が上部に充填されていてもよく、被処理水が下向流として供給されてもよい。 The A tower 2A is a double-bed ion exchange resin tower in which the lower part is filled with an anion layer 21 made of anion exchange resin, and the upper part is filled with a cation layer 22 made of cation exchange resin. The anion layer 21 and the cation layer 22 may be formed of ion exchange fibers, monolithic ion exchangers, etc. Between the anion layer 21 and the cation layer 22, a header 23 is provided for supplying a regenerant for the anion layer 21. The line L2A is connected to the bottom of the A tower 2A, and the line L3A is connected to the top of the A tower 2A. Therefore, the treated water is introduced into the A tower 2A as an upward flow, the anion components are removed in the anion layer 21, then the cation components are removed in the cation layer 22, and then the treated water is discharged from the line L3A. The regenerative ion exchange device 2 may be a mixed bed type in which the cation exchange resin and the anion exchange resin are mixed and packed in one resin tower, or a two-bed, two-tower type in which the cation exchange resin and the anion exchange resin are packed in different resin towers and these resin towers are connected in series. Alternatively, the cation layer 22 may be packed in the lower portion and the anion layer 21 may be packed in the upper portion, and the water to be treated may be supplied as a downward flow.

弁V1AとA塔2Aとの間の位置でラインL2Aから分岐するラインL6が設けられている。ラインL6は、RO処理水タンク11を介してラインL1に合流している。ラインL6がラインL1に合流する位置は逆浸透膜装置10の入口側(アニオン樹脂塔9と逆浸透膜装置10の間)でもよく、カチオン樹脂塔7の入口側(活性炭塔6とカチオン樹脂塔7の間)でもよく、紫外線酸化装置13の入口側(RO処理水ポンプ12と紫外線酸化装置13の間)でもよい。少なくともA塔2A(再生式イオン交換装置2)からの溶出成分を除去できる機能を1つ以上備えた装置の前段に戻すことが望ましい。A塔2Aの運転中は、ラインL6上の弁V6、V8は閉じられている。 Line L6 is provided between valve V1A and A tower 2A, branching off from line L2A. Line L6 joins line L1 via RO treated water tank 11. The position where line L6 joins line L1 may be the inlet side of reverse osmosis membrane device 10 (between anion resin tower 9 and reverse osmosis membrane device 10), the inlet side of cation resin tower 7 (between activated carbon tower 6 and cation resin tower 7), or the inlet side of ultraviolet oxidation device 13 (between RO treated water pump 12 and ultraviolet oxidation device 13). It is desirable to return the eluted components from at least A tower 2A (regenerative ion exchange device 2) to the upstream stage of a device that has one or more functions for removing them. During operation of A tower 2A, valves V6 and V8 on line L6 are closed.

塩酸を供給するラインL7がラインL3Aに合流している。A塔2Aの運転中は、ラインL7上の弁V3は閉じられている。A塔2Aの側壁には、ヘッダ23に接続され苛性ソーダを供給するラインL8が設けられている。A塔2Aの運転中は、ラインL8上の弁V4は閉じられている。ラインL8からは排水ラインであるラインL9が分岐しており、ラインL9上の弁V5は閉じられている。ラインL6からは排水ラインであるラインL10が分岐しており、ラインL10上の弁V7は閉じられている。 Line L7, which supplies hydrochloric acid, merges with line L3A. When A tower 2A is in operation, valve V3 on line L7 is closed. Line L8, which is connected to header 23 and supplies caustic soda, is provided on the side wall of A tower 2A. When A tower 2A is in operation, valve V4 on line L8 is closed. Line L9, which is a drainage line, branches off from line L8, and valve V5 on line L9 is closed. Line L10, which is a drainage line, branches off from line L6, and valve V7 on line L10 is closed.

次に、A塔2Aの再生方法について説明する。図1Bに示すように、弁V1A,V2Aを閉じA塔2Aを隔離するとともに、弁V1C,V2Cを開きC塔2Cを運転状態とする。弁V3,V5を開き、ラインL7からA塔2Aに塩酸を供給し、塩酸によるカチオン交換樹脂の再生を行う。ラインL7から供給された塩酸はA塔2Aの頂部に供給され、カチオン層22の内部を下向流となって流通し、ヘッダ23、ラインL8、ラインL9を通って、排水タンク(図示せず)に回収される。被処理水と反対方向に塩酸を流すことで、カチオン交換樹脂に捕捉されたカチオン成分をより効果的に除去することができる。すなわち、カチオン層22の下側部分は被処理水の入口側となるため、出口側となる上側部分より多くのカチオン成分が捕捉されている。上から下に塩酸を流すことで、カチオン成分が上側に逆流してカチオン層22の上側部分が汚染されることが防止される。なおカチオン層22を塩酸で再生する際には、アニオン層21に塩酸が接触することを防ぐため、アニオン層21下部から上向流にてRO処理水タンク11の水を供給する。続いて、塩酸と同様のラインを用いて残留した塩酸をRO処理水タンク11の水を用いて洗浄する(図示せず)。 Next, the regeneration method of A tower 2A will be described. As shown in FIG. 1B, valves V1A and V2A are closed to isolate A tower 2A, and valves V1C and V2C are opened to operate C tower 2C. Valves V3 and V5 are opened, and hydrochloric acid is supplied to A tower 2A from line L7 to regenerate the cation exchange resin with hydrochloric acid. The hydrochloric acid supplied from line L7 is supplied to the top of A tower 2A, flows through the inside of the cation layer 22 as a downward flow, and is recovered in a wastewater tank (not shown) through header 23, line L8, and line L9. By flowing hydrochloric acid in the opposite direction to the water to be treated, the cationic components captured by the cation exchange resin can be removed more effectively. That is, since the lower part of the cation layer 22 is the inlet side of the water to be treated, more cationic components are captured than in the upper part, which is the outlet side. By flowing hydrochloric acid from top to bottom, the cationic components are prevented from flowing back to the upper side and contaminating the upper part of the cation layer 22. When regenerating the cation layer 22 with hydrochloric acid, water from the RO treated water tank 11 is supplied in an upward flow from the bottom of the anion layer 21 to prevent the hydrochloric acid from coming into contact with the anion layer 21. Next, the remaining hydrochloric acid is washed away with water from the RO treated water tank 11 using the same line as the hydrochloric acid (not shown).

次に、図1Cに示すように、弁V3,V5を閉じ、弁V4,V7,V8を開き、ラインL8からA塔2Aに苛性ソーダを供給し、苛性ソーダによるアニオン交換樹脂の再生を行う。ラインL8から供給された苛性ソーダはヘッダ23を通ってA塔2Aのアニオン層21の頂部に供給され、アニオン層21を下向流となって流通し、ラインL10を通り、排水タンク(図示せず)に回収される。被処理水と反対方向に苛性ソーダを流す理由は上述の塩酸の場合と同様である。なおアニオン層21を苛性ソーダで再生する際には、カチオン層22に苛性ソーダが接触することを防ぐため、カチオン層22上部から下向流にてRO処理水タンク11の水を供給する。続いて、同様のラインを用いて残留した苛性ソーダをRO処理水タンク11の水を用いて洗浄する(図示せず)。 Next, as shown in FIG. 1C, valves V3 and V5 are closed, valves V4, V7, and V8 are opened, and caustic soda is supplied to A tower 2A from line L8 to regenerate the anion exchange resin with caustic soda. The caustic soda supplied from line L8 is supplied to the top of the anion layer 21 of A tower 2A through the header 23, flows through the anion layer 21 as a downward flow, passes through line L10, and is collected in a wastewater tank (not shown). The reason for flowing caustic soda in the opposite direction to the water to be treated is the same as in the case of hydrochloric acid described above. When regenerating the anion layer 21 with caustic soda, water from the RO treated water tank 11 is supplied in a downward flow from the top of the cationic layer 22 to prevent caustic soda from contacting the cationic layer 22. Next, the remaining caustic soda is washed using the water from the RO treated water tank 11 using a similar line (not shown).

次に、図1Dに示すように、弁V4,V7を閉じ、弁V2A,V6を開き、ラインL4,L3AからA塔2Aに洗浄水を供給する。この際、ラインL3B,L3C,L4,L3Aは洗浄水をA塔2Aに供給する洗浄水供給ラインとして機能する。洗浄水はB塔2BとC塔2Cの出口水、すなわち純水であるため純度が高い。洗浄水の流量はB塔2BとC塔2Cから排出される純水の合計流量の0.5~5%の間とすることが好ましい。洗浄水として利用された純水はカチオン層22、アニオン層21の順に流通し、戻りラインであるラインL6を通ってRO処理水タンク11に戻される。この際、ラインL2A,L6は洗浄水を回収する洗浄水回収ラインとして機能する。このようにして洗浄水が再利用されるため、水回収率が低下することはほとんどない。洗浄水は再生式イオン交換装置2の上流側であればRO処理水タンク11以外の位置に戻してもよい。ただし、洗浄水にはA塔2Aの樹脂から溶出した有機物が含まれている可能性があるため、前述のように、少なくともA塔2Aからの溶出成分を除去できる機能を1つ以上備えた装置の前段に戻すことが望ましい。 Next, as shown in FIG. 1D, valves V4 and V7 are closed, valves V2A and V6 are opened, and washing water is supplied to A tower 2A through lines L4 and L3A. At this time, lines L3B, L3C, L4, and L3A function as washing water supply lines that supply washing water to A tower 2A. The washing water is the outlet water of B tower 2B and C tower 2C, that is, pure water, so it has high purity. It is preferable that the flow rate of the washing water is between 0.5 and 5% of the total flow rate of the pure water discharged from B tower 2B and C tower 2C. The pure water used as washing water flows in the order of cation layer 22 and anion layer 21, and is returned to RO treated water tank 11 through line L6, which is the return line. At this time, lines L2A and L6 function as washing water recovery lines that recover washing water. Since the washing water is reused in this way, the water recovery rate is hardly reduced. The washing water may be returned to a position other than the RO treated water tank 11 as long as it is upstream of the regenerative ion exchange device 2. However, since the wash water may contain organic matter that has eluted from the resin in Tower A 2A, as mentioned above, it is desirable to return it to the upstream stage of a device that has at least one function capable of removing eluted components from Tower A 2A.

通常、A塔2A、B塔2B、C塔2Cの切り替えは週単位または月単位で行われるが、再生は数時間で完了する。従来は、再生が終了した後切り替えのタイミングまで、樹脂塔内に純水を張った状態(すなわち樹脂が浸漬した状態)で次の運転開始まで待機しているが、待機時間が長い場合樹脂の母体が剥離し、剥離した有機物や微粒子が樹脂塔内の浸漬水に流出しやすくなる。流出した有機物や微粒子は樹脂塔中滞留するほか、樹脂塔の内壁や樹脂に付着する可能性がある。このため、樹脂塔を純水製造装置に接続し、被処理水の供給を開始した後しばらくの間、処理水の水質(TOC、比抵抗、微粒子数等)が不安定になる可能性がある。この結果、後段のサブシステムにおける負荷の増加や、ユースポイントにおける水質の変動が生じる可能性がある。本実施形態では、再生が終了した後、次の運転状態までの間の待機状態で洗浄水を流通させているため、樹脂から剥離した有機物や微粒子が洗浄水で流され、樹脂塔内に蓄積しにくくなる。このため、樹脂塔を純水製造装置1に接続したときに、樹脂塔内に存在する有機物や微粒子の量が減少し、被処理水の供給を開始した後、処理水の水質が早期に安定する。 Normally, the switching between A tower 2A, B tower 2B, and C tower 2C is performed on a weekly or monthly basis, but regeneration is completed in a few hours. Conventionally, after regeneration is completed, the resin tower is filled with pure water (i.e., the resin is immersed in the resin) and waits until the next operation starts until the timing of switching. However, if the waiting time is long, the resin matrix peels off and the peeled organic matter and fine particles are likely to flow into the immersion water in the resin tower. The leaked organic matter and fine particles may remain in the resin tower and may adhere to the inner wall and resin of the resin tower. For this reason, the water quality of the treated water (TOC, resistivity, number of fine particles, etc.) may become unstable for a while after the resin tower is connected to the pure water production device and the supply of the water to be treated is started. As a result, the load in the downstream subsystem may increase and the water quality at the point of use may fluctuate. In this embodiment, after regeneration is completed, cleaning water is circulated in a standby state until the next operation state, so that organic matter and fine particles peeled off from the resin are washed away by the cleaning water and are less likely to accumulate in the resin tower. Therefore, when the resin tower is connected to the pure water production system 1, the amount of organic matter and fine particles present in the resin tower is reduced, and the quality of the treated water is stabilized quickly after the supply of the water to be treated begins.

次に、図1Eに示すように、弁V6、V8を閉じ、弁V1Aを開き、A塔2Aの運転を再開する。これと同時に、弁V1B,V2Bを閉じ、B塔2Bを純水製造装置1から隔離する。A塔2AとC塔2Cを運転しながら、上述の手順に従いB塔2Bの再生と待機を行う。 Next, as shown in Figure 1E, valves V6 and V8 are closed, valve V1A is opened, and operation of tower A 2A is resumed. At the same time, valves V1B and V2B are closed to isolate tower B 2B from the pure water production system 1. While tower A 2A and tower C 2C are operating, tower B 2B is regenerated and put into standby according to the procedure described above.

本実施形態は既存の設備の運転方法を変えるだけで実施できるため、新たなラインや弁の追加は不要である。洗浄水は上流の原水ポンプ4及びRO処理水ポンプ12によって昇圧されているため、新たにポンプを設ける必要はない。洗浄水としては運転中の樹脂塔(本実施形態ではB塔2B及びC塔2C)の出口水を用いることが最も簡便であるが、待機中の再生式イオン交換装置2の樹脂を汚染しない、一定の純度を有する洗浄水であれば特に限定されない。洗浄水は、再生式イオン交換装置2で生成された処理水と同程度またはそれ以上の比抵抗を有する水であればよい。 Since this embodiment can be implemented simply by changing the operating method of the existing equipment, there is no need to add new lines or valves. Since the wash water is pressurized by the upstream raw water pump 4 and RO treated water pump 12, there is no need to install a new pump. The simplest method is to use the outlet water of the resin towers in operation (tower B 2B and tower C 2C in this embodiment) as the wash water, but there are no particular limitations as long as the wash water has a certain purity and does not contaminate the resin of the regenerative ion exchange device 2 in standby. The wash water may be water that has a resistivity equal to or greater than that of the treated water generated by the regenerative ion exchange device 2.

(実施例)
図2に示す装置を用いて本発明の効果を確認した。φ25mmのアクリルカラムに300mLの強酸性カチオン樹脂を充填して、カチオン塔を作成した。同様に、φ25mmのアクリルカラムに300mLの強塩基性アニオン樹脂を充填して、アニオン塔を作成した。アニオン塔とカチオン塔を直列で接続し、このような2床2塔型のイオン交換装置を2系統作成した。予め、塩酸を各カチオン塔に下向流で供給し、強酸性カチオン樹脂を再生した。同様に、予め、苛性ソーダを各アニオン塔に下向流で供給し、強塩基性アニオン樹脂を再生した。次に、神奈川県相模原市の市水をフィルタ、活性炭装置、イオン交換装置(実施形態と同様、カチオン交換樹脂塔と脱炭酸装置とアニオン交換樹脂塔とを直列に接続した2床3塔型のもの)、逆浸透膜装置で順次処理した被処理水を、アニオン塔、カチオン塔の順に通水した。連続的に処理水を得るため、系統1と系統2を交互に且つ定収量で運転した(運転→再生→洗浄水を通水しながら待機→運転)。
(Example)
The effect of the present invention was confirmed using the device shown in FIG. 2. A φ25 mm acrylic column was filled with 300 mL of strongly acidic cation resin to create a cation tower. Similarly, a φ25 mm acrylic column was filled with 300 mL of strongly basic anion resin to create an anion tower. The anion tower and the cation tower were connected in series to create two systems of such a two-bed, two-tower ion exchange device. Hydrochloric acid was previously supplied to each cation tower in a downward flow to regenerate the strongly acidic cation resin. Similarly, caustic soda was previously supplied to each anion tower in a downward flow to regenerate the strongly basic anion resin. Next, the water to be treated, which was treated in sequence with city water from Sagamihara City, Kanagawa Prefecture, through a filter, an activated carbon device, an ion exchange device (a two-bed, three-tower type in which a cation exchange resin tower, a decarbonation device, and an anion exchange resin tower are connected in series, as in the embodiment), and a reverse osmosis membrane device, was passed through the anion tower and the cation tower in that order. In order to continuously obtain treated water, the lines 1 and 2 were operated alternately at a constant yield (operation -> regeneration -> standby while passing wash water -> operation).

実施例では、系統1のイオン交換装置に、空間速度SV90で被処理水を通水した。すなわち、被処理水をアニオン塔下部から上部に向けて上向流にて通水し、さらにカチオン塔下部から上部に向けて上向流にて通水した。系統1の運転中、待機状態の系統2のイオン交換装置に、空間速度SV1で洗浄水を通水した。すなわち、系統1の処理水の一部を、洗浄ラインを通してカチオン塔上部から下向流で通水し、さらにアニオン塔上部から下向流で通水した(洗浄水の流れを破線で示す)。系統1に65時間被処理水を通水し、その後交互運転を行うため系統2を運転状態に切り替え、系統2の処理水のTOCを測定した。TOCはスエズ社製TOC計SIEVERS M9eを用いて測定した。比較例は、系統2が待機状態にあるときに通水洗浄を行わなかったことを除き、実施例と同じである。図3に結果を示す。横軸は樹脂の単位体積当たりの通水量、縦軸は処理水のTOCを示す。実施例では、待機時に系統2を通水洗浄したため、樹脂体積に対して約500倍の通水を行った時点で処理水のTOCが安定した。比較例では、処理水のTOCが安定するまでに、樹脂体積に対して約1000倍の通水が必要であり、実施例のほうが短時間でTOCが安定することが確認された。 In the embodiment, the treated water was passed through the ion exchange device of the line 1 at a space velocity of SV90. That is, the treated water was passed through the anion tower from the bottom to the top in an upward flow, and further passed through the cation tower from the bottom to the top in an upward flow. While the line 1 was in operation, the washing water was passed through the ion exchange device of the line 2 in a standby state at a space velocity of SV1. That is, a part of the treated water of the line 1 was passed through the washing line in a downward flow from the top of the cation tower, and further passed through the top of the anion tower in a downward flow (the flow of the washing water is shown by a broken line). The treated water was passed through the line 1 for 65 hours, and then the line 2 was switched to an operating state for alternate operation, and the TOC of the treated water of the line 2 was measured. The TOC was measured using a TOC meter SIEVERS M9e manufactured by Suez. The comparative example is the same as the embodiment, except that the water passing washing was not performed when the line 2 was in a standby state. The results are shown in FIG. 3. The horizontal axis shows the amount of water passing through per unit volume of resin, and the vertical axis shows the TOC of the treated water. In the example, because line 2 was cleaned by passing water through it during standby, the TOC of the treated water stabilized when about 500 times the volume of water had been passed through it compared to the resin volume. In the comparative example, it was necessary to pass about 1000 times the volume of water through it compared to the resin volume until the TOC of the treated water stabilized, and it was confirmed that the TOC stabilized in a shorter time in the example.

1 純水製造装置
2 再生式イオン交換装置
2A,2B,2C イオン交換樹脂塔(A塔,B塔,C塔)
21 イオン交換体(アニオン層)
22 イオン交換体(カチオン層)
1 Pure water production equipment 2 Regenerative ion exchange equipment 2A, 2B, 2C Ion exchange resin towers (A tower, B tower, C tower)
21 Ion exchanger (anion layer)
22 Ion exchanger (cation layer)

Claims (8)

再生可能なイオン交換体が充填され並列配置され複数のイオン交換装置において、被処理水を処理する運転状態と、被処理水の供給を停止して、前記イオン交換体を再生し、次の運転状態まで待機する再生待機状態とを前記複数のイオン交換装置の間で交互に繰り返すことを有し、
前記再生待機状態において、前記イオン交換体の再生終了後次の運転状態が始まるタイミングまで連続して、洗浄水を前記イオン交換体に通水する、純水製造方法。
In a plurality of ion exchange devices filled with regenerative ion exchangers and arranged in parallel , an operating state in which water to be treated is treated and a regeneration standby state in which the supply of the water to be treated is stopped, the ion exchangers are regenerated, and the system is on standby until the next operating state are alternately repeated between the plurality of ion exchange devices ,
In the regeneration standby state, washing water is continuously passed through the ion exchanger until a next operating state is started after the regeneration of the ion exchanger is completed.
前記洗浄水と、前記イオン交換体の再生のために供給する再生剤は、前記被処理水の通水方向と反対方向に通水される、請求項1に記載の純水製造方法。 The method for producing pure water according to claim 1, wherein the cleaning water and the regenerant supplied for regenerating the ion exchanger are passed in a direction opposite to the direction of the water to be treated. 前記洗浄水は前記イオン交換装置で生成された処理水と同程度またはそれ以上の比抵抗を有する、請求項1または2に記載の純水製造方法。 The method for producing pure water according to claim 1 or 2, wherein the cleaning water has a resistivity equal to or greater than that of the treated water produced by the ion exchange device. 前記洗浄水は、前記運転状態にある前記イオン交換装置で生成された処理水である、請求項に記載の純水製造方法。 2. The method for producing pure water according to claim 1 , wherein the cleaning water is treated water produced by the ion exchange device in the operating state. 前記洗浄水として利用された水は前記イオン交換装置からの溶出成分を除去できる機能を1つ以上備えた装置の前段に戻される、請求項1からのいずれか1項に記載の純水製造方法。 5. The method for producing pure water according to claim 1, wherein the water used as the cleaning water is returned to a stage upstream of a device having one or more functions for removing components eluted from the ion exchange device. 前記イオン交換装置における前記洗浄水の空間速度は、前記イオン交換装置における前記被処理水の空間速度より小さい、請求項1からのいずれか1項に記載の純水製造方法。 6. The method for producing pure water according to claim 1 , wherein the space velocity of the wash water in the ion exchange device is lower than the space velocity of the water to be treated in the ion exchange device. 再生可能なイオン交換体が充填され並列配置され複数のイオン交換装置であって、被処理水を処理する運転状態と、被処理水の供給を停止して、前記イオン交換体を再生し、次の運転状態まで待機する再生待機状態とを前記複数のイオン交換装置の間で交互に繰り返すことが可能な複数のイオン交換装置と、
前記再生待機状態において、前記イオン交換体の再生終了後次の運転状態が始まるタイミングまで連続して、洗浄水を前記イオン交換体に通水する洗浄水供給ラインと、
を有する純水製造装置。
a plurality of ion exchange devices filled with regenerative ion exchangers and arranged in parallel , the plurality of ion exchange devices being capable of alternately repeating between an operating state in which the water to be treated is treated and a regeneration standby state in which the supply of the water to be treated is stopped, the ion exchangers are regenerated, and the plurality of ion exchange devices are on standby until the next operating state;
a cleaning water supply line for continuously supplying cleaning water to the ion exchanger during the regeneration standby state until a next operating state is started after the regeneration of the ion exchanger is completed;
A pure water production apparatus having the above structure.
請求項に記載の純水製造装置と、
前記純水製造装置の上流側に設けられた前処理システムと、
前記純水製造装置の下流側に設けられたサブシステムと、
を備える超純水製造装置。
The water purifying apparatus according to claim 7 ,
a pretreatment system provided upstream of the pure water production apparatus;
a subsystem provided downstream of the water purifying apparatus;
An ultrapure water production apparatus comprising:
JP2020098528A 2020-06-05 2020-06-05 Pure water production method and production equipment Active JP7648345B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020098528A JP7648345B2 (en) 2020-06-05 2020-06-05 Pure water production method and production equipment
TW110113663A TW202216295A (en) 2020-06-05 2021-04-16 Pure water production method and production device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020098528A JP7648345B2 (en) 2020-06-05 2020-06-05 Pure water production method and production equipment

Publications (2)

Publication Number Publication Date
JP2021191566A JP2021191566A (en) 2021-12-16
JP7648345B2 true JP7648345B2 (en) 2025-03-18

Family

ID=78945601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020098528A Active JP7648345B2 (en) 2020-06-05 2020-06-05 Pure water production method and production equipment

Country Status (2)

Country Link
JP (1) JP7648345B2 (en)
TW (1) TW202216295A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018030079A (en) 2016-08-23 2018-03-01 栗田工業株式会社 Regeneration type ion exchanger and operational method thereof
JP2018043222A (en) 2016-09-16 2018-03-22 栗田工業株式会社 Water quality control system and operation method of water quality control system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62114662A (en) * 1985-11-12 1987-05-26 Ebara Corp Method for removing substance eluted from ion exchange resin

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018030079A (en) 2016-08-23 2018-03-01 栗田工業株式会社 Regeneration type ion exchanger and operational method thereof
JP2018043222A (en) 2016-09-16 2018-03-22 栗田工業株式会社 Water quality control system and operation method of water quality control system

Also Published As

Publication number Publication date
JP2021191566A (en) 2021-12-16
TW202216295A (en) 2022-05-01

Similar Documents

Publication Publication Date Title
JP5081690B2 (en) Production method of ultra pure water
TWI808053B (en) Ultrapure water production system and ultrapure water production method
CN111517530A (en) Waste acid liquid regeneration pretreatment method and system
JP2004122020A (en) Ultrapure water manufacturing apparatus and method for washing ultrapure water manufacturing and supplying system of the apparatus
JP4034668B2 (en) Ultrapure water production system and operation method thereof
KR102340160B1 (en) Method and apparatus for removing hydrogen peroxide
JP7648345B2 (en) Pure water production method and production equipment
JPS62110795A (en) High purity water production equipment
JP4508701B2 (en) Water treatment system for electronic component parts manufacturing equipment
JP2950621B2 (en) Ultrapure water production method
CN112642211B (en) System and method for removing non-free resin in photoresist stripping solution
CN214634616U (en) System for non-free resin in desorption photoresist stripping liquid
CN111670165A (en) Method for treating produced water
JP2742976B2 (en) Mixed bed type ion exchange apparatus and method for producing pure water and ultrapure water using the mixed bed type ion exchange apparatus
TW201838925A (en) Water quality management system and method for operating water quality management system
JPH11662A (en) Demineralization apparatus and method for boiler water
JPH1085739A (en) Condensate desalination equipment
JPH07171561A (en) Hydrogen peroxide removal method using granular activated carbon packed tower
JPH10137755A (en) Wastewater membrane treatment equipment
TW202106630A (en) Ultrapure water production system and method for producing ultrapure water
JP2005103510A (en) Method for cleaning liquid chemical
JP2577014B2 (en) Pure water supply device
JP3674368B2 (en) Pure water production method
JPH03293087A (en) Production of ultra-pure water
JP2007098268A (en) Method and apparatus for disposing waste water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230830

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20231107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240116

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20240123

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20240329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20250306